

Received 8 May 2015 Accepted 13 May 2015

Edited by A. Van der Lee, Université de Montpellier II, France

Keywords: crystal structure; nonavanadoplatinate(IV) polyanion; heteropolyanions; hydrogen bonding

CCDC reference: 1400654 **Supporting information**: this article has supporting information at journals.iucr.org/e

0.10 0.10 H7¹⁶ H81 Pt1 0.7R H7¹⁶ H81 H7 0.7R¹ Pt1¹ 0.8R 0.10 0.10 0.10 0.7R 0.10 0.7R

Crystal structure of pentapotassium dihydrogen nonavanadato(V)platinate(IV) nonahydrate

Hea-Chung Joo and Uk Lee*

Department of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea. *Correspondence e-mail: uklee@pknu.ac.kr

The title compound, $K_5[H_2PtV_9O_{28}]\cdot 9H_2O$, containing the nonavanadoplatinate(IV) polyanion, was obtained by hydrothermal reaction at pH = 4.2. The polyanion has approximate *mm2* ($C_{2\nu}$) symmetry. The two platinum-bound μ_2 -O atoms are protonated in the polyanion. The heteropolyanions form inversion-generated dimers, { $[H_2PtV_9O_{28}]_2$ }¹⁰⁻, held together by μ_2 -O-H··· μ_2 -O and μ_2 -O-H··· μ_3 -O hydrogen bonds. All K⁺ cations are located on general positions of the space group $P\overline{1}$.

1. Structural commentary

Two heteropolyanions that belong to the decavanadate structure system (Lee, 2006) have recently been reported: the tellurium derivative $[H_n \text{TeV}_9 O_{28}]^{(5-n)}$ (n = 1 and 2), described by Konaka *et al.* (2011), and the platinum heteropolyoxido-vanadate, $[H_2 PtV_9 O_{28}]^{5-}$, reported by our group in the form of its sodium salt, Na₅[H₂PtV₉O₂₈]·21H₂O (Lee *et al.*, 2008) and a guanidinium salt, (CH₆N₃)₅[H₂PtV₉O₂₈] (Joo *et al.*, 2011). The Te heteroatom of the $[H_n \text{TeV}_9 O_{28}]^{(5-n)}$ polyanion was located on two sites (corresponding to the Pt1 and V4 sites in the title compound) by disorder. However, the Pt atom does not show any disorder in three $[H_2 PtV_9 O_{28}]^{5-}$ polyanions. We herein report the structure of the title compound because it could contribute to our knowledge of the structural characteristics of the $[H_2 PtV_9 O_{28}]^{5-}$ polyanion.

Figure 1

The molecular structure of the heteropolyanion in the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

research communications

Figure 2

Polyhedral view of the inter-anion hydrogen bonds (dotted lines) in the crystal structure of the title compound. [Symmetry code: (i) -x, -y + 1, -z.]

Fig. 1 shows the structure of the heteropolyanion in the title compound. The O atoms of the clusters were designated as OT (terminal, V=O), OB (bridging, μ_2 -O), OC (μ_3 -O), and OD (μ_4 -O). All atoms in the polyanions are located in general positions. The protonated OB atoms in the polyanions were identified by the locations in the difference Fourier maps of the H atoms bound to atoms O7B and O8B and local structural features, as seen previously in sodium and guanidinium salts, respectively. The geometry of the anion agrees well with that in sodium and guanidinium salts. The nine $[VO_6]$ octahedra in the polyanion are distorted [range of V-O distances = 1.596(3)-2.403(3)Å], while the [PtO₆] octahedron is relatively regular [Pt-O = 1.985 (3)-2.036 (3) Å]. The two platinum bound μ_2 -O atoms are protonated in the polyanion. These protons are particularly important in the solid state as they lead to the formation of a dimeric assembly, $\{[H_2PtV_9O_{28}]_2\}^{10-}$, through each of the two μ_2 -O7B-H7··· μ_2 -O19B and μ_2 -O8B-H8··· μ_3 -O4C interanion hydrogen bonds (Fig. 2 and Table 1).

The K⁺ ions are variously coordinated by O atoms as $[K1(OB)(OT)_2(OW)_5]^+$ in the range 2.725 (5)–3.351 (6) Å, $[K2(OB)_2(OT)_3(OW)_3]^+$ in the range 2.722 (4)–3.156 (5) Å, $[K3(OB)(OT)_4(OW)_4]^+$ in the range 2.844 (4)–3.151 (3) Å, $[K4(OB)(OT)_2(OW)_4]^+$ in the range 2.733 (5)–3.284 (7) Å, and $[K5(OB)_2(OT)_2(OW)_3]^+$ in the range 2.734 (6)–2.996 (4) Å. The bond-valence sums (BVS; Brown & Altermatt, 1985; Brese & O'Keeffe, 1991) for the K1, K2, K3, K4, and K5 cations are 0.99, 1.12,1.04, 0.81, and 1.10 v.u, respectively (total v.u. = 5.06).

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O7B - H7 \cdot \cdot \cdot O19B^{i}$	0.90 (8)	1.86 (8)	2.738 (4)	164 (8)
$O8B - H8 \cdots O4C^{i}$	0.77 (6)	1.90 (6)	2.645 (5)	161 (6)
$O1W - H1B \cdot \cdot \cdot O9B$	0.83 (3)	2.50 (6)	3.127 (6)	133 (7)
$O1W-H1A\cdots O8W$	0.84 (3)	2.10 (3)	2.930 (9)	170 (8)
$O2W-H2A\cdots O15B$	0.87 (3)	1.88 (3)	2.728 (6)	166 (8)
$O2W - H2B \cdot \cdot \cdot O11B^{ii}$	0.86 (3)	2.23 (5)	2.975 (6)	145 (8)
$O3W-H3A\cdots O3C^{iii}$	0.84 (3)	1.83 (3)	2.673 (5)	177 (10)
$O3W - H3B \cdot \cdot \cdot O7W$	0.83 (3)	2.09 (5)	2.875 (7)	158 (8)
$O4W-H4A\cdots O13B^{i}$	0.83 (3)	1.88 (3)	2.680 (5)	162 (7)
$O4W-H4B\cdots O14B^{iv}$	0.83 (3)	2.10 (4)	2.850 (5)	151 (7)
$O5W - H5A \cdots O2W^{v}$	0.87 (3)	1.84 (3)	2.710 (8)	175 (8)
$O5W - H5B \cdot \cdot \cdot O24T^{vi}$	0.84 (3)	2.26 (5)	2.972 (6)	142 (7)
$O6W-H6A\cdots O5C^{iv}$	0.97	1.81	2.755 (5)	163
$O6W - H6B \cdot \cdot \cdot O10B^{v}$	0.97	2.04	2.755 (5)	129
$O7W - H7A \cdots O7B^{iii}$	0.85 (3)	2.07 (4)	2.891 (5)	163 (8)
$O7W - H7B \cdot \cdot \cdot O6C^{v}$	0.84 (3)	2.27 (6)	2.885 (5)	130 (6)
$O8W - H8A \cdots O5W^{v}$	0.86 (3)	1.98 (5)	2.795 (7)	159 (10)
$O8W-H8B\cdots O19B^{vii}$	0.86 (3)	2.22 (4)	3.031 (6)	156 (8)

Symmetry codes: (i) -x, -y + 1, -z; (ii) -x + 1, -y + 2, -z + 1; (iii) -x, -y + 1, -z + 1; (iv) x, y - 1, z; (v) -x + 1, -y + 1, -z + 1; (vi) -x + 1, -y + 1, -z; (vii) x, y, z + 1.

The polyanion dimers are three-dimensionally linked *via* $K \cdots OT$ and $K \cdots OB$ interactions. All water molecules form hydrogen bonds with polyanions except for the O9W water molecule (Table 1).

