research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages 667-670

Crystal structure of aqua­{μ-N-[3-(di­methyl­amino)­prop­yl]-N′-2-(oxidophen­yl)oxamidato}(1,10-phen­anthroline-5,6-dione)dicopper(II) perchlorate hemihydrate

aKey Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
*Correspondence e-mail: wuzy@ouc.edu.cn

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 8 May 2015; accepted 17 May 2015; online 23 May 2015)

The title compound, [Cu2(C13H16N3O3)(C12H6N2O2)(H2O)]ClO4·0.5H2O, consists of a cis-oxamide-bridged binuclear CuII complex cation, a perchlorate anion and half a solvent water mol­ecule. One CuII cation is N,N′,N",O-chelated by an N-[3-(di­methyl­amino)­prop­yl]-N′-(2-hy­droxy­phen­yl)oxamide trianion in a distorted square-planar geometry, whereas the other CuII cation is O,O′-chelated by the oxamide moiety of the anion and N,N′-chelated by a 1,10-phenanthroline-5,6-dione mol­ecule, and a water mol­ecule further coordinates the second CuII cation, completing a distorted square-pyramidal coordination geometry. In the crystal, classical O—H⋯O hydrogen bonds, weak C—H⋯O hydrogen-bonding inter­actions and ππ stacking inter­actions link the complex cations, anions and solvent water mol­ecules into a three-dimensional supra­molecular architecture. In the crystal, the di­methyl­amino­propyl unit of the oxamide anion is disordered over two positions with an occupancy ratio of 0.561 (11):0.439 (11); the solvent water mol­ecule is also disordered over two positions, the occupancy ratio being 0.207 (10):0.293 (10).

1. Chemical context

It is known that oxamide ligands could be good candidates for forming polynuclear complexes because of their versatile coordinating abilities (Ojima & Nonoyama, 1988[Ojima, H. & Nonoyama, K. (1988). Coord. Chem. Rev. 92, 85-111.]; Ruiz et al., 1999[Ruiz, R., Faus, J., Lloret, F., Julve, M. & Journaux, Y. (1999). Coord. Chem. Rev. 193-195, 1069-1117.]). Therefore, many oxamide complexes and their properties have been investigated extensively (Messori et al., 2003[Messori, L., Shaw, J., Camalli, M., Mura, P. & Marcon, G. (2003). Inorg. Chem. 42, 6166-6168.]; Wang et al., 2013[Wang, X.-L., Gao, Q., Tian, A.-X., Zhao, D. & Liu, X.-J. (2013). J. Coord. Chem. 66, 358-366.]; Li et al., 2011[Li, X.-W., Zheng, Y.-J., Li, Y.-T., Wu, Z.-Y. & Yan, C.-W. (2011). Eur. J. Med. Chem. 46, 3851-3857.]).

[Scheme 1]

1,10-Phenanthroline-5,6-dione (Phdo) is a multifaceted ligand since the structure and electronic properties thereof incorporate the features of the di­imine and quinone functionalities (Girgis et al., 1975[Girgis, A. Y., Sohn, Y. S. & Balch, A. L. (1975). Inorg. Chem. 14, 2327-2331.]; Calderazzo et al., 2002[Calderazzo, F., Pampaloni, G. & Passarelli, V. (2002). Inorg. Chim. Acta, 330, 136-142.]). Consequently, as part of our systematic study of asymmetrical bis-substituent oxamide complexes and the influence of structures on the DNA-binding properties thereof (Li et al., 2012[Li, X.-W., Li, X., Li, Y.-T., Wu, Z.-Y. & Yan, C.-W. (2012). J. Organomet. Chem. 700, 48-57.]; Zhang et al., 2013[Zhang, W.-J., Wang, F., Li, Y.-T. & Wu, Z.-Y. (2013). Transition Met. Chem. 38, 69-78.]), we selected N-[3-(di­methyl­amino)­prop­yl]-N′-2-(oxidophen­yl)oxamide (H3Dmapox) as a bridg­ing ligand and Phdo as a terminal ligand to synthesize the title binuclear copper(II) complex, [Cu2(Dmapox)(Phdo)H2O]+ClO4·0.5H2O. Its crystal structure and supra­molecular structure are reported here.

2. Structural commentary

The title compound consists of a binuclear CuII complex cation, a perchlorate anion and half of a solvent water mol­ecule (Fig. 1[link]). Two copper(II) ions are bridged by a cis-oxamido group. The Cu1 atom, located at the inner site of the oxamide ligand, has a distorted square-planar geometry and is displaced from the coordination plane by 0.0454 (15) Å, which is consistent with structures reported previously (Gao & Wang, 2010[Gao, Z. & Wang, Y. (2010). Acta Cryst. E66, m1249-m1250.]; Lu et al., 2011[Lu, H.-H., Li, Y.-T., Wu, Z.-Y., Zheng, K. & Yan, C.-W. (2011). J. Coord. Chem. 64, 1360-1374.]). The two exo-oxygen atoms of the oxamide ligand and two nitro­gen atoms of the Phdo mol­ecule chelate the Cu2 atom, forming the basal coordination plane [the maximum deviation being 0.0384 (14) Å for N4], and a water mol­ecule (O4) occupies the apical position, completing a distorted square-pyramidal coordination geometry with a τ value of 0.06 (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). The Cu—O distance of 2.213 (3) Å in the apical direction is longer than those in the basal plane by 0.261 (4) and 0.266 (4) Å (Table 1[link]). The Cu2 atom is displaced by 0.1610 (15) Å from the basal plane towards the apex.

Table 1
Selected bond lengths (Å)

Cu1—O1 1.950 (3) Cu2—O3 1.947 (3)
Cu1—N1 1.932 (3) Cu2—O4 2.213 (3)
Cu1—N2 1.982 (3) Cu2—N4 1.989 (3)
Cu1—N3 2.013 (3) Cu2—N5 1.991 (3)
Cu2—O2 1.952 (3)    
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. For clarity, disordered atoms are represented in a different style and the H atoms on disordered carbon atoms have been omitted. Dashed lines indicate hydrogen bonds.

The hexa­dentate oxamide anion, Dmapox3−, bridges the two copper(II) cations with three planar five-membered chelate rings and one six-membered ring, the latter being disordered over two positions. The puckering parameters of the first component (containing atoms C10A and C11A) are Q = 0.554 (8) Å, θ = 47.6 (6)° and φ = 206.0 (7)°, and those of the other are Q = 0.565 (11) Å, θ = 123.4 (8)° and φ = 38.8 (9)°; both suggest an approximate half-chair conformation.

