CRYSTALLOGRAPHIC COMMUNICATIONS

Crystal structure of catena-poly[[[di-aquacobalt(II)]-bis(μ-hex-3-enedinitrile$\left.\left.\kappa^{2} N: N^{\prime}\right)\right]$ bis(tetrafluoridoborate)]

Jung-Su Son, \ddagger Sung-Chul Lim, \ddagger Hochun Lee* and Seung-Tae Hong*
Daegu Gyeongbuk Institue of Science \& Technology (DGIST), Daegu 711-873, Republic of Korea. *Correspondence e-mail: dukelee@dgist.ac.kr,
st.hong@dgist.ac.kr

Received 8 May 2015; accepted 19 May 2015

Edited by M. Weil, Vienna University of Technology, Austria

In the structure of the title salt, $\left[\mathrm{Co}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$, the $\mathrm{Co}^{\mathrm{II}}$ atom is located on an inversion centre. The transition metal is in a slightly distorted octahedral coordination environment, defined by the cyano N atoms of four hex-3enedinitrile ligands in equatorial positions and the O atoms of two water molecules in axial positions. The bridging mode of the hex-3-enedinitrile ligands leads to the formation of cationic chains extending parallel to $[1 \overline{1} 0]$. The $\mathrm{BF}_{4}{ }^{-}$ counter-anion is disordered over two sets of sites [occupancy ratio $=0.512$ (19):0.489 (19)]. It is located in the voids between the cationic chains and is connected to the aqua ligands of the latter through $\mathrm{O}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds. One methylene H atom of the hex-3-enedinitrile ligand forms another and weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond with a water O atom of a neighbouring chain, thus consolidating the three-dimensional network structure.

Keywords: crystal structure; cobalt; hex-3-enedinitrile; hydrogen bonding.

CCDC reference: 1401602

1. Related literature

Aliphatic dinitriles have gained much attention not only due to their rich coordination chemistry with transition-metal ions (Storhoff \& Lewis, 1977; Heller \& Sheldrick, 2004; Blount et al., 1969), but also due to their applications as functional electrolyte additives for lithium ion batteries (Kim et al., 2011, $2014 a, b)$. While the coordination complexes of saturated aliphatic dinitrile ligands have been extensively studied (Storhoff \& Lewis, 1977; Heller \& Sheldrick, 2004; Blount et

[^0]al., 1969), those of unsaturated dinitrile ligands like in the title compound have hardly been reported so far.

2. Experimental

2.1. Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$

$$
\gamma=66.184(4)^{\circ}
$$

$M_{r}=480.84$
$V=507.21(12) \AA^{3}$
Triclinic, $P \overline{1}$
$a=7.9839$ (11) \AA
$Z=1$
$b=8.3434$ (11) \AA
Mo $K \alpha$ radiation
$c=8.8441$ (13) \AA
$\mu=0.93 \mathrm{~mm}^{-1}$
$T=103 \mathrm{~K}$
$\alpha=71.380(5)^{\circ}$
$0.20 \times 0.20 \times 0.20 \mathrm{~mm}$
$\beta=88.458(5)^{\circ}$

2.2. Data collection

14705 measured reflections
2501 independent reflections
2233 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.038$

Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
$T_{\text {min }}=0.60, T_{\max }=0.75$

2.3. Refinement

$R\left[F^{2}>3 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.068$
$S=0.87$
20 restraints
H -atom parameters constrained
2202 reflections
170 parameters

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 22 \cdots \mathrm{O}^{\mathrm{i}}$	0.97	2.52	$3.348(3)$	$143(1)$
O1-H12 $^{\mathrm{i}}$	0.83	1.89	$2.72(2)$	$175(1)$
O1-H11 $^{\mathrm{H}} \mathrm{F}^{\mathrm{i}}$		0.82	1.87	$2.669(13)$

Symmetry codes: (i) $-x+1,-y+2,-z+1$; (ii) $x-1, y+1, z$.
Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ATOMS (Dowty, 2000); software used to prepare material for publication: CRYSTALS.

Acknowledgements

This work was supported by the DGIST R\&D Program of Ministry of Science, ICT and Future Planning of Korea (grant No. 15-HRLA-01).

Supporting information for this paper is available from the IUCr electronic archives (Reference: WM5160).