Table 2 Experimental details.	
Crystal data	
Chemical formula	$K_5[H_2PtV_9O_{28}]\cdot 9H_2O$
M _r	1461.21
Crystal system, space group	Triclinic, P1
Temperature (K)	298
a, b, c (A)	10.1663 (7), 12.8350 (7), 13.615 (2)
α, β, γ (°)	103.734 (5), 106.193 (6), 92.480 (4)
$V(A^3)$	1645.8 (3)
Ζ	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	7.42
Crystal size (mm)	$0.21 \times 0.19 \times 0.17$
Data collection	
Diffractometer	Stoe Stadi4
Absorption correction	Empirical (using intensity measurements) (X-SHAPE; Stoe & Cie.1996)
T	0.301. 0.378
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	6797, 6797, 6242
$(\sin \theta / \lambda)_{\max} (\dot{A}^{-1})$	0.628
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.028, 0.066, 1.10
No. of reflections	6797
No. of parameters	526
No. of restraints	25
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	1.30, -1.46

Computer programs: STADI4 and X-RED (Stoe & Cie, 1996), SHELXS2014 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998).

2. Synthesis and crystallization

Single crystals of the title compound were obtained in the same way as the sodium salt reported by Lee *et al.* (2008) using $K_2Pt(OH)_6$ and KVO_3 .

3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Atoms H7 and H8, bound to μ_2 -O7*B* and μ_2 -O8*B*, respectively, of the polyanion were found in a difference Fourier map and were freely refined. The H atoms of the O6*W* molecule were positioned geometrically and refined using a riding model (*SHELXL2014* command HFIX 23), with O-H = 0.97 Å and $U_{iso}(H) = 1.5 U_{eq}(O)$. All other water H atoms were refined with distance restraints of O-H = 0.85 (3) Å and HA···HB = 1.35 (3) Å using DFIX, and were included in the refinement with $U_{iso}(H) = 1.5U_{eq}(O)$. The unusually short μ_2 -O17*B*···terminal-O21*T*ⁱ distance of 2.949 (5) Å (symmetry code as in Fig. 2.) is caused by the neighboring hydrogen bonds between the polyanions of the dimer as shown in Fig. 2. The highest peak in the difference map is 0.95 Å from K4 and the largest hole is 0.92 Å from Pt1.

References

- Brandenburg, K. (1998). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.
- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Joo, H.-C., Park, K.-M. & Lee, U. (2011). Acta Cryst. E67, m1801– m1802.
- Konaka, S., Ozawa, Y., Shonaka, T., Watanabe, S. & Yagasaki, A. (2011). *Inorg. Chem.* 50, 6183–6188.
- Lee, U. (2006). Acta Cryst. E62, i176-i178.
- Lee, U., Joo, H.-C., Park, K.-M., Mal, S. S., Kortz, U., Keita, B. & Nadjo, L. (2008). Angew. Chem. Int. Ed. 47, 793–796.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Stoe & Cie (1996). STADI4, X-RED and X-SHAPE. Stoe & Cie Gmbh, Darmstadt, Germany.

supporting information

Acta Cryst. (2015). E71, 647-649 [doi:10.1107/S2056989015009135]

Crystal structure of pentapotassium dihydrogen nonavanadato(V)platinate(IV) nonahydrate

Hea-Chung Joo and Uk Lee

Computing details

Data collection: *STADI4* (Stoe & Cie, 1996); cell refinement: *STADI4* (Stoe & Cie, 1996); data reduction: *X-RED* (Stoe & Cie, 1996); program(s) used to solve structure: *SHELXS2014* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *SHELXL2014* (Sheldrick, 2015).

Pentapotassium dihydrogen nonavanadato(V)platinate(IV) nonahydrate

Crystal data $K_{5}[H_{2}PtV_{9}O_{28}] \cdot 9H_{2}O$ $M_{r} = 1461.21$ Triclinic, $P\overline{1}$ a = 10.1663 (7) Å b = 12.8350 (7) Å c = 13.615 (2) Å $a = 103.734 (5)^{\circ}$ $\beta = 106.193 (6)^{\circ}$ $\gamma = 92.480 (4)^{\circ}$ $V = 1645.8 (3) Å^{3}$

Data collection

Stoe Stadi4 diffractometer Radiation source: fine-focus sealed tube $\omega/2-\theta$ scans Absorption correction: empirical (using intensity measurements) (X-SHAPE; Stoe & Cie,1996) $T_{\min} = 0.301, T_{\max} = 0.378$ 6797 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.066$ S = 1.106797 reflections 526 parameters 25 restraints Z = 2 F(000) = 1392 $D_x = 2.949 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71069 \text{ Å}$ Cell parameters from 30 reflections $\theta = 9.6-10.5^{\circ}$ $\mu = 7.42 \text{ mm}^{-1}$ T = 298 K Block, dark brown $0.21 \times 0.19 \times 0.17 \text{ mm}$

6797 independent reflections 6242 reflections with $I > 2\sigma(I)$ $R_{int} = 0.0000$ $\theta_{max} = 26.5^{\circ}, \ \theta_{min} = 1.6^{\circ}$ $h = -12 \rightarrow 12$ $k = -16 \rightarrow 15$ $I = 0 \rightarrow 17$ 3 standard reflections every 60 min intensity decay: 2.5%

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: difference Fourier map
H atoms treated by a mixture of independent and constrained refinement

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0277P)^{2} + 4.5476P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 1.30 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\min} = -1.46 \text{ e } \text{Å}^{-3}$ Extinction correction: *SHELXL2014* (Sheldrick, 2015), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.00505 (13)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A	²)
- - - -	

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Pt1	0.07476 (2)	0.66204 (2)	0.15945 (2)	0.01102 (6)
V1	0.08091 (8)	0.74803 (6)	-0.03864 (6)	0.01675 (16)
V2	0.05610 (8)	0.57644 (6)	0.35482 (6)	0.01798 (16)
V3	0.36393 (8)	0.67118 (6)	0.46862 (6)	0.01860 (17)
V4	0.38427 (7)	0.76066 (6)	0.27828 (6)	0.01375 (15)
V5	0.38558 (8)	0.84633 (6)	0.08300 (6)	0.01680 (16)
V6	0.15181 (8)	0.90837 (6)	0.19135 (6)	0.01625 (16)
V7	0.14522 (8)	0.82358 (6)	0.38572 (6)	0.01838 (17)
V8	0.28571 (8)	0.50931 (6)	0.24210 (6)	0.01521 (16)
V9	0.30124 (8)	0.59746 (6)	0.04752 (6)	0.01441 (15)
K1	0.19325 (16)	0.94505 (11)	0.81002 (11)	0.0433 (3)
K2	0.32640 (13)	0.27185 (9)	0.99666 (11)	0.0329 (3)
K3	0.29033 (13)	0.19821 (10)	0.25987 (10)	0.0353 (3)
K4	0.1688 (2)	0.15936 (14)	0.5300 (2)	0.0819 (7)
K5	0.33393 (14)	0.48579 (12)	0.61615 (13)	0.0439 (3)
O1D	0.2234 (3)	0.7454 (2)	0.1318 (2)	0.0148 (6)
O2D	0.2133 (3)	0.6723 (2)	0.2981 (2)	0.0148 (6)
O3C	0.0321 (3)	0.8071 (2)	0.2320 (2)	0.0156 (6)
O4C	0.1590 (3)	0.5298 (2)	0.1039 (2)	0.0137 (6)
O5C	0.2793 (3)	0.8770 (2)	0.3209 (2)	0.0165 (6)
O6C	0.3986 (3)	0.6174 (2)	0.2014 (2)	0.0147 (6)
O7B	-0.0627 (3)	0.5793 (3)	0.2053 (3)	0.0159 (6)
H7	-0.086 (8)	0.519 (6)	0.152 (6)	0.07 (2)*
O8B	-0.0508 (3)	0.6659 (3)	0.0160 (3)	0.0168 (7)
H8	-0.067 (6)	0.609 (5)	-0.023 (5)	0.021 (15)*
O9B	0.2105 (3)	0.5994 (3)	0.4730 (3)	0.0202 (7)
O10B	0.4757 (3)	0.7538 (3)	0.3997 (3)	0.0207 (7)
O11B	0.4856 (3)	0.8317 (3)	0.2321 (3)	0.0179 (7)
O12B	0.2409 (3)	0.8257 (3)	-0.0358 (3)	0.0197 (7)
O13B	0.0439 (3)	0.8680 (2)	0.0548 (3)	0.0182 (7)
O14B	0.3033 (3)	0.9526 (2)	0.1585 (3)	0.0174 (6)
O15B	0.2871 (3)	0.8035 (3)	0.4919 (3)	0.0215 (7)
O16B	0.0221 (3)	0.7196 (3)	0.3937 (3)	0.0204 (7)
O17B	0.1402 (3)	0.4691 (2)	0.2815 (3)	0.0176 (6)
O18B	0.4015 (3)	0.5523 (3)	0.3774 (3)	0.0184 (7)