3. Supra­molecular features

Besides classical O—H⋯O hydrogen bonds, weak C—H⋯O hydrogen bonds and aromatic stacking inter­actions are important to the supra­molecular structure. As illustrated in Fig. 2[link], two symmetry-related binuclear cations link each other, forming a dimer by hydrogen bonds between the coordinating water mol­ecules and phenolic oxygen atoms (Table 2[link]). Then the dimers are assembled by perchlorate anions, generating a wave-like layer parallel to (100). Subsequently, an offset ππ stacking inter­action occurs between the middle aromatic ring of the Phdo ligand of a binuclear unit and the benzene ring of the other unit at −x, 1 − y, −z [symmetry code (iv)], and vice versa (Fig. 3[link]). The separations of the overlapped atoms from their opposite rings are 3.191 (4) (C2iv), 3.211 (4) (C3iv) and 3.252 (4) Å (C19iv).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O1i 0.84 1.89 2.666 (3) 153
O4—H4B⋯O10B 0.91 1.93 2.740 (8) 146
O4—H4B⋯O11A 0.91 2.10 3.009 (7) 171
O7A—H7A⋯O3 0.86 2.51 3.27 (2) 147
O7B—H7D⋯O5ii 0.86 2.51 3.305 (18) 153
C3—H3⋯O8iii 0.93 2.52 3.193 (5) 130
C15—H15⋯O9Aiii 0.93 2.55 3.335 (7) 142
C15—H15⋯O11Biii 0.93 2.49 3.384 (10) 162
C16—H16⋯O6iii 0.93 2.54 3.195 (5) 128
C10A—H10A⋯O6ii 0.97 2.44 3.202 (9) 135
C11A—H11A⋯O4iv 0.97 2.54 3.409 (7) 150
C13A—H13B⋯O4i 0.96 2.49 3.382 (16) 154
C21—H21⋯O10Av 0.93 2.53 3.277 (8) 138
C23—H23⋯O7A 0.93 2.30 3.154 (19) 152
C23—H23⋯O7B 0.93 2.49 3.31 (2) 147
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The two-dimensional wave-like hydrogen-bonding network constructed by classical O—H⋯O and weak C—H⋯O inter­actions [symmetry codes: (i) 1 − x, 1 − y, −z; (ii) x, [{1\over 2}] − y, z − [{1\over 2}]; (iii) x, [{1\over 2}] − y, z + [{1\over 2}]].
[Figure 3]
Figure 3
A perspective view of the ππ stacking inter­actions viewed perpendicular to the middle ring of the Phdo ligand. H atoms have been omitted for clarity [symmetry code: (iv) −x, 1 − y, −z].

4. Database survey

Several CuII complexes of 1,10-phenanthroline-5,6-dione have been reported previously, for example, Chetana et al. (2009[Chetana, P. R., Rao, R., Roy, M. & Patra, A. K. (2009). Inorg. Chim. Acta, 362, 4692-4698.]); Galet et al. (2005[Galet, A., Muñoz, M. C., Agustí, G., Martínez, V., Gaspar, A. B. & Real, J. A. (2005). Z. Anorg. Allg. Chem. 631, 1985-1987.]); Saravani et al. (2007[Saravani, H., Rezvani, A. R., Mansouri, G., Rad, A. R. S., Khavasi, H. R. & Hadadzadeh, H. (2007). Inorg. Chim. Acta, 360, 2829-2834.]); Wang et al. (2013[Wang, X.-L., Gao, Q., Tian, A.-X., Zhao, D. & Liu, X.-J. (2013). J. Coord. Chem. 66, 358-366.]); Yamada et al. (2002[Yamada, Y., Sakurai, H., Miyashita, Y., Fujisawa, K. & Okamoto, K. (2002). Polyhedron, 21, 2143-2147.]) and Xu et al. (2006[Xu, G.-J., Kou, Y.-Y., Feng, L., Yan, S.-P., Liao, D.-Z., Jiang, Z.-H. & Cheng, P. (2006). Appl. Organomet. Chem. 20, 351-356.]).

5. Synthesis and crystallization

N-[3-(Di­methyl­amino)­prop­yl]-N′-2-(oxidophen­yl)oxamide (H3Dmapox; Zhang et al., 2013[Zhang, W.-J., Wang, F., Li, Y.-T. & Wu, Z.-Y. (2013). Transition Met. Chem. 38, 69-78.]) and 1,10-phenanthroline-5,6-dione (Phdo; Dickeson & Summers, 1970[Dickeson, J. E. & Summers, L. A. (1970). Aust. J. Chem. 23, 1023-1027.]) were prepared by published procedures. The title compound was obtained as follows: A solution of Cu(ClO4)2·6H2O (0.0371 g, 0.1 mmol) in methanol (5 ml) was added dropwise to a solution of H3Dmapox (0.0133 g, 0.05 mmol) and piperidine (0.0128 g, 0.15 mmol) in methanol (5 ml). The solution was stirred continuously for 0.5 h. Then a solution of Phdo (0.011 g, 0.05 mmol) in methanol (5 ml) was added dropwise, and the mixture was stirred continuously at 313 K for 6 h and then filtered. Dark-blue crystals of the title compound suitable for X-ray analysis were obtained from the filtrate by slow evaporation at room temperature for 7 d. Yield: 0.026 g (71.62%). Analysis calculated for Cu2C25H25ClN5O10.5: C 41.44, H 3.48, N 9.67%; found: C 42.57, H 3.15, N 9.19%.

6. Refinement

Crystal data, data collection, and refinement details are summarized in Table 3[link]. Disorder occurs for four carbon atoms of the 3-(di­methyl­amino)­propyl group [C10A–C13A, with occupancies of 0.561 (11); C10B–C13B, 0.439 (11)], three oxygen atoms of the perchlorate ion [O9A–O11A, 0.646 (8); O9B–O11B, 0.354 (8)] and the solvent water mol­ecule (O7A, 0.207 (10); O7B, 0.293 (10)]. The occupancies were refined freely except for the sum of atoms O7A and O7B which was fixed at 0.5. Some restraints on distances (DFIX) and anisotropic displacement parameters (SIMU) were applied to the disordered atoms to avoid unreasonable geometries. The hydrogen atoms of the water mol­ecules were found in a difference Fourier map and then refined as riding. Other H atoms were placed in calculated positions, with C—H = 0.96 (meth­yl), 0.97 (methyl­ene) and 0.93 Å (aromatic), and refined using a riding model, with Uiso(H) = 1.2 Ueq(C) or 1.5 for methyl groups.