References

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Blount, J. F., Freeman, H. C., Hemmerich, P. \& Sigwart, C. (1969). Acta Cryst. B25, 1518-1524.
Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Dowty, E. (2000). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.
Heller, M. \& Sheldrick, W. S. (2004). Z. Anorg. Allg. Chem. 630, 1869-1874.
Kim, Y. S., Kim, T. H., Lee, H. \& Song, H. K. (2011). Energ. Environ. Sci. 4, 4038-4045.
Kim, Y. S., Lee, S. H., Son, M. Y., Jung, Y. M., Song, H. K. \& Lee, H. (2014a). ACS Appl. Mat. Interfaces, 6, 2039-2043.
Kim, Y. S., Lee, H. \& Song, H. K. (2014b). ACS Appl. Mater. Interfaces, 6 , 8913-8920.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Storhoff, B. N. \& Lewis, H. C. Jr (1977). Coord. Chem. Rev. 23, 1-29.

supporting information

Acta Cryst. (2015). E71, m135-m136 [doi:10.1107/S2056989015009548]

Crystal structure of catena-poly[[[diaquacobalt(II)]-bis(μ-hex-3-enedinitrile$\left.\left.\kappa^{2} N: N^{\prime}\right)\right]$ bis(tetrafluoridoborate)]

Jung-Su Son, Sung-Chul Lim, Hochun Lee and Seung-Tae Hong

S1. Experimental

A solvent was prepared first by mixing ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in an 1:2 volume ratio (3.3 ml and 6.6 ml , respectively). 0.934 g of lithium tetrafluoridoborate $\left(\mathrm{LiBF}_{4}\right)$ were added to the solvent, and it was stirred for about 5 hours to dissolve the salt completely to form an 1 M solution. $0.60 \mathrm{~g}(5 \mathrm{wt} . \%)$ of cobalt(II) tetrafluoridoborate hexahydrate and $0.24 \mathrm{~g}(2 \mathrm{wt} . \%)$ hex-3-enedinitrile were added and dissolved in the solution. The solution was kept for 48 hours in an argon-atmosphere glove-box at room temperature, resulting in the growth of red crystals. The crystals were washed with pure EMC solvent three times in the argon-atmosphere glove-box.

S2. Refinement

H atoms attached to C atoms of the title compound were placed in geometrically idealized positions and treated as rigid bodies with $\mathrm{C}-\mathrm{H}$ distances constrained to $0.92-0.97 \AA$. Water H atoms were located from a difference map and refined with a distance of $0.82 \AA$. The $\mathrm{BF}_{4}{ }^{-}$counter anion was refined with a positional disorder model where F2, F3 and F4 atoms are split into two positions while B1 and F1 atoms are not. Such a disorder model resulted in a slightly better refinement, reducing the $R 1$ factor values from 0.041 to 0.033 .

Figure 1
The cationic chain structure of the title compound with displacement ellipsoids drawn at the 50% probability level. The $\mathrm{BF}_{4}{ }^{-}$anion is shown only with the major part of the disorder.

Figure 2
The crystal packing of the title compound with displacement ellipsoids drawn at the 50% probability level. The $\mathrm{BF}_{4}{ }^{-}$ anion is shown only with the major part of the disorder. (Colour code: dark blue: Co, purple: N, blue: C, red: O, cyan: B, green: F, grey: H).

catena-poly[[[diaquacobalt(II)]-bis(μ-hex-3-enedinitrile- $\left.\left.\kappa^{2} N: N^{\prime}\right)\right]$ bis(tetrafluoridoborate)]

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$
$M_{r}=480.84$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=7.9839$ (11) \AA
$b=8.3434$ (11) \AA
$c=8.8441(13) \AA$
$\alpha=71.380(5)^{\circ}$
$\beta=88.458(5)^{\circ}$
$\gamma=66.184(4)^{\circ}$
$V=507.21(12) \AA^{3}$

Data collection

Bruker APEXII CCD

diffractometer
Graphite monochromator
$\varphi \& \omega$ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
$T_{\text {min }}=0.60, T_{\text {max }}=0.75$
14705 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.068$
$S=0.87$
2202 reflections
170 parameters
20 restraints

$$
\begin{aligned}
& Z=1 \\
& F(000)=241 \\
& D_{\mathrm{x}}=1.575 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 0 \text { reflections } \\
& \theta=0-0^{\circ} \\
& \mu=0.93 \mathrm{~mm}^{-1} \\
& T=103 \mathrm{~K} \\
& \text { Cuboid, yellow } \\
& 0.20 \times 0.20 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

2501 independent reflections
2233 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.038$
$\theta_{\text {max }}=28.5^{\circ}, \theta_{\text {min }}=2.8^{\circ}$
$h=-10 \rightarrow 10$
$k=-11 \rightarrow 11$
$l=-11 \rightarrow 11$

> Primary atom site location: structure-invariant \quad direct methods
> Hydrogen site location: difference Fourier map
> H-atom parameters constrained
> Weighting scheme based on measured s.u.'s $\mathrm{W}=$ $\quad 1$
> $(\Delta / \sigma)_{\max }=0.0002$
> $\Delta \rho_{\max }=0.83$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.62 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles, and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\hat{A}^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$	Occ. (<1)
Co1	0.0000	1.0000	0.5000	0.0158	
N1	$0.2687(2)$	$0.8866(2)$	$0.6299(2)$	0.0199	
N2	$0.1190(2)$	$0.9254(2)$	$0.3036(2)$	0.0192	
C1	$0.4140(2)$	$0.8397(3)$	$0.6904(2)$	0.0179	
C2	$0.6004(3)$	$0.7780(3)$	$0.7691(3)$	0.0221	