O19B	0.1590 (3)	0.6178 (2)	-0.0635 (2)	0.0158 (6)
O20B	0.4224 (3)	0.7028 (3)	0.0424 (3)	0.0179 (7)
O21T	-0.0224 (4)	0.7505 (3)	-0.1503 (3)	0.0270 (8)
O22T	-0.0570 (4)	0.5099 (3)	0.3842 (3)	0.0257 (8)
O23T	0.4743 (4)	0.6778 (3)	0.5812 (3)	0.0287 (8)
O24T	0.5067 (3)	0.9142 (3)	0.0618 (3)	0.0238 (7)
O25T	0.0976 (4)	1.0199 (3)	0.2403 (3)	0.0245 (7)
O26T	0.0934 (4)	0.9340 (3)	0.4384 (3)	0.0301 (8)
O27T	0.3379 (4)	0.3970 (3)	0.1941 (3)	0.0237 (7)
O28T	0.3493 (4)	0.4863 (3)	-0.0055 (3)	0.0234 (7)
O1W	0.1060 (6)	0.7552 (4)	0.6420 (4)	0.0514 (12)
H1A	0.154 (8)	0.721 (6)	0.681 (5)	0.077*
H1B	0.133 (8)	0.750 (7)	0.589 (4)	0.077*
O2W	0.3763 (6)	0.9426 (4)	0.6891 (4)	0.0618 (15)
H2A	0.347 (9)	0.908 (6)	0.623 (3)	0.093*
H2B	0.428 (8)	0.997 (5)	0.688 (6)	0.093*
O3W	0.2228 (5)	0.1440 (4)	0.7752 (6)	0.0660 (17)
H3A	0.143 (5)	0.161 (7)	0.775 (8)	0.099*
H3B	0.268 (7)	0.197 (5)	0.770 (8)	0.099*
O4W	0.2138 (4)	0.0846 (3)	0.0168 (4)	0.0356 (9)
H4A	0.132 (4)	0.097 (5)	0.007 (6)	0.053*
H4B	0.224 (6)	0.029 (4)	0.038 (6)	0.053*
O5W	0.5107 (5)	0.1657 (4)	0.1656 (4)	0.0495 (12)
H5A	0.550 (8)	0.130 (5)	0.210 (4)	0.074*
H5B	0.481 (8)	0.120 (5)	0.106 (3)	0.074*
O6W	0.3583 (5)	0.0913 (4)	0.4279 (4)	0.0552 (13)
H6A	0.3463	0.0134	0.4006	0.083*
H6B	0.4520	0.1148	0.4737	0.083*
O7W	0.3045 (5)	0.3465 (4)	0.7411 (4)	0.0471 (12)
H7A	0.242 (5)	0.367 (6)	0.769 (6)	0.071*
H7B	0.373 (5)	0.394 (5)	0.774 (6)	0.071*
O8W	0.3022 (6)	0.6482 (5)	0.7759 (4)	0.0634 (15)
H8A	0.375 (6)	0.694 (6)	0.797 (6)	0.095*
H8B	0.287 (9)	0.645 (7)	0.834 (4)	0.095*
O9W	0.1770 (7)	0.3233 (4)	0.4164 (5)	0.0629 (15)
H9A	0.265 (3)	0.341 (8)	0.444 (7)	0.094*
H9B	0.159 (8)	0.357 (7)	0.368 (5)	0.094*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pt1	0.00977 (9)	0.00941 (9)	0.01224 (9)	-0.00006 (5)	0.00238 (6)	0.00097 (6)
V1	0.0165 (4)	0.0157 (4)	0.0161 (4)	0.0005 (3)	0.0017 (3)	0.0046 (3)
V2	0.0159 (4)	0.0202 (4)	0.0177 (4)	-0.0023 (3)	0.0051 (3)	0.0053 (3)
V3	0.0183 (4)	0.0199 (4)	0.0148 (4)	-0.0021 (3)	0.0010 (3)	0.0047 (3)
V4	0.0120 (3)	0.0126 (3)	0.0144 (4)	-0.0016 (3)	0.0020 (3)	0.0019 (3)
V5	0.0162 (4)	0.0151 (4)	0.0194 (4)	-0.0013 (3)	0.0058 (3)	0.0050 (3)
V6	0.0182 (4)	0.0106 (3)	0.0187 (4)	0.0017 (3)	0.0048 (3)	0.0022 (3)