Table 3
Experimental details

Crystal data
Chemical formula [Cu2(C13H16N3O3)(C12H6N2O2)(H2O)]ClO4·0.5H2O
Mr 726.03
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 11.7430 (6), 17.3066 (9), 14.1086 (8)
β (°) 98.154 (1)
V3) 2838.3 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.66
Crystal size (mm) 0.30 × 0.12 × 0.06
 
Data collection
Diffractometer Bruker APEX area detector
Absorption correction Multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.636, 0.907
No. of measured, independent and observed [I > 2σ(I)] reflections 21066, 6432, 4831
Rint 0.054
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.114, 1.05
No. of reflections 6432
No. of parameters 478
No. of restraints 31
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.76, −0.48
Computer programs: SMART and SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Chemical context top

It is known that oxamide ligands could be good candidates for forming polynuclear complexes because of their versatile coordinating abilities (Ojima & Nonoyama, 1988; Ruiz et al., 1999). Therefore, many oxamide complexes and their properties have been investigated extensively (Messori et al., 2003; Wang et al., 2013; Li et al., 2011). 1,10-Phenanthroline-5,6-dione (Phdo) is a multifaceted ligand since the structure and electronic properties thereof incorporate the features of the di­imine and quinone functionalities (Girgis et al., 1975; Calderazzo et al., 2002). Consequently, as part of our systematic study of asymmetrical bis-substituent oxamide complexes and the influence of structures on the DNA-binding properties thereof (Li et al., 2012; Zhang et al., 2013), we selected N-[3-(di­methyl­amino)­propyl]-N'-2-(oxido­phenyl)­oxamide (H3Dmapox) as a bridging ligand and Phdo as a terminal ligand to synthesize the title binuclear copper(II) complex, [Cu2(Dmapox)(Phdo)H2O]+ClO4-.0.5H2O. Its crystal structure and supra­molecular structure are reported here.

Structural commentary top

The title compound consists of a binuclear CuII complex cation, a perchlorate anion and half of a solvent water molecule (Fig. 1). Two copper(II) ions are bridged by a cis-oxamido group. The Cu1 atom, located at the inner site of the oxamide ligand, has a distorted square-planar geometry and is displaced from the coordination plane by 0.0454 (15) Å, which is consistent with structures reported previously (Gao & Wang, 2010; Lu et al., 2011). The two exo-oxygen atoms of oxamide ligand and two nitro­gen atoms of the Phdo molecule chelate the Cu2 atom to form the basal coordination plane [the maximum deviation being 0.0384 (14) Å for N4], and a water molecule (O4) occupies the apical position to complete the distorted square-pyramidal coordination geometry with τ value of 0.06 (Addison et al., 1984). The Cu—O distance of 2.213 (3) Å in the apical direction is longer than those in the basal plane by 0.261 (4) and 0.266 (4) Å (Table 1). The Cu2 atom is displaces by 0.1610 (15) Å off the basal plane towards the apex.

The hexadentate oxamide anion, Dmapox3-, bridges the two copper(II) cations with three planar five-membered chelate rings and one six-membered, the latter is disordered over two parts. The puckering parameters of one part (containing atoms C10A and C11A) are Q = 0.554 (8) Å, θ = 47.6 (6)° and ϕ = 206.0 (7)°, and those of the other part are Q = 0.565 (11) Å, θ = 123.4 (8)° and ϕ = 38.8 (9)°; both suggest an approximate half-chair conformation.

Supra­molecular features top

Besides classical O—H···O hydrogen bonds, weak C—H···O hydrogen bonds and aromatic stacking inter­actions are important to the supra­molecular structure. As illustrated in Fig. 2, two symmetry-related binuclear cations link each other, forming a dimer by hydrogen bonds between the coordinating water molecules and phenolic oxygen atoms (Table 2). Then the dimers are assembled by perchlorate anions, generating a wave-like layer parallel to (100). Subsequently, an offset ππ stacking inter­action occurs between the middle aromatic ring of the Phdo ligand of a binuclear unit and the benzene ring of the other unit at -x, 1 - y, -z [symmetry code (iv)], and vice versa (Fig. 3). The separations of the overlapped atoms to their opposite rings are 3.191 (4) (C2iv), 3.211 (4) (C3iv) and 3.252 (4) Å (C19iv).

Database survey top

Several CuII complexes of 1,10-phenanthroline-5,6-dione have been reported previously, for example, Chetana et al. (2009); Galet et al. (2005); Saravani et al. (2007); Wang et al. (2013); Yamada et al. (2002) and Xu et al. (2006).

Synthesis and crystallization top

N-[3-(Di­methyl­amino)­propyl]-N'-2-(oxido­phenyl)­oxamide (H3Dmapox; Zhang et al., 2013) and 1,10-phenanthroline-5,6-dione (Phdo; Dickeson & Summers, 1970) were prepared by published procedures. The title compound was obtained as follows: A solution of Cu(ClO4)2.6H2O (0.0371 g, 0.1 mmol) in methanol (5 ml) was added dropwise to a solution of H3Dmapox (0.0133 g, 0.05 mmol) and piperidine (0.0128 g, 0.15 mmol) in methanol (5 ml). The solution was stirred continuously for 0.5 h. Then a solution of Phdo (0.011 g, 0.05 mmol) in methanol (5 ml) was added dropwise, and the mixture was stirred continuously at 313 K for 6 h and then filtered. Dark-blue crystals of the title compound suitable for X-ray analysis were obtained from the filtrate by slow evaporation at room temperature for 7 d. Yield: 0.026 g (71.62%). Analysis calculated for Cu2C25H25ClN5O10.5: C 41.44, H 3.48, N 9.67%; found: C 42.57, H 3.15, N 9.19%.

Refinement top

Disorder occurs for four carbon atoms of the 3-(di­methyl­amino)­propyl group [C10A–C13A, with occupancies of 0.561 (11); C10B–C13B, 0.439 (11)], three oxygen atoms of perchlorate ion [O9A–O11A, 0.646 (8); O9B–O11B, 0.354 (8)], and the solvent water molecule (O7A, 0.207 (10); O7B, 0.293 (10)]. Their occupancies were refined freely except for the sum of atoms O7A and O7B which was fixed to 0.5. Some restraints on distances (DFIX) and anisotropic displacement parameters (SIMU) were applied to these disordered atoms to avoid unreasonable geometries. The hydrogen atoms of the water molecules were found in a difference Fourier map and then refined as riding. Other H atoms were placed in calculated positions, with C—H = 0.96 (methyl), 0.97 (methyl­ene) and 0.93 Å (aromatic), and refined using a riding model, with Uiso(H) = 1.2 Ueq(C) or 1.5 for methyl groups.