C3	$0.7036(2)$	$0.5683(3)$	$0.8382(2)$	0.0200	
C4	$0.6448(3)$	$0.4468(3)$	$0.8245(2)$	0.0201	
C5	$0.7535(3)$	$0.2388(3)$	$0.9045(2)$	0.0244	
C6	$0.8244(2)$	$0.1444(2)$	$0.7878(2)$	0.0181	
O1	$0.02105(18)$	$1.25018(18)$	$0.41358(16)$	0.0197	
B1	$0.7569(3)$	$0.7200(3)$	$0.2131(3)$	0.0287	$0.512(19)$
F1	$0.77132(18)$	$0.55820(17)$	$0.18696(15)$	0.0295	$0.512(19)$
F2	$0.8571(16)$	$0.6724(15)$	$0.3523(13)$	0.0555	$0.512(19)$
F3	$0.8368(13)$	$0.8076(13)$	$0.0834(11)$	0.0630	$0.489(19)$
F4	$0.5804(9)$	$0.8300(10)$	$0.2014(15)$	0.0585	$0.489(19)$
F21	$0.9052(8)$	$0.6606(13)$	$0.3357(11)$	0.0255	0.0551
F31	$0.7671(17)$	$0.8497(11)$	$0.0853(10)$	0.0534	
F41	$0.5866(9)$	$0.7929(11)$	$0.2810(16)$	$0.034(4)^{*}$	$0.043(4)^{*}$
H11	0.0413	1.2954	0.4771	$0.034(4)^{*}$	
H12	-0.0554	1.3393	0.3416	$0.033(4)^{*}$	
H21	0.5897	0.8291	0.8529	$0.034(4)^{*}$	
H22	0.6694	0.8293	0.6919	$0.035(4)^{*}$	
H31	0.8174	0.5253	0.8931	$0.036(4)^{*}$	
H41	0.5301	0.4889	0.7639	$0.034(4)^{*}$	
H51	0.6801	0.1848	0.9680		
H52	0.8570	0.2189			

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co1	$0.01363(18)$	$0.01074(17)$	$0.0198(2)$	$-0.00181(13)$	$-0.00123(13)$	$-0.00526(14)$
N1	$0.0166(8)$	$0.0169(8)$	$0.0222(8)$	$-0.0025(6)$	$-0.0014(6)$	$-0.0070(6)$
N2	$0.0170(7)$	$0.0163(8)$	$0.0211(8)$	$-0.0039(6)$	$0.0006(6)$	$-0.0060(6)$
C1	$0.0173(7)$	$0.0138(8)$	$0.0201(9)$	$-0.0033(7)$	$0.0015(7)$	$-0.0067(7)$
C2	$0.0153(7)$	$0.0209(9)$	$0.0292(10)$	$-0.0055(7)$	$-0.0023(7)$	$-0.0093(8)$
C3	$0.0139(7)$	$0.0221(9)$	$0.0194(9)$	$-0.0018(7)$	$-0.0025(7)$	$-0.0081(7)$
C4	$0.0170(7)$	$0.0207(9)$	$0.0178(9)$	$-0.0024(7)$	$0.0018(7)$	$-0.0076(7)$
C5	$0.0266(7)$	$0.0216(10)$	$0.0182(9)$	$-0.0031(8)$	$0.0026(8)$	$-0.0074(8)$
C6	$0.0172(7)$	$0.0135(8)$	$0.0176(9)$	$-0.0032(7)$	$-0.0023(7)$	$-0.0015(7)$
O1	$0.0223(7)$	$0.0126(6)$	$0.0219(7)$	$-0.0052(5)$	$-0.0021(5)$	$-0.0056(5)$
B1	$0.0252(12)$	$0.0159(10)$	$0.0380(14)$	$-0.0057(9)$	$-0.0119(10)$	$-0.0028(10)$
F1	$0.0363(7)$	$0.0211(6)$	$0.0283(7)$	$-0.0096(5)$	$-0.0101(5)$	$-0.0067(5)$
F2	$0.072(4)$	$0.036(3)$	$0.049(4)$	$-0.010(4)$	$-0.032(4)$	$-0.017(2)$
F3	$0.046(3)$	$0.047(4)$	$0.071(3)$	$-0.026(3)$	$-0.009(3)$	$0.022(3)$
F4	$0.0361(18)$	$0.039(3)$	$0.088(5)$	$0.0039(18)$	$0.000(3)$	$-0.031(3)$
F21	$0.0208(19)$	$0.021(2)$	$0.032(2)$	$-0.0030(16)$	$-0.0089(16)$	$-0.0115(15)$
F31	$0.072(4)$	$0.031(3)$	$0.046(2)$	$-0.028(3)$	$-0.025(3)$	$0.019(2)$
F41	$0.0304(19)$	$0.042(3)$	$0.088(5)$	$-0.0067(18)$	$0.010(3)$	$-0.034(3)$