V7	0.0231 (4)	0.0151 (4)	0.0160 (4)	0.0024 (3)	0.0076 (3)	0.0000 (3)
V8	0.0168 (4)	0.0121 (3)	0.0162 (4)	0.0025 (3)	0.0041 (3)	0.0036 (3)
V9	0.0158 (4)	0.0120 (3)	0.0157 (4)	0.0015 (3)	0.0060 (3)	0.0026 (3)
K1	0.0556 (9)	0.0407 (7)	0.0386 (7)	0.0112 (6)	0.0207 (7)	0.0109 (6)
K2	0.0380 (7)	0.0222 (6)	0.0465 (7)	0.0055 (5)	0.0257 (6)	0.0078 (5)
K3	0.0327 (6)	0.0355 (7)	0.0352 (7)	-0.0054 (5)	0.0075 (5)	0.0090 (5)
K4	0.1103 (16)	0.0426 (9)	0.1207 (18)	0.0171 (10)	0.0879 (15)	0.0091 (10)
K5	0.0328 (7)	0.0496 (8)	0.0667 (10)	0.0148 (6)	0.0246 (7)	0.0346 (7)
O1D	0.0146 (15)	0.0120 (14)	0.0172 (16)	-0.0012 (12)	0.0047 (12)	0.0033 (12)
O2D	0.0153 (15)	0.0137 (15)	0.0126 (15)	-0.0033 (12)	0.0026 (12)	0.0010 (12)
O3C	0.0157 (15)	0.0128 (15)	0.0167 (16)	0.0019 (12)	0.0059 (12)	-0.0007 (12)
O4C	0.0136 (14)	0.0106 (14)	0.0153 (15)	0.0004 (11)	0.0036 (12)	0.0017 (12)
O5C	0.0169 (15)	0.0136 (15)	0.0161 (15)	0.0002 (12)	0.0028 (12)	0.0012 (12)
O6C	0.0128 (14)	0.0135 (15)	0.0153 (15)	-0.0002 (12)	0.0012 (12)	0.0030 (12)
O7B	0.0159 (15)	0.0150 (16)	0.0159 (16)	0.0004 (12)	0.0051 (13)	0.0022 (13)
O8B	0.0147 (15)	0.0162 (17)	0.0156 (16)	-0.0006 (13)	-0.0005 (13)	0.0031 (14)
O9B	0.0221 (17)	0.0206 (17)	0.0169 (16)	-0.0022 (13)	0.0055 (13)	0.0040 (13)
O10B	0.0194 (16)	0.0191 (16)	0.0205 (17)	-0.0027 (13)	0.0026 (13)	0.0044 (13)
O11B	0.0142 (15)	0.0180 (16)	0.0204 (17)	-0.0025 (12)	0.0038 (13)	0.0049 (13)
O12B	0.0243 (17)	0.0174 (16)	0.0179 (16)	-0.0010 (13)	0.0055 (14)	0.0069 (13)
O13B	0.0162 (15)	0.0129 (15)	0.0236 (17)	0.0007 (12)	0.0031 (13)	0.0050 (13)
O14B	0.0187 (16)	0.0124 (15)	0.0210 (17)	-0.0007 (12)	0.0061 (13)	0.0041 (13)
O15B	0.0273 (18)	0.0197 (17)	0.0141 (16)	-0.0007 (14)	0.0062 (14)	-0.0017 (13)
O16B	0.0226 (17)	0.0192 (16)	0.0204 (17)	0.0025 (13)	0.0107 (14)	0.0018 (13)
O17B	0.0190 (16)	0.0142 (15)	0.0185 (16)	-0.0015 (12)	0.0049 (13)	0.0039 (13)
O18B	0.0169 (15)	0.0173 (16)	0.0185 (16)	0.0016 (12)	0.0009 (13)	0.0052 (13)
O19B	0.0167 (15)	0.0144 (15)	0.0138 (15)	0.0029 (12)	0.0022 (12)	0.0014 (12)
O20B	0.0180 (16)	0.0178 (16)	0.0200 (17)	0.0031 (13)	0.0085 (13)	0.0054 (13)
O21T	0.0298 (19)	0.0255 (18)	0.0220 (18)	0.0016 (15)	0.0007 (15)	0.0075 (15)
O22T	0.0233 (18)	0.0306 (19)	0.0266 (19)	-0.0029 (15)	0.0109 (15)	0.0106 (15)
O23T	0.0287 (19)	0.033 (2)	0.0186 (18)	-0.0072 (16)	-0.0024 (15)	0.0079 (15)
O24T	0.0224 (17)	0.0224 (17)	0.0281 (19)	-0.0033 (14)	0.0091 (15)	0.0086 (15)
O25T	0.0245 (18)	0.0164 (16)	0.032 (2)	0.0048 (14)	0.0081 (15)	0.0041 (14)
O26T	0.039 (2)	0.0213 (18)	0.029 (2)	0.0061 (16)	0.0154 (17)	-0.0020 (15)
O27T	0.0264 (18)	0.0180 (17)	0.0283 (19)	0.0074 (14)	0.0085 (15)	0.0077 (14)
O28T	0.0278 (18)	0.0164 (16)	0.0277 (19)	0.0037 (14)	0.0130 (15)	0.0034 (14)
O1W	0.066 (3)	0.050 (3)	0.041 (3)	0.008 (2)	0.025 (3)	0.007 (2)
O2W	0.080 (4)	0.056 (3)	0.035 (3)	-0.024 (3)	0.017 (3)	-0.010 (2)
O3W	0.028 (2)	0.058 (3)	0.126 (5)	0.013 (2)	0.028 (3)	0.044 (4)
O4W	0.028 (2)	0.035 (2)	0.054 (3)	0.0107 (17)	0.0133 (19)	0.027 (2)
O5W	0.052 (3)	0.041 (3)	0.049 (3)	-0.008 (2)	0.013 (2)	0.004 (2)
O6W	0.051 (3)	0.034 (2)	0.056 (3)	-0.011 (2)	0.003 (2)	-0.014 (2)
O7W	0.030 (2)	0.043 (3)	0.078 (4)	0.0107 (19)	0.023 (2)	0.025 (2)
O8W	0.080 (4)	0.066 (4)	0.042 (3)	-0.016 (3)	0.028 (3)	0.002 (3)
O9W	0.095 (4)	0.051 (3)	0.056 (3)	0.025 (3)	0.029 (3)	0.028 (3)
	. /	. /	. /			× /

Geometric parameters (Å, °)

Pt1—V6	3.1213 (8)	V8—027T	1.612 (3)
Pt1—V8	3.1262 (8)	V8—017B	1.803 (3)
Pt1—V9	3.1359 (8)	V8—018B	1.826 (3)
Pt1—V7	3.1480 (9)	V8—O6C	2.033 (3)
Pt1—V4	3.1566 (8)	V8—O4C	2.045 (3)
Pt1—V2	3.1574 (9)	V8—O2D	2.278 (3)
V1—V5	3.1204 (11)	V9—O28T	1.601 (3)
V1—V6	3.1801 (11)	V9—O20B	1.816 (3)
V1—V9	3.1802 (11)	V9—019B	1.856 (3)
V2—V3	3.1217 (11)	V9—06C	2.001 (3)
V2—V7	3.1566 (11)	V9—04C	2.064 (3)
V2—V8	3.1767 (11)	V9—01D	2.270 (3)
V2—V4	4.4982 (11)	K1—O3W ⁱ	2.725 (5)
V3—V4	3.1255 (11)	K1—O2W	2.804 (6)
V3—V8	3.1476 (11)	K1—O1W	2.827 (5)
V3—V7	3.1731 (11)	K1—O12B ⁱⁱ	2.830 (3)
V4—V5	3.1120 (11)	K1—O4W ⁱⁱⁱⁱ	2.903 (5)
V4—V9	3.1960 (11)	K1—O25T ^{iv}	2.924 (4)
V4—V7	3.2078 (11)	K1—O24T ^v	3.267 (4)
V4—V8	3.2162 (10)	K1—O5W ^{vi}	3.351 (6)
V5—V9	3.1578 (10)	K2—O4W ⁱⁱ	2.722 (4)
V5—V6	3.1654 (11)	K2—O27T ⁱⁱ	2.753 (4)
V6—V7	3.1068 (12)	K2—O28T ⁱⁱ	2.760 (3)
V8—V9	3.1566 (11)	K2—O20B ^{vi}	2.772 (3)
Pt1—O1D	1.985 (3)	K2—O8B ^{vii}	2.917 (3)
Pt1—O2D	1.986 (3)	K2—O3W	2.936 (7)
Pt1—O4C	2.015 (3)	K2—O24T ^{vi}	3.069 (4)
Pt1—O3C	2.017 (3)	K2—O5W ⁱⁱ	3.156 (5)
Pt1—O8B	2.027 (3)	K3—O23T ^{vi}	2.844 (4)
Pt1—O7B	2.036 (3)	K3—O25T ^{viii}	2.860 (4)
V1—O21T	1.598 (3)	K3—O5W	2.876 (5)
V1—012B	1.857 (3)	K3—O6W	2.878 (6)
V1—013B	1.876 (3)	K3—O9W	2.890 (6)
V1—019B	1.880 (3)	K3—O21T ^{ix}	2.904 (4)
V1—08B	2.064 (3)	K3—O27T	2.960 (4)
V1—01D	2.377 (3)	K3—O4W	3.139 (5)
V2—O22T	1.596 (3)	K3—O14B ^{viii}	3.151 (3)
V2—O9B	1.862 (3)	K4—O6W	2.733 (5)
V2—O16B	1.863 (3)	K4—O16B ^{vii}	2.806 (4)
V2—017B	1.885 (3)	K4—O26T ^{viii}	2.841 (4)
V2—07B	2.067 (3)	K4—O9W	2.904 (5)
V2—O2D	2.374 (3)	K4—O26T ^{vii}	3.055 (4)
V3—O23T	1.608 (3)	K4—07W	3.187 (6)
V3—O9B	1.800 (3)	K4—O3W	3.284 (7)
V3—O18B	1.853 (3)	K5—O8W	2.734 (6)
V3—O15B	1.895 (3)	K5—O18B ^{vi}	2.736 (3)