Related literature top

For related literature, see: Addison et al. (1984); Calderazzo et al. (2002); Chetana et al. (2009); Dickeson & Summers (1970); Galet et al. (2005); Gao & Wang (2010); Girgis et al. (1975); Li et al. (2011, 2012); Lu et al. (2011); Messori et al. (2003); Ojima & Nonoyama (1988); Ruiz et al. (1999); Saravani et al. (2007); Wang et al. (2013); Xu et al. (2006); Yamada et al. (2002); Zhang et al. (2013).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. For clarity, disordered atoms are represented in a different style and the H atoms on disordered carbon atoms have been omitted. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. The two-dimensional wave-like hydrogen-bonding network constructed by classical O—H···O and weak C—H···O interactions [symmetry codes: (i) 1 - x, 1 - y, -z; (ii) x, 1/2 - y, z - 1/2; (iii) x, 1/2 - y, z + 1/2].
[Figure 3] Fig. 3. A perspective view of the ππ stacking interactions viewed perpendicular to the middle ring of the Phdo ligand. H atoms have been omitted for clarity [symmetry code: (iv) -x, 1 - y, -z].
Aqua{µ-N-[3-(dimethylamino)propyl]-N'-2-(oxidophenyl)oxamidato}(1,10-phenanthroline-5,6-dione)dicopper(II) perchlorate hemihydrate top
Crystal data top
[Cu2(C13H16N3O3)(C12H6N2O2)(H2O)]ClO4·0.5H2OF(000) = 1476
Mr = 726.03Dx = 1.699 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.7430 (6) ÅCell parameters from 9065 reflections
b = 17.3066 (9) Åθ = 3.2–27.4°
c = 14.1086 (8) ŵ = 1.66 mm1
β = 98.154 (1)°T = 296 K
V = 2838.3 (3) Å3Prism, dark blue
Z = 40.30 × 0.12 × 0.06 mm
Data collection top
Bruker APEX area-detector
diffractometer
6432 independent reflections
Radiation source: fine-focus sealed tube4831 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ϕ and ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1415
Tmin = 0.636, Tmax = 0.907k = 2222
21066 measured reflectionsl = 1518
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0369P)2 + 7.4021P]
where P = (Fo2 + 2Fc2)/3
6432 reflections(Δ/σ)max < 0.001
478 parametersΔρmax = 0.76 e Å3
31 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Cu2(C13H16N3O3)(C12H6N2O2)(H2O)]ClO4·0.5H2OV = 2838.3 (3) Å3
Mr = 726.03Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.7430 (6) ŵ = 1.66 mm1
b = 17.3066 (9) ÅT = 296 K
c = 14.1086 (8) Å0.30 × 0.12 × 0.06 mm
β = 98.154 (1)°
Data collection top
Bruker APEX area-detector
diffractometer
6432 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
4831 reflections with I > 2σ(I)
Tmin = 0.636, Tmax = 0.907Rint = 0.054
21066 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05031 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.05Δρmax = 0.76 e Å3
6432 reflectionsΔρmin = 0.47 e Å3
478 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.48982 (4)0.62884 (2)0.02261 (3)0.01855 (12)
Cu20.15568 (4)0.46352 (3)0.12248 (3)0.01949 (12)
O10.5443 (2)0.62076 (14)0.10126 (18)0.0201 (5)
O20.2204 (2)0.48428 (14)0.00502 (19)0.0202 (5)
O30.2675 (2)0.53779 (14)0.18328 (19)0.0216 (6)
O40.2568 (2)0.35877 (15)0.1685 (2)0.0260 (6)
H4A0.32450.35230.15800.07 (2)*
H4B0.21480.31460.15500.052 (16)*
O50.3086 (2)0.27160 (16)0.1260 (2)0.0326 (7)
O60.2449 (3)0.30625 (18)0.3165 (2)0.0376 (8)
N10.3763 (2)0.55502 (16)0.0332 (2)0.0174 (6)
N20.4133 (3)0.61345 (17)0.1376 (2)0.0191 (6)
N30.5927 (3)0.71698 (18)0.0732 (2)0.0255 (7)
N40.0213 (2)0.40632 (17)0.0548 (2)0.0176 (6)
N50.0705 (3)0.45017 (19)0.2338 (2)0.0254 (7)
C10.4728 (3)0.5781 (2)0.1637 (3)0.0193 (8)
C20.3778 (3)0.54062 (19)0.1310 (3)0.0176 (7)
C30.2998 (3)0.4979 (2)0.1929 (3)0.0214 (8)
H30.23750.47440.17060.026*
C40.3151 (4)0.4902 (2)0.2881 (3)0.0270 (9)
H40.26250.46230.33030.032*