Geometric parameters $\left({ }^{A},{ }^{\circ}\right)$

$\mathrm{Co} 1-\mathrm{N} 1^{\mathrm{i}}$	$2.1486(17)$	$\mathrm{C} 4-\mathrm{H} 41$	0.946
$\mathrm{Co} 1-\mathrm{N} 2^{\mathrm{i}}$	$2.1050(17)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.460(6)$

$\mathrm{Col-O1}{ }^{\text {i }}$	2.0560 (15)
Col-N1	2.1486 (17)
Col-N2	2.1050 (17)
Col-O1	2.0560 (15)
N1-C1	1.148 (6)
N2-C6 ${ }^{\text {ii }}$	1.125 (5)
C1-C2	1.474 (8)
C2-C3	1.514 (9)
C2-H21	0.953
$\mathrm{C} 2-\mathrm{H} 22$	0.967
C3-C4	1.315 (4)
C3-H31	0.916
C4-C5	1.516 (3)
N1 ${ }^{\text {i }}$ - Col - $\mathrm{N}^{\text {i }}$	90.57 (6)
$\mathrm{N1}^{\mathrm{i}}-\mathrm{Col}-\mathrm{Ol}^{\text {i }}$	87.29 (6)
N2 ${ }^{\text {i }}$ - $\mathrm{Col}-\mathrm{Ol}^{\text {i }}$	91.15 (6)
N1-Co1-N1	179.995
$\mathrm{N} 2{ }^{\text {i }}$ - $\mathrm{Col}-\mathrm{N} 1$	89.4 (8)
$\mathrm{O} 1{ }^{\text {i }}$ - $\mathrm{Co} 1-\mathrm{N} 1$	92.7 (4)
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{N} 2$	89.4 (4)
$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 2$	179.995
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 2$	88.9 (6)
N1-Col-N2	90.57 (6)
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Col}-\mathrm{O} 1$	92.7 (8)
$\mathrm{N} 2{ }^{\text {i}}-\mathrm{Co} 1-\mathrm{O} 1$	88.9 (3)
O1-Co1-O1	179.994
N1-Col-O1	87.29 (6)
N2-Col-O1	91.15 (6)
$\mathrm{Co1-N1-C1}$	173.92 (16)
$\mathrm{Co} 1-\mathrm{N} 2-\mathrm{C}^{\text {ii }}$	166.34 (18)
N1-C1-C2	179.5 (2)
C1-C2-C3	113.2 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 21$	108.5
C3-C2-H21	109.3
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 22$	108.7
C3-C2-H22	109.9
$\mathrm{H} 21-\mathrm{C} 2-\mathrm{H} 22$	107.0
C2-C3-C4	125.87 (19)
C2-C3-H31	115.5

C5—H51	0.946
C5—H52	0.949
O1—H11	0.821
O1—H12	0.826
B1—F1	$1.401(3)$
B1—F2	$1.341(12)$
B1—F3	$1.435(11)$
B1—F4	$1.320(9)$
B1—F1	$1.401(3)$
B1—F21	$1.440(12)$
B1—F31	$1.319(11)$
B1—F41	$1.450(10)$

118.7
122.3 (3)
119.7
118.0
112.18 (14)
110.9
108.7
108.2
107.0
109.8
178.3 (2)
119.4
121.0
105.0
109.0 (6)
105.3 (7)
109.1 (7)
108.3 (6)
115.9 (6)
108.7 (6)
105.8 (6)
115.0 (6)
109.8 (7)
108.4 (6)
106.8 (6)
110.7 (8)

Symmetry codes: (i) $-x,-y+2,-z+1$; (ii) $-x+1,-y+1,-z+1$.

Hydrogen-bond geometry ($\AA,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2 — \mathrm{H} 22 \cdots \mathrm{O} 1^{\mathrm{iii}}$	0.97	2.52	$3.348(3)$	$143(1)$

supporting information

$\mathrm{O} 1 — \mathrm{H} 12 \cdots \mathrm{~F} 1^{\text {iv }}$	0.83	1.89	$2.72(2)$	$175(1)$
$\mathrm{O} 1 — \mathrm{H} 11 \cdots \mathrm{~F}^{\mathrm{iii}}$	0.82	1.87	$2.669(13)$	$163(1)$

Symmetry codes: (iii) $-x+1,-y+2,-z+1$; (iv) $x-1, y+1, z$.

[^0]: \ddagger contributed equally.