V3—O10B	2.064 (3)	К5—О9В	2.764 (4)
V3—O2D	2.403 (3)	K5—07W	2.803 (5)
V4—O10B	1.681 (3)	K5—O22T ^{vii}	2.817 (4)
V4—O11B	1.685 (3)	K5—O9W	2.982 (7)
V4—O6C	1.921 (3)	К5—О23Т	2.996 (4)
V4—05C	1.943 (3)	07B—H7	0.90 (8)
V4—O2D	2.148 (3)	O8B—H8	0.77 (6)
V4-01D	2.158 (3)	O1W—H1A	0.84(3)
V5-024T	1.607 (3)	O1W—H1B	0.83(3)
V5-012B	1 813 (3)	O^2W —H2A	0.87(3)
V5-020B	1 878 (3)	O^2W —H2B	0.86(3)
V5-014B	1.879 (3)	O3W—H3A	0.86(3)
V5-011B	2 058 (3)	O3W—H3B	0.83(3)
V5-01D	2.000(3) 2.381(3)	O4W—H4A	0.03(3)
V6-025T	1.617(3)	O4W - H4B	0.03(3)
V6-013B	1.017(3) 1.812(3)	05W—H5A	0.03(3)
V6-014B	1.812(3) 1.824(3)	O5W_H5B	0.87(3)
V6_03C	2.014(3)		0.04(3)
V6-05C	2.014(3) 2.015(3)	O6W—H6B	0.9700
V6_01D	2.015(3) 2.284(3)		0.9700
V7 026T	2.204(3)	$O^{7}W H^{7}B$	0.85(3)
V7_015B	1.010(3) 1.812(3)	O8W - H8A	0.84(3)
V7_016B	1.812(3) 1.832(3)	O8W—H8B	0.86(3)
V7_05C	1.032(3)		0.80(3)
V7_03C	1.997(3)		0.87(3)
V7_02D	2.043(3)	03W—113B	0.85 (5)
V/02D	2.209 (3)		
$\Omega 1D - Pt 1 - \Omega 2D$	84 61 (12)	Pt1V4V8	58 745 (19)
$01D_{Pt1} 04C$	85.94 (12)	V_{9} V_{4} V_{8}	58 98 (2)
02D Pt1 $04C$	85 94 (12)	V7V4V8	89 47 (3)
01D $Pt1$ $03C$	85 44 (12)	V4 V5 V1	92 76 (3)
$02D_{Pt1} = 03C$	84 79 (12)	V4 V5 V9	52.70(3)
04C—Pt1—03C	167.89(12)	V1V5V9	60.86(2)
01D Pt1 OSP	88 40 (13)	$V_1 = V_2 = V_2$	62.06(2)
O2D Pt1 $O8B$	172.80(13)	$V_1 = V_2 = V_0$	62.00(2)
02D $111 - 08D$	172.09(13) 05 27 (13)	$V_1 = V_2 = V_0$	00.78(3)
$O_{4}C_{-1}I_{1}=O_{8}B$	93.27(13) 02.00(13)	$V_{4} = V_{5} = V_{6}$	91.38(3)
0.1D $P+1$ $0.7P$	52.55(13) 173.32(13)	$V_{4} V_{5} V_{5} V_{1} V_{5}$	40.338 (17)
$\begin{array}{ccc} 01D & 111 & 07B \\ 02D & Pt1 & 07B \end{array}$	175.52 (15) 88 75 (12)	$V_1 = V_2 = 1$ ti V0 V5 Pt1	40.428 (18)
02D $11 - 07B$	04.36(12)	$V_{5} = V_{5} = 1$ ti V6 V5 D+1	45.928 (17)
04C - PtI - 0/B	94.30(12)	V0-V3-Ft1	43.039 (17)
$O_{2}C_{1}$	93.22(13)	v / - v 0 - r t I V 7 V 6 V 5	110.00.(2)
$O_{0}D_{1}D_{1}D_{1}$	70.12 (15) 46.01 (0)	$\mathbf{v} / - \mathbf{v} 0 - \mathbf{v} 3$ $\mathbf{p} 1 \mathbf{V} \mathbf{c} \mathbf{V} 5$	110.00(3)
O1D $P(1) = V0$	40.91 (9) 88 70 (0)	$\mathbf{r}_{11} = \mathbf{v}_{0} = \mathbf{v}_{0}$	07.85 (2) 120.05 (2)
02D— PtI — $V0$	00./9 (9) 122.95 (0)	V / - V 0 - V I	120.95(3)
$V_{1} = V_{1} = V_{0}$	152.85 (9)	$r_{11} - v_{0} - v_{1}$	00.23(2)
V_{2}	37.21 (7) 85.25 (10)	$v \rightarrow v \rightarrow$	38.91 (2)
	85.25 (10)	V 0 - V / - V 3	120.25 (3)
U/B-HII-V0	132.30 (9)	ru—v/—v3	81.19(2)

O1D—Pt1—V8	89.65 (9)	V2—V7—V3	59.10 (2)
O2D—Pt1—V8	46.63 (9)	V6—V7—V4	61.64 (2)
O4C—Pt1—V8	40.00 (9)	Pt1	59.55 (2)
O3C—Pt1—V8	131.42 (9)	V2—V7—V4	89.94 (3)
O8B—Pt1—V8	135.22 (10)	V3—V7—V4	58.66 (2)
O7B—Pt1—V8	86.34 (9)	Pt1-V8-V3	88.63 (2)
V6—Pt1—V8	123.63 (2)	Pt1—V8—V9	59.88 (2)
O1D—Pt1—V9	46.16 (9)	V3—V8—V9	119.00 (3)
O2D—Pt1—V9	89.07 (9)	V3—V8—V2	59.15 (2)
O4C—Pt1—V9	40.35 (9)	V9—V8—V2	120.00 (3)
O3C—Pt1—V9	131.59 (9)	V3—V8—V4	58.82 (2)
08B—Pt1—V9	87.36 (10)	V9—V8—V4	60.19 (2)
0.02 $Pt1 - V9$	134 69 (9)	V2—V8—V4	89.43 (3)
V6—Pt1—V9	92 83 (2)	Pt1V9V8	59 58 (2)
V8Pt1V9	60 54 (2)	Pt1V9V5	87 73 (2)
01D Pt1 V7	88.61 (9)	$V_8 V_9 V_5$	11942(3)
$\begin{array}{ccc} O1D & -1 \\ O2D & Pt1 & V7 \end{array}$	45.87 (9)	$V_{0} = V_{0} = V_{0}$ P+1 VQ V1	60.07(2)
$O_2 D_1 t_1 = \sqrt{7}$	43.07(9)	$V_{1} = V_{2} = V_{1}$	110.64.(2)
$O_4C = r_1 = \sqrt{7}$	131.01(9)	$\sqrt{6}$ $\sqrt{9}$ $\sqrt{1}$	119.04(3)
OSC - rti - V /	39.40(9)	$V_{3} V_{9} V_{1}$	50.99 (2)
08B—PtI—V/	132.43 (10)	$Pt1 = \sqrt{9} = \sqrt{4}$	59.80(2)
O/B - P(1 - V)	80.22 (9) 50.41 (2)	V8-V9-V4	60.83(2)
$V_0 - P(1 - V)$	59.41 (2)	V5—V9—V4	58.65 (2)
V8—Pt1—V/	92.22 (2)	V1—V9—V4	90.08 (3)
V9—Pt1—V7	122.21 (2)	$O3W^{1}$ —K1— $O2W$	71.45 (18)
O1D—Pt1—V4	42.45 (9)	$O3W^{i}$ —K1—O1W	122.0 (2)
O2D—Pt1—V4	42.16 (9)	O2W—K1—O1W	73.89 (15)
O4C—Pt1—V4	84.02 (8)	$O3W^{i}$ —K1—O12B ⁱⁱ	145.45 (18)
O3C—Pt1—V4	83.88 (9)	$O2W$ —K1— $O12B^{ii}$	118.85 (16)
O8B—Pt1—V4	130.94 (9)	O1W—K1—O12B ⁱⁱ	92.12 (13)
O7B—Pt1—V4	130.91 (9)	O3W ⁱ —K1—O4W ⁱⁱⁱ	78.75 (18)
V6—Pt1—V4	62.06 (2)	O2W—K1—O4W ⁱⁱⁱ	128.72 (14)
V8—Pt1—V4	61.58 (2)	O1W—K1—O4W ⁱⁱⁱ	155.55 (14)
V9—Pt1—V4	61.05 (2)	O12B ⁱⁱ —K1—O4W ⁱⁱⁱ	69.55 (10)
V7—Pt1—V4	61.17 (2)	$O3W^{i}$ —K1— $O25T^{iv}$	82.50 (12)
O1D—Pt1—V2	133.30 (9)	O2W—K1—O25T ^{iv}	129.92 (16)
O2D—Pt1—V2	48.70 (9)	O1W—K1—O25T ^{iv}	85.91 (13)
O4C—Pt1—V2	90.75 (9)	O12B ⁱⁱ —K1—O25T ^{iv}	106.98 (11)
O3C—Pt1—V2	88.98 (9)	O4W ⁱⁱⁱ —K1—O25T ^{iv}	84.34 (11)
O8B—Pt1—V2	138.14 (9)	O3W ⁱ —K1—O24T ^v	65.13 (14)
O7B—Pt1—V2	40.05 (9)	O2W—K1—O24T ^v	65.37 (12)
V6—Pt1—V2	119.45 (2)	$01W - K1 - 024T^{v}$	133.36 (13)
V8—Pt1—V2	60.73 (2)	$012B^{ii}-K1-024T^{v}$	88 44 (10)
V9Pt1V2	121 27 (2)	$04W^{iii}$ K1-024T ^v	64 45 (10)
V7Pt1V2	60.08(2)	$025T^{iv}-K1-024T^{v}$	138.04(10)
V_4 —Pt1—V2	90.86 (2)	0.231^{i} K1 0.241^{i}	110.45(14)
$V_{1} = 111 = V_{2}$ $O_{2}1T = V_{1} = O_{1}2B$	102.27(17)	$02W - K1 - 05W^{i}$	51 31 (16)
$\begin{array}{c} 0211 \\ 0211 \\ 0120 \\ 0211 \\ 0120 \\ 0100 \\ 01$	102.27(17) 102.73(17)	$\begin{array}{c} 0.2 \text{ w} \hline \text{K1} 0.5 \text{ w} \\ 0.1 \text{ W} \text{K1} 0.5 \text{ Wvi} \end{array}$	70.54(10)
$\begin{array}{c} 0.211 \\ \hline 0.120 \\ \hline$	102.73(17)		(14)
012B—V1—013B	90.13 (14)	012B"—K1—05W"	0/.//(12)