C50.4095 (4)0.5246 (2)0.3199 (3)0.0286 (9)
H50.42050.51860.38350.034*
C60.4876 (3)0.5676 (2)0.2587 (3)0.0249 (9)
H60.55060.58970.28150.030*
C70.3069 (3)0.52992 (19)0.0233 (3)0.0170 (7)
C80.3321 (3)0.56215 (19)0.1238 (3)0.0178 (7)
C90.4368 (3)0.6507 (2)0.2314 (3)0.0253 (9)
H9A0.48640.61780.27510.030*0.561 (11)
H9B0.36530.65790.25730.030*0.561 (11)
H9C0.37160.68240.24190.030*0.439 (11)
H9D0.44760.61160.28110.030*0.439 (11)
C10A0.4950 (7)0.7291 (5)0.2231 (6)0.0207 (19)0.561 (11)
H10A0.44270.76290.18290.025*0.561 (11)
H10B0.51050.75250.28610.025*0.561 (11)
C11A0.6069 (6)0.7230 (5)0.1811 (4)0.0213 (19)0.561 (11)
H11A0.65360.76800.20070.026*0.561 (11)
H11B0.64850.67780.20820.026*0.561 (11)
C12A0.5468 (14)0.7891 (6)0.0286 (10)0.046 (4)0.561 (11)
H12A0.53800.78390.03980.069*0.561 (11)
H12B0.59900.83060.04830.069*0.561 (11)
H12C0.47340.79990.04820.069*0.561 (11)
C13A0.7114 (8)0.7022 (15)0.0540 (12)0.043 (5)0.561 (11)
H13A0.76150.74210.08300.065*0.561 (11)
H13B0.71280.70200.01390.065*0.561 (11)
H13C0.73700.65300.08030.065*0.561 (11)
C10B0.5434 (12)0.6994 (6)0.2379 (7)0.032 (3)0.439 (11)
H10C0.60930.66510.24360.038*0.439 (11)
H10D0.54930.72940.29650.038*0.439 (11)
C11B0.5519 (11)0.7548 (5)0.1554 (8)0.036 (3)0.439 (11)
H11C0.47680.77730.13480.043*0.439 (11)
H11D0.60410.79650.17780.043*0.439 (11)
C12B0.5760 (13)0.7781 (7)0.0015 (9)0.038 (4)0.439 (11)
H12D0.62080.82280.02040.057*0.439 (11)
H12E0.49620.79200.01390.057*0.439 (11)
H12F0.60050.75910.05930.057*0.439 (11)
C13B0.7162 (10)0.6988 (17)0.0870 (15)0.035 (5)0.439 (11)
H13D0.75950.74470.10580.053*0.439 (11)
H13E0.73750.67960.02810.053*0.439 (11)
H13F0.73230.66030.13600.053*0.439 (11)
C140.0027 (3)0.3843 (2)0.0364 (3)0.0206 (8)
H140.05300.40140.07730.025*
C150.0881 (3)0.3370 (2)0.0734 (3)0.0231 (8)
H150.09840.32280.13760.028*
C160.1632 (3)0.3114 (2)0.0128 (3)0.0227 (8)
H160.22450.27920.03550.027*
C170.1456 (3)0.3344 (2)0.0822 (3)0.0183 (7)
C180.2225 (3)0.3083 (2)0.1514 (3)0.0234 (8)
C190.1890 (3)0.3309 (2)0.2573 (3)0.0287 (9)
C200.0860 (3)0.3801 (2)0.2846 (3)0.0251 (8)
C210.0471 (4)0.4002 (3)0.3791 (3)0.0375 (11)
H210.08590.38330.42830.045*
C220.0503 (4)0.4458 (3)0.3987 (3)0.0455 (13)
H220.07830.45950.46140.055*
C230.1057 (4)0.4706 (3)0.3236 (3)0.0387 (11)
H230.16950.50270.33680.046*
C240.0232 (3)0.4052 (2)0.2139 (3)0.0210 (8)
C250.0521 (3)0.3817 (2)0.1138 (3)0.0170 (7)
Cl10.04798 (9)0.17375 (5)0.17883 (7)0.0275 (2)
O80.0854 (3)0.1132 (2)0.2436 (3)0.0567 (10)
O9A0.0082 (6)0.2341 (3)0.2331 (4)0.054 (2)0.646 (8)
O10A0.0380 (7)0.1519 (4)0.1034 (4)0.060 (2)0.646 (8)
O11A0.1412 (6)0.2040 (4)0.1353 (5)0.073 (2)0.646 (8)
O9B0.0505 (16)0.1419 (9)0.0878 (5)0.112 (6)0.354 (8)
O10B0.1088 (10)0.2417 (4)0.1984 (12)0.094 (6)0.354 (8)
O11B0.0679 (5)0.1910 (5)0.1922 (7)0.037 (3)0.354 (8)
O7A0.3514 (15)0.5296 (11)0.4141 (15)0.056 (7)0.207 (10)
H7A0.35890.52510.35460.084*0.207 (10)
H7B0.41220.51100.44730.084*0.207 (10)
O7B0.282 (2)0.5932 (11)0.4515 (15)0.146 (13)0.293 (10)
H7C0.28450.58480.51190.219*0.293 (10)
H7D0.26850.64160.44160.219*0.293 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0132 (2)0.0162 (2)0.0274 (3)0.00272 (17)0.00678 (18)0.00401 (18)
Cu20.0134 (2)0.0205 (2)0.0258 (3)0.00197 (18)0.00698 (18)0.00077 (19)
O10.0139 (12)0.0220 (13)0.0252 (14)0.0045 (10)0.0057 (11)0.0014 (11)
O20.0151 (12)0.0197 (12)0.0263 (14)0.0049 (10)0.0053 (11)0.0003 (11)
O30.0186 (13)0.0209 (12)0.0270 (15)0.0024 (11)0.0091 (11)0.0006 (11)
O40.0175 (14)0.0236 (14)0.0387 (17)0.0015 (11)0.0103 (12)0.0083 (12)
O50.0260 (16)0.0291 (15)0.0463 (19)0.0087 (13)0.0173 (14)0.0000 (14)
O60.0327 (17)0.0443 (18)0.0399 (18)0.0003 (14)0.0185 (15)0.0153 (15)
N10.0135 (14)0.0147 (14)0.0245 (17)0.0001 (12)0.0041 (13)0.0010 (12)