O21T—V1—O19B	105.72 (16)	$O4W^{iii}$ —K1— $O5W^{vi}$	106.58 (12)
O12B—V1—O19B	91.05 (14)	$O25T^{iv}$ —K1— $O5W^{vi}$	164.20 (12)
O13B—V1—O19B	150.57 (14)	O24T ^v —K1—O5W ^{vi}	57.73 (10)
O21T—V1—O8B	99.44 (16)	O4W ⁱⁱ —K2—O27T ⁱⁱ	96.79 (13)
O12B—V1—O8B	158.14 (14)	O4W ⁱⁱ —K2—O28T ⁱⁱ	157.70 (12)
O13B—V1—O8B	82.64 (14)	O27T ⁱⁱ —K2—O28T ⁱⁱ	71.43 (10)
O19B—V1—O8B	85.45 (14)	O4W ⁱⁱ —K2—O20B ^{vi}	124.36 (11)
O21T—V1—O1D	176.60 (16)	O27T ⁱⁱ —K2—O20B ^{vi}	110.65 (11)
012B—V1—01D	80.42 (12)	O28T ⁱⁱ —K2—O20B ^{vi}	77.91 (10)
O13B—V1—O1D	75.06 (12)	O4W ⁱⁱ —K2—O8B ^{vii}	82.79 (11)
019B—V1—01D	76.16 (12)	O27T ⁱⁱ —K2—O8B ^{vii}	73.02 (10)
08B-V1-01D	77.79 (12)	O28T ⁱⁱ —K2—O8B ^{vii}	75.73 (10)
O22T—V2—O9B	103.62 (17)	O20B ^{vi} —K2—O8B ^{vii}	150.46 (10)
O22T—V2—O16B	104.45 (17)	O4W ⁱⁱ —K2—O3W	78.19 (15)
O9B—V2—O16B	91.43 (15)	O27T ⁱⁱ —K2—O3W	162.23 (13)
O22T—V2—O17B	104.04 (17)	O28T ⁱⁱ —K2—O3W	107.12 (13)
O9B—V2—O17B	88.97 (14)	O20B ^{vi} —K2—O3W	85.81 (12)
O16B—V2—O17B	150.56 (14)	O8B ^{vii} —K2—O3W	89.37 (12)
O22T—V2—O7B	97.56 (16)	$O4W^{ii}$ —K2—O24 T^{vi}	69.29 (11)
O9B—V2—O7B	158.78 (14)	O27T ⁱⁱ —K2—O24T ^{vi}	128.86 (11)
O16B—V2—O7B	84.50 (14)	O28T ⁱⁱ —K2—O24T ^{vi}	132.88 (10)
O17B—V2—O7B	84.59 (13)	$O20B^{vi}$ —K2—O24 T^{vi}	55.63 (9)
O22T—V2—O2D	175.77 (15)	$O8B^{vii}$ —K2—O24 T^{vi}	145.32 (10)
O9B—V2—O2D	80.53 (13)	O3W-K2-O24T ^{vi}	65.65 (11)
O16B—V2—O2D	76.07 (13)	O4W ⁱⁱ —K2—O5W ⁱⁱ	63.16 (12)
O17B—V2—O2D	74.97 (12)	O27T ⁱⁱ —K2—O5W ⁱⁱ	72.57 (12)
O7B—V2—O2D	78.27 (11)	O28T ⁱⁱ —K2—O5W ⁱⁱ	126.96 (12)
O23T—V3—O9B	104.10 (17)	O20B ^{vi} —K2—O5W ⁱⁱ	79.90 (12)
O23T—V3—O18B	104.12 (17)	$O8B^{vii}$ —K2—O5 W^{ii}	127.23 (12)
O9B-V3-O18B	92.55 (15)	O3W—K2—O5W ⁱⁱ	118.55 (13)
O23T—V3—O15B	103.56 (18)	O24T ^{vi} —K2—O5W ⁱⁱ	57.03 (11)
O9B-V3-015B	90.80 (15)	O23T ^{vi} —K3—O25T ^{viii}	136.47 (11)
O18B—V3—O15B	150.37 (14)	O23T ^{vi} —K3—O5W	75.77 (13)
O23T—V3—O10B	101.92 (16)	O25T ^{viii} —K3—O5W	120.42 (12)
O9B-V3-O10B	153.94 (14)	O23T ^{vi} —K3—O6W	72.84 (12)
O18B—V3—O10B	82.41 (14)	O25T ^{viii} —K3—O6W	64.17 (12)
O15B—V3—O10B	81.76 (14)	O5W—K3—O6W	104.30 (15)
O23T—V3—O2D	174.90 (16)	O23T ^{vi} —K3—O9W	76.16 (15)
O9B—V3—O2D	80.92 (13)	O25T ^{viii} —K3—O9W	87.40 (14)
O18B—V3—O2D	76.28 (12)	O5W—K3—O9W	150.12 (16)
O15B—V3—O2D	75.21 (12)	O6W—K3—O9W	76.75 (14)
O10B—V3—O2D	73.04 (12)	O23T ^{vi} —K3—O21T ^{ix}	133.79 (11)
O10B—V4—O11B	108.05 (16)	O25T ^{viii} —K3—O21T ^{ix}	74.44 (10)
O10B—V4—O6C	98.10 (15)	O5W—K3—O21T ^{ix}	123.14 (14)
O11B—V4—O6C	99.13 (15)	O6W—K3—O21T ^{ix}	128.44 (13)
O10B—V4—O5C	98.12 (15)	O9W—K3—O21T ^{ix}	71.85 (14)
O11B-V4-O5C	96.71 (15)	O23T ^{vi} —K3—O27T	74.05 (10)
O6C—V4—O5C	152.55 (13)	O25T ^{viii} —K3—O27T	146.54 (11)