N20.0159 (15)0.0180 (15)0.0235 (17)0.0007 (12)0.0028 (13)0.0013 (13)
N30.0198 (17)0.0250 (16)0.0334 (19)0.0058 (14)0.0091 (15)0.0092 (15)
N40.0117 (14)0.0198 (15)0.0220 (17)0.0017 (12)0.0046 (12)0.0032 (13)
N50.0196 (16)0.0308 (17)0.0268 (19)0.0016 (14)0.0061 (14)0.0042 (15)
C10.0145 (17)0.0147 (16)0.029 (2)0.0046 (14)0.0047 (15)0.0007 (15)
C20.0123 (16)0.0141 (16)0.026 (2)0.0015 (14)0.0026 (15)0.0002 (15)
C30.0178 (18)0.0181 (17)0.028 (2)0.0005 (15)0.0038 (16)0.0008 (15)
C40.024 (2)0.0250 (19)0.031 (2)0.0017 (17)0.0011 (17)0.0070 (17)
C50.030 (2)0.030 (2)0.028 (2)0.0003 (18)0.0109 (18)0.0026 (18)
C60.0203 (19)0.0229 (18)0.033 (2)0.0003 (16)0.0096 (17)0.0025 (17)
C70.0112 (16)0.0127 (15)0.027 (2)0.0016 (13)0.0026 (14)0.0017 (14)
C80.0140 (17)0.0151 (16)0.025 (2)0.0023 (14)0.0053 (15)0.0000 (14)
C90.024 (2)0.0260 (19)0.027 (2)0.0045 (16)0.0062 (17)0.0065 (16)
C10A0.020 (4)0.020 (4)0.023 (4)0.002 (3)0.005 (3)0.010 (3)
C11A0.018 (4)0.018 (4)0.030 (4)0.000 (3)0.007 (3)0.009 (3)
C12A0.067 (10)0.018 (5)0.050 (7)0.001 (5)0.001 (6)0.000 (5)
C13A0.021 (5)0.060 (8)0.052 (11)0.024 (5)0.013 (5)0.036 (9)
C10B0.033 (7)0.031 (6)0.031 (6)0.002 (5)0.004 (5)0.006 (5)
C11B0.035 (7)0.014 (5)0.063 (8)0.002 (5)0.019 (6)0.016 (5)
C12B0.019 (7)0.012 (5)0.075 (12)0.002 (4)0.022 (7)0.015 (6)
C13B0.028 (6)0.036 (6)0.039 (12)0.001 (5)0.006 (5)0.017 (9)
C140.0168 (18)0.0226 (18)0.024 (2)0.0008 (15)0.0068 (15)0.0026 (15)
C150.023 (2)0.0248 (19)0.022 (2)0.0029 (16)0.0036 (16)0.0012 (16)
C160.0124 (17)0.0209 (18)0.034 (2)0.0026 (15)0.0019 (16)0.0039 (16)
C170.0129 (17)0.0174 (16)0.025 (2)0.0002 (14)0.0043 (15)0.0030 (15)
C180.0176 (19)0.0184 (17)0.037 (2)0.0048 (15)0.0111 (17)0.0071 (16)
C190.025 (2)0.030 (2)0.034 (2)0.0055 (17)0.0153 (18)0.0113 (18)
C200.0212 (19)0.029 (2)0.026 (2)0.0060 (17)0.0095 (16)0.0049 (17)
C210.031 (2)0.059 (3)0.025 (2)0.008 (2)0.0125 (19)0.002 (2)
C220.032 (3)0.079 (4)0.026 (2)0.001 (3)0.008 (2)0.013 (2)
C230.027 (2)0.058 (3)0.032 (3)0.004 (2)0.0057 (19)0.013 (2)
C240.0140 (17)0.0241 (18)0.026 (2)0.0037 (15)0.0046 (15)0.0021 (16)
C250.0116 (16)0.0181 (17)0.0220 (19)0.0047 (14)0.0049 (14)0.0021 (14)
Cl10.0283 (5)0.0253 (5)0.0290 (5)0.0042 (4)0.0048 (4)0.0013 (4)
O80.050 (2)0.053 (2)0.067 (3)0.0233 (19)0.0091 (19)0.026 (2)
O9A0.087 (6)0.042 (3)0.035 (3)0.027 (4)0.018 (3)0.001 (3)
O10A0.075 (5)0.063 (4)0.037 (4)0.009 (4)0.015 (3)0.002 (3)
O11A0.089 (5)0.066 (4)0.076 (5)0.040 (4)0.056 (4)0.018 (4)
O9B0.111 (13)0.175 (15)0.048 (8)0.063 (11)0.006 (8)0.056 (9)
O10B0.049 (7)0.038 (6)0.196 (16)0.019 (6)0.024 (9)0.008 (9)
O11B0.016 (4)0.043 (6)0.051 (6)0.009 (4)0.001 (4)0.016 (5)
O7A0.043 (11)0.056 (13)0.073 (14)0.001 (9)0.022 (9)0.000 (10)
O7B0.27 (3)0.065 (13)0.096 (16)0.036 (17)0.008 (18)0.009 (11)
Geometric parameters (Å, º) top
Cu1—O11.950 (3)C10A—H10B0.9700
Cu1—N11.932 (3)C11A—H11A0.9700
Cu1—N21.982 (3)C11A—H11B0.9700
Cu1—N32.013 (3)C12A—H12A0.9600
Cu2—O21.952 (3)C12A—H12B0.9600
Cu2—O31.947 (3)C12A—H12C0.9600
Cu2—O42.213 (3)C13A—H13A0.9600
Cu2—N41.989 (3)C13A—H13B0.9600
Cu2—N51.991 (3)C13A—H13C0.9600
O1—C11.347 (4)C10B—C11B1.522 (9)
O2—C71.284 (4)C10B—H10C0.9700
O3—C81.280 (4)C10B—H10D0.9700
O4—H4A0.8374C11B—H11C0.9700
O4—H4B0.9146C11B—H11D0.9700
O5—C181.205 (5)C12B—H12D0.9600
O6—C191.211 (5)C12B—H12E0.9600
N1—C71.293 (4)C12B—H12F0.9600
N1—C21.405 (5)C13B—H13D0.9600
N2—C81.297 (4)C13B—H13E0.9600
N2—C91.463 (5)C13B—H13F0.9600
N3—C12A1.465 (8)C14—C151.385 (5)
N3—C13B1.470 (9)C14—H140.9300
N3—C11B1.470 (10)C15—C161.386 (5)
N3—C13A1.480 (8)C15—H150.9300
N3—C12B1.487 (9)C16—C171.386 (5)
N3—C11A1.511 (6)C16—H160.9300
N4—C141.331 (5)C17—C251.390 (5)
N4—C251.349 (4)C17—C181.491 (5)
N5—C231.324 (5)C18—C191.541 (6)
N5—C241.345 (5)C19—C201.484 (6)
C1—C61.388 (5)C20—C211.391 (6)
C1—C21.423 (5)C20—C241.391 (5)
C2—C31.386 (5)C21—C221.384 (7)
C3—C41.387 (6)C21—H210.9300
C3—H30.9300C22—C231.388 (6)
C4—C51.388 (5)C22—H220.9300
C4—H40.9300C23—H230.9300
C5—C61.385 (6)C24—C251.463 (5)
C5—H50.9300Cl1—O10B1.383 (5)
C6—H60.9300Cl1—O9B1.401 (5)
C7—C81.513 (5)Cl1—O10A1.411 (6)
C9—C10B1.501 (11)Cl1—O9A1.413 (5)
C9—C10A1.532 (8)Cl1—O81.419 (3)
C9—H9A0.9700Cl1—O11A1.429 (4)
C9—H9B0.9700Cl1—O11B1.432 (5)
C9—H9C0.9700O7A—H7A0.8596
C9—H9D0.9700O7A—H7B0.8602
C10A—C11A1.519 (7)O7B—H7C0.8602
C10A—H10A0.9700O7B—H7D0.8603
O1—Cu1—N183.25 (11)H10A—C10A—H10B107.8
O1—Cu1—N2165.77 (11)N3—C11A—C10A114.8 (6)
O1—Cu1—N396.65 (11)N3—C11A—H11A108.6
N1—Cu1—N283.00 (13)C10A—C11A—H11A108.6
N1—Cu1—N3172.12 (13)N3—C11A—H11B108.6
N2—Cu1—N397.48 (13)C10A—C11A—H11B108.6
O2—Cu2—O386.16 (10)H11A—C11A—H11B107.6
O2—Cu2—N493.58 (11)N3—C12A—H12A109.5
O2—Cu2—N5172.09 (12)N3—C12A—H12B109.5
O3—Cu2—N4168.40 (11)N3—C12A—H12C109.5
O3—Cu2—N596.42 (12)N3—C13A—H13A109.5
N4—Cu2—N582.38 (13)N3—C13A—H13B109.5
O4—Cu2—O298.20 (10)N3—C13A—H13C109.5
O4—Cu2—O396.39 (11)C9—C10B—C11B116.9 (9)
O4—Cu2—N495.12 (11)C9—C10B—H10C108.1
O4—Cu2—N588.97 (12)C11B—C10B—H10C108.1
C1—O1—Cu1111.8 (2)C9—C10B—H10D108.1
C7—O2—Cu2109.6 (2)C11B—C10B—H10D108.1
C8—O3—Cu2110.7 (2)H10C—C10B—H10D107.3
Cu2—O4—H4A122.8N3—C11B—C10B112.7 (9)
Cu2—O4—H4B111.8N3—C11B—H11C109.0
H4A—O4—H4B110.4C10B—C11B—H11C109.0
C7—N1—C2130.0 (3)N3—C11B—H11D109.0
C7—N1—Cu1115.4 (3)C10B—C11B—H11D109.0
C2—N1—Cu1114.4 (2)H11C—C11B—H11D107.8
C8—N2—C9118.6 (3)N3—C12B—H12D109.5
C8—N2—Cu1112.2 (2)N3—C12B—H12E109.5
C9—N2—Cu1129.2 (2)H12D—C12B—H12E109.5
C13B—N3—C11B114.7 (10)N3—C12B—H12F109.5
C12A—N3—C13A111.5 (11)H12D—C12B—H12F109.5
C13B—N3—C12B105.8 (12)H12E—C12B—H12F109.5
C11B—N3—C12B102.6 (7)N3—C13B—H13D109.5
C12A—N3—C11A110.8 (6)N3—C13B—H13E109.5
C13A—N3—C11A103.0 (7)H13D—C13B—H13E109.5
C12A—N3—Cu1109.1 (7)N3—C13B—H13F109.5
C13B—N3—Cu1114.6 (12)H13D—C13B—H13F109.5
C11B—N3—Cu1111.8 (4)H13E—C13B—H13F109.5
C13A—N3—Cu1109.7 (9)N4—C14—C15123.0 (3)
C12B—N3—Cu1106.0 (6)N4—C14—H14118.5
C11A—N3—Cu1112.6 (3)C15—C14—H14118.5
C14—N4—C25118.3 (3)C14—C15—C16118.7 (4)
C14—N4—Cu2128.1 (2)C14—C15—H15120.6
C25—N4—Cu2113.2 (2)C16—C15—H15120.6
C23—N5—C24119.3 (4)C17—C16—C15118.9 (4)
C23—N5—Cu2126.9 (3)C17—C16—H16120.6
C24—N5—Cu2113.0 (3)C15—C16—H16120.6
O1—C1—C6123.5 (3)C16—C17—C25118.8 (3)
O1—C1—C2118.8 (3)C16—C17—C18121.7 (3)
C6—C1—C2117.6 (3)C25—C17—C18119.5 (3)
C3—C2—N1127.9 (3)O5—C18—C17121.8 (4)
C3—C2—C1121.2 (3)O5—C18—C19120.6 (3)
N1—C2—C1110.9 (3)C17—C18—C19117.6 (3)
C2—C3—C4119.8 (3)O6—C19—C20121.7 (4)
C2—C3—H3120.1O6—C19—C18119.4 (4)
C4—C3—H3120.1C20—C19—C18118.9 (3)
C3—C4—C5119.4 (4)C21—C20—C24118.3 (4)
C3—C4—H4120.3C21—C20—C19122.5 (4)
C5—C4—H4120.3C24—C20—C19119.2 (4)
C6—C5—C4121.2 (4)C22—C21—C20118.9 (4)
C6—C5—H5119.4C22—C21—H21120.5
C4—C5—H5119.4C20—C21—H21120.5
C5—C6—C1120.7 (4)C21—C22—C23119.2 (4)
C5—C6—H6119.7C21—C22—H22120.4
C1—C6—H6119.7C23—C22—H22120.4
O2—C7—N1129.3 (4)N5—C23—C22122.1 (4)
O2—C7—C8117.3 (3)N5—C23—H23119.0
N1—C7—C8113.4 (3)C22—C23—H23119.0
O3—C8—N2128.1 (3)N5—C24—C20122.1 (4)
O3—C8—C7116.0 (3)N5—C24—C25115.7 (3)
N2—C8—C7115.8 (3)C20—C24—C25122.1 (3)
N2—C9—C10B110.6 (5)N4—C25—C17122.2 (3)
N2—C9—C10A110.5 (4)N4—C25—C24115.2 (3)
N2—C9—H9A109.6C17—C25—C24122.5 (3)
C10A—C9—H9A109.6O10B—Cl1—O9B116.1 (10)
N2—C9—H9B109.6O10A—Cl1—O9A110.6 (4)
C10A—C9—H9B109.6O10B—Cl1—O8113.3 (6)
H9A—C9—H9B108.1O9B—Cl1—O8104.8 (5)
N2—C9—H9C109.6O10A—Cl1—O8114.2 (3)
C10B—C9—H9C109.9O9A—Cl1—O8107.0 (3)
N2—C9—H9D109.6O10A—Cl1—O11A106.5 (4)
C10B—C9—H9D109.0O9A—Cl1—O11A107.2 (4)
H9C—C9—H9D108.1O8—Cl1—O11A111.2 (4)