O10B—V4—O2D	87.63 (14)	O5W—K3—O27T	73.96 (12)
O11B—V4—O2D	164.23 (14)	O6W—K3—O27T	146.13 (12)
O6C—V4—O2D	79.74 (12)	O9W—K3—O27T	88.67 (13)
O5C—V4—O2D	78.95 (12)	O21T ^{ix} —K3—O27T	72.77 (10)
O10B—V4—O1D	164.37 (14)	O23T ^{vi} —K3—O4W	136.36 (11)
O11B—V4—O1D	87.58 (14)	O25T ^{viii} —K3—O4W	78.53 (11)
O6C—V4—O1D	79.38 (12)	O5W—K3—O4W	61.86 (12)
O5C—V4—O1D	79.03 (12)	O6W—K3—O4W	125.62 (12)
O2D	76.74 (12)	O9W—K3—O4W	141.67 (15)
O24T—V5—O12B	104.93 (17)	O21T ^{ix} —K3—O4W	70.07 (10)
O24T—V5—O20B	103.26 (16)	O27T—K3—O4W	84.26 (10)
O12B—V5—O20B	91.36 (15)	O23T ^{vi} —K3—O14B ^{viii}	119.30 (11)
O24T—V5—O14B	103.76 (16)	O25T ^{viii} —K3—O14B ^{viii}	53.38 (9)
012B—V5—014B	91.43 (15)	$05W - K3 - 014B^{viii}$	67.26 (11)
O20B—V5—O14B	151.11 (14)	06W—K3—014B ^{viii}	72.00 (11)
024T—V5—011B	100.00 (16)	$09W - K3 - 014B^{\text{viii}}$	137.58 (13)
012B—V5—011B	155.07 (14)	O_21T^{ix} —K3— O_14B^{viii}	106.80 (10)
020B - V5 - 011B	82.61 (14)	$0.27T - K_3 - 0.14B^{\text{viii}}$	132.52 (10)
014B - V5 - 011B	82.82 (14)	$04W - K3 - 014B^{\text{viii}}$	53.88 (9)
0.24T - V5 - 0.1D	173.91 (15)	$06W - K4 - 016B^{vii}$	162.73 (15)
O12B - V5 - O1D	81.14 (13)	$O6W - K4 - O26T^{viii}$	73.88 (13)
O20B—V5—O1D	75.91 (12)	O16B ^{vii} —K4—O26T ^{viii}	118.24 (13)
014B—V5—01D	76.13 (12)	06W—K4—09W	78.81 (17)
011B—V5—01D	73.92 (11)	016B ^{vii} —K4—09W	83.95 (15)
025T—V6—013B	103.58 (16)	O26T ^{viii} —K4—O9W	126.27 (17)
025T—V6—014B	103.90 (16)	06W—K4—026T ^{vii}	138.56 (13)
013B—V6—014B	94.04 (15)	O16B ^{vii} —K4—O26T ^{vii}	54.50 (10)
O25T—V6—O3C	97.90 (16)	O26T ^{viii} —K4—O26T ^{vii}	64.75 (12)
O13B—V6—O3C	91.22 (14)	O9W—K4—O26T ^{vii}	124.14 (16)
O14B—V6—O3C	155.66 (14)	O6W—K4—O7W	111.55 (14)
O25T—V6—O5C	102.60 (16)	O16B ^{vii} —K4—O7W	65.92 (11)
O13B—V6—O5C	152.25 (14)	O26T ^{viii} —K4—O7W	146.61 (15)
O14B—V6—O5C	88.47 (14)	O9W—K4—O7W	86.49 (16)
O3C—V6—O5C	76.20 (13)	O26T ^{vii} —K4—O7W	104.46 (12)
O25T—V6—O1D	175.51 (15)	O6W—K4—O3W	118.81 (16)
013B—V6—01D	78.63 (13)	O16B ^{vii} —K4—O3W	74.21 (12)
014B—V6—01D	79.71 (12)	O26T ^{viii} —K4—O3W	95.01 (14)
O3C—V6—O1D	78.07 (12)	O9W—K4—O3W	138.71 (17)
O5C—V6—O1D	74.63 (12)	O26T ^{vii} —K4—O3W	68.97 (12)
O26T—V7—O15B	103.92 (18)	O7W—K4—O3W	52.73 (14)
026T—V7—016B	102.74 (18)	08W—K5—018B ^{vi}	116.68 (16)
015B—V7—016B	95.34 (16)	08W—K5—09B	88.96 (16)
O26T—V7—O5C	102.03 (17)	O18B ^{vi} —K5—O9B	115.20 (11)
015B—V7—05C	89.99 (14)	08W—K5—07W	86.37 (17)
O16B—V7—O5C	152.57 (14)	O18B ^{vi} —K5—O7W	94.58 (12)
O26T—V7—O3C	98.14 (17)	O9B—K5—O7W	148.49 (12)
O15B—V7—O3C	155.92 (14)	O8W—K5—O22T ^{vii}	67.49 (15)
016B—V7—03C	89.04 (14)	$O18B^{vi}$ —K5— $O22T^{vii}$	170.27 (11)

			53 01 (10)
05CV703C	75.93 (13)	09B—K5—0221 ^{vn}	72.81 (10)
O26T—V7—O2D	175.00 (16)	07W—K5—022T ^{vn}	76.63 (12)
O15B—V7—O2D	80.25 (13)	08W—K5—09W	142.73 (18)
O16B—V7—O2D	79.42 (13)	$O18B^{vi}$ —K5—O9W	100.56 (14)
O5C—V7—O2D	75.00 (12)	O9B—K5—O9W	73.02 (12)
O3C—V7—O2D	77.31 (12)	O7W—K5—O9W	92.42 (15)
O27T—V8—O17B	104.28 (16)	O22T ^{vii} —K5—O9W	75.98 (14)
O27T—V8—O18B	102.86 (16)	O8W—K5—O23T	78.72 (14)
O17B—V8—O18B	94.12 (15)	O18B ^{vi} —K5—O23T	71.86 (10)
O27T—V8—O6C	101.85 (16)	O9B—K5—O23T	55.51 (10)
O17B—V8—O6C	152.21 (14)	O7W—K5—O23T	152.01 (14)
O18B—V8—O6C	89.12 (14)	O22T ^{vii} —K5—O23T	117.87 (11)
O27T—V8—O4C	98.38 (15)	O9W—K5—O23T	113.75 (13)
017B—V8—04C	91.54 (13)	Pt1—O1D—V4	99.17 (13)
018B - V8 - 04C	155.90 (13)	Pt1_01D_V9	94 73 (12)
06C - V8 - 04C	75 36 (12)	V4_01D_V9	92 37 (12)
0.27T V8 $0.2D$	175 32 (15)	$P_{t1} \cap D = V_{t2}$	92.37(12) 93.70(12)
0271 - 78 - 02D	175.52(15)	$V_{4} O_{1} D_{1} V_{6}$	93.70(12)
$O17B V_8 O2D$	78.97 (13)		93.47(12)
018B-V8-02D	80.09 (13)		108.80 (15)
06C—V8—02D	74.42 (12)	PtI—OID—VI	92.47 (12)
04C—V8—02D	78.04 (11)	V4—OID—VI	168.36 (15)
O28T—V9—O20B	105.26 (16)	V9—O1D—V1	86.35 (11)
O28T—V9—O19B	102.34 (16)	V6—O1D—V1	86.01 (10)
O20B—V9—O19B	94.63 (14)	Pt1—O1D—V5	174.40 (16)
O28T—V9—O6C	102.11 (16)	V4—O1D—V5	86.40 (11)
O20B—V9—O6C	90.31 (14)	V9—O1D—V5	85.49 (10)
O19B—V9—O6C	152.78 (13)	V6—O1D—V5	85.42 (10)
O28T—V9—O4C	96.57 (15)	V1-01D-V5	81.96 (10)
O20B—V9—O4C	156.16 (14)	Pt1—O2D—V4	99.47 (13)
O19B—V9—O4C	89.88 (13)	Pt1—O2D—V7	95.20 (12)
O6C—V9—O4C	75.62 (12)	V4—O2D—V7	93.10 (11)
$0.28T - V_{9} - 0.1D$	174 17 (15)	Pt1-02D-V8	94 04 (12)
020B - V9 - 01D	80.02 (13)	V4-O2D-V8	93.16(12)
019B - V9 - 01D	79.42 (12)	$V7_02D_V8$	167.84 (15)
O(C = V) = O(D)	75.11 (12)	$P_{1} = O_{2} D_{1} = V_{3}$	07.35(11)
$0.00 - V_{0} = 0.1D$	77.82 (11)	$V_{4} = 02D = V_{2}$	168 17 (15)
$V_{4} = V_{9} = OID$ V5 V1 D+1	77.02 (11) 97.02 (2)	$\sqrt{4}$	100.17(13) 85.62(11)
V5—VI—Pli	87.95 (2) (0.21 (2)	$\sqrt{-02D}$	85.05 (11)
$V_{0} = V_{1} = V_{0}$	60.31(2)	V8 = O2D = V2	86.10 (10)
PtI—VI—V6	58.97 (2)	PtI=02D=V3	1/3.86 (16)
V5—V1—V9	60.15 (2)	V4—O2D—V3	86.57 (10)
Pt1—V1—V9	59.27 (2)	V7—O2D—V3	85.52 (10)
V6—V1—V9	90.89 (3)	V8—O2D—V3	84.47 (10)
V5—V1—V4	43.54 (2)	V2—O2D—V3	81.61 (10)
Pt1—V1—V4	44.385 (15)	V6—O3C—Pt1	101.52 (13)
V6—V1—V4	45.82 (2)	V6—O3C—V7	99.96 (13)
V9—V1—V4	45.099 (19)	Pt1—O3C—V7	101.69 (14)
V3—V2—V7	60.71 (3)	Pt1—O4C—V8	100.70 (13)
V3	88.53 (3)	Pt1—O4C—V9	100.45 (13)

V7—V2—Pt1	59.81 (2)	V8—O4C—V9	100.37 (13)
V3—V2—V8	59.96 (3)	V4—O5C—V7	109.01 (15)
V7—V2—V8	91.11 (3)	V4—O5C—V6	109.70 (15)
Pt1	59.15 (2)	V7—O5C—V6	101.51 (14)
V3—V2—V4	43.98 (2)	V4—O6C—V9	109.15 (14)
V7—V2—V4	45.49 (2)	V4—O6C—V8	108.85 (15)
Pt1-V2-V4	44.562 (14)	V9—O6C—V8	103.00 (13)
V8—V2—V4	45.641 (19)	Pt1—07B—V2	100.62 (13)
V3—V2—V1	89.54 (2)	Pt1	101.22 (14)
V7—V2—V1	59.98 (2)	V4—O10B—V3	112.76 (17)
Pt1-V2-V1	1.113 (10)	V4—O11B—V5	112.09 (16)
V8—V2—V1	60.11 (2)	V5—O12B—V1	116.48 (17)
V4—V2—V1	45.564 (14)	V6	119.14 (17)
V2—V3—V4	92.11 (3)	V6—O14B—V5	117.51 (16)
V2—V3—V8	60.89 (3)	V7—O15B—V3	117.70 (17)
V4—V3—V8	61.69 (3)	V7—O16B—V2	117.32 (17)
V2—V3—V7	60.19 (3)	V8—O17B—V2	118.96 (16)
V4—V3—V7	61.23 (2)	V8—O18B—V3	117.66 (17)
V8—V3—V7	91.34 (3)	V9—O19B—V1	116.70 (16)
V5—V4—Pt1	88.17 (2)	V9—O20B—V5	117.45 (17)
V3—V4—Pt1	88.48 (2)	H1A—O1W—H1B	109 (5)
V5—V4—V9	60.06 (2)	H2A—O2W—H2B	102 (4)
V3—V4—V9	118.47 (3)	H3A—O3W—H3B	107 (5)
Pt1	59.155 (19)	H4A—O4W—H4B	109 (4)
V5—V4—V7	117.42 (3)	H5A—O5W—H5B	106 (4)
V3—V4—V7	60.12 (3)	H6A—O6W—H6B	109.4
Pt1	59.28 (2)	H7A—O7W—H7B	105 (4)
V9—V4—V7	118.44 (3)	H8A—O8W—H8B	103 (4)
V5—V4—V8	118.99 (3)	H9A—O9W—H9B	101 (4)
V3—V4—V8	59.49 (2)		

Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1; (iii) x, y+1, z+1; (iv) -x, -y+2, -z+1; (v) -x+1, -y+2, -z+1; (vi) -x+1, -y+1, -z+1; (vii) -x, -y+1, -z+1; (viii) x, y-1, z; (ix) -x, -y+1, -z-1; (viii) -

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
O7 <i>B</i> —H7····O19 <i>B</i> ^{ix}	0.90 (8)	1.86 (8)	2.738 (4)	164 (8)
$O8B$ —H8····O4 C^{ix}	0.77 (6)	1.90 (6)	2.645 (5)	161 (6)
O1 <i>W</i> —H1 <i>B</i> ···O9 <i>B</i>	0.83 (3)	2.50 (6)	3.127 (6)	133 (7)
O1 <i>W</i> —H1 <i>A</i> ···O8 <i>W</i>	0.84 (3)	2.10 (3)	2.930 (9)	170 (8)
O2 <i>W</i> —H2 <i>A</i> ···O15 <i>B</i>	0.87 (3)	1.88 (3)	2.728 (6)	166 (8)
O2W—H2B···O11B ^v	0.86 (3)	2.23 (5)	2.975 (6)	145 (8)
O3W—H3 A ···O3 C ^{vii}	0.84 (3)	1.83 (3)	2.673 (5)	177 (10)
O3 <i>W</i> —H3 <i>B</i> ···O7 <i>W</i>	0.83 (3)	2.09 (5)	2.875 (7)	158 (8)
$O4W$ —H4 A ···O13 B^{ix}	0.83 (3)	1.88 (3)	2.680 (5)	162 (7)
O4W—H4 B ···O14 B ^{viii}	0.83 (3)	2.10 (4)	2.850 (5)	151 (7)
O5W—H5 A ···O2 W ^{vi}	0.87 (3)	1.84 (3)	2.710 (8)	175 (8)
O5 <i>W</i> —H5 <i>B</i> ···O24 <i>T</i> ^x	0.84 (3)	2.26 (5)	2.972 (6)	142 (7)

supporting information

O6W—H6 A ···O5 C ^{viii}	0.97	1.81	2.755 (5)	163
O6 <i>W</i> —H6 <i>B</i> ···O10 <i>B</i> ^{vi}	0.97	2.04	2.755 (5)	129
$O7W$ —H7 A ···O7 B^{vii}	0.85 (3)	2.07 (4)	2.891 (5)	163 (8)
$O7W$ — $H7B$ ···O6 C^{vi}	0.84 (3)	2.27 (6)	2.885 (5)	130 (6)
O8 <i>W</i> —H8 <i>A</i> ···O5 <i>W</i> ^{vi}	0.86 (3)	1.98 (5)	2.795 (7)	159 (10)
O8 <i>W</i> —H8 <i>B</i> ···O19 <i>B</i> ⁱⁱ	0.86 (3)	2.22 (4)	3.031 (6)	156 (8)

Symmetry codes: (ii) x, y, z+1; (v) -x+1, -y+2, -z+1; (vi) -x+1, -y+1, -z+1; (vii) -x, -y+1, -z+1; (viii) x, y-1, z; (ix) -x, -y+1, -z; (x) -x+1, -y+1, -z.