C11A—C10A—C9112.8 (6)O10B—Cl1—O11B105.7 (7)
C11A—C10A—H10A109.0O9B—Cl1—O11B110.3 (8)
C9—C10A—H10A109.0O8—Cl1—O11B106.4 (4)
C11A—C10A—H10B109.0H7A—O7A—H7B107.8
C9—C10A—H10B109.0H7C—O7B—H7D107.8
N1—Cu1—O1—C17.0 (2)Cu2—O3—C8—N2177.6 (3)
N2—Cu1—O1—C122.0 (6)Cu2—O3—C8—C70.8 (4)
N3—Cu1—O1—C1165.1 (2)C9—N2—C8—O30.8 (6)
O3—Cu2—O2—C74.6 (2)Cu1—N2—C8—O3178.8 (3)
N4—Cu2—O2—C7173.0 (2)C9—N2—C8—C7176.0 (3)
O4—Cu2—O2—C791.3 (2)Cu1—N2—C8—C74.4 (4)
O2—Cu2—O3—C82.9 (2)O2—C7—C8—O33.3 (5)
N4—Cu2—O3—C892.0 (6)N1—C7—C8—O3178.5 (3)
N5—Cu2—O3—C8175.4 (2)O2—C7—C8—N2174.0 (3)
O4—Cu2—O3—C894.9 (2)N1—C7—C8—N24.3 (4)
O1—Cu1—N1—C7176.1 (3)C8—N2—C9—C10B172.0 (6)
N2—Cu1—N1—C70.2 (3)Cu1—N2—C9—C10B7.5 (7)
O1—Cu1—N1—C27.7 (2)C8—N2—C9—C10A156.4 (5)
N2—Cu1—N1—C2176.0 (2)Cu1—N2—C9—C10A24.1 (6)
N1—Cu1—N2—C82.7 (2)N2—C9—C10A—C11A58.1 (8)
O1—Cu1—N2—C812.3 (6)C12A—N3—C11A—C10A67.3 (10)
N3—Cu1—N2—C8174.8 (2)C13A—N3—C11A—C10A173.3 (12)
N1—Cu1—N2—C9177.8 (3)Cu1—N3—C11A—C10A55.2 (7)
O1—Cu1—N2—C9167.2 (4)C9—C10A—C11A—N380.9 (9)
N3—Cu1—N2—C95.7 (3)N2—C9—C10B—C11B48.9 (12)
O1—Cu1—N3—C12A76.8 (6)C13B—N3—C11B—C10B74.4 (16)
N2—Cu1—N3—C12A105.0 (6)C12B—N3—C11B—C10B171.4 (11)
O1—Cu1—N3—C13B64.5 (10)Cu1—N3—C11B—C10B58.2 (11)
N2—Cu1—N3—C13B113.8 (10)C9—C10B—C11B—N382.3 (14)
O1—Cu1—N3—C11B162.9 (5)C25—N4—C14—C150.3 (5)
N2—Cu1—N3—C11B18.9 (6)Cu2—N4—C14—C15172.5 (3)
O1—Cu1—N3—C13A45.6 (9)N4—C14—C15—C160.0 (6)
N2—Cu1—N3—C13A132.6 (9)C14—C15—C16—C170.6 (5)
O1—Cu1—N3—C12B51.8 (6)C15—C16—C17—C250.8 (5)
N2—Cu1—N3—C12B129.9 (6)C15—C16—C17—C18179.4 (3)
O1—Cu1—N3—C11A159.7 (4)C16—C17—C18—O56.4 (6)
N2—Cu1—N3—C11A18.6 (4)C25—C17—C18—O5175.0 (3)
O3—Cu2—N4—C1496.8 (6)C16—C17—C18—C19174.4 (3)
O2—Cu2—N4—C148.5 (3)C25—C17—C18—C194.2 (5)
N5—Cu2—N4—C14178.4 (3)O5—C18—C19—O65.9 (6)
O4—Cu2—N4—C1490.1 (3)C17—C18—C19—O6174.9 (3)
O3—Cu2—N4—C2590.1 (6)O5—C18—C19—C20176.5 (3)
O2—Cu2—N4—C25178.5 (2)C17—C18—C19—C202.7 (5)
N5—Cu2—N4—C255.3 (2)O6—C19—C20—C210.5 (6)
O4—Cu2—N4—C2583.0 (2)C18—C19—C20—C21177.1 (4)
O3—Cu2—N5—C2315.8 (4)O6—C19—C20—C24178.4 (4)
N4—Cu2—N5—C23175.8 (4)C18—C19—C20—C240.8 (5)
O4—Cu2—N5—C2380.5 (4)C24—C20—C21—C221.6 (6)
O3—Cu2—N5—C24174.7 (3)C19—C20—C21—C22179.5 (4)
N4—Cu2—N5—C246.4 (3)C20—C21—C22—C230.6 (7)
O4—Cu2—N5—C2488.9 (3)C24—N5—C23—C221.4 (7)
Cu1—O1—C1—C6175.6 (3)Cu2—N5—C23—C22167.4 (4)
Cu1—O1—C1—C25.4 (4)C21—C22—C23—N52.2 (8)
C7—N1—C2—C33.4 (6)C23—N5—C24—C200.9 (6)
Cu1—N1—C2—C3172.1 (3)Cu2—N5—C24—C20171.2 (3)
C7—N1—C2—C1177.8 (3)C23—N5—C24—C25176.6 (4)
Cu1—N1—C2—C16.6 (4)Cu2—N5—C24—C256.3 (4)
O1—C1—C2—C3178.2 (3)C21—C20—C24—N52.4 (6)
C6—C1—C2—C32.8 (5)C19—C20—C24—N5179.6 (3)
O1—C1—C2—N10.7 (4)C21—C20—C24—C25175.0 (4)
C6—C1—C2—N1178.3 (3)C19—C20—C24—C253.0 (5)
N1—C2—C3—C4179.7 (3)C14—N4—C25—C170.0 (5)
C1—C2—C3—C41.0 (5)Cu2—N4—C25—C17173.8 (3)
C2—C3—C4—C51.0 (6)C14—N4—C25—C24177.2 (3)
C3—C4—C5—C61.2 (6)Cu2—N4—C25—C243.4 (4)
C4—C5—C6—C10.6 (6)C16—C17—C25—N40.5 (5)
O1—C1—C6—C5178.5 (3)C18—C17—C25—N4179.1 (3)
C2—C1—C6—C52.6 (5)C16—C17—C25—C24176.4 (3)
Cu2—O2—C7—N1176.7 (3)C18—C17—C25—C242.2 (5)
Cu2—O2—C7—C85.4 (4)N5—C24—C25—N42.0 (5)
C2—N1—C7—O20.5 (6)C20—C24—C25—N4175.6 (3)
Cu1—N1—C7—O2176.1 (3)N5—C24—C25—C17179.2 (3)
C2—N1—C7—C8177.5 (3)C20—C24—C25—C171.6 (5)
Cu1—N1—C7—C81.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O1i0.841.892.666 (3)153
O4—H4B···O10B0.911.932.740 (8)146
O4—H4B···O11A0.912.103.009 (7)171
O7A—H7A···O30.862.513.27 (2)147
O7B—H7D···O5ii0.862.513.305 (18)153
C3—H3···O8iii0.932.523.193 (5)130
C15—H15···O9Aiii0.932.553.335 (7)142
C15—H15···O11Biii0.932.493.384 (10)162
C16—H16···O6iii0.932.543.195 (5)128
C10A—H10A···O6ii0.972.443.202 (9)135
C11A—H11A···O4iv0.972.543.409 (7)150
C13A—H13B···O4i0.962.493.382 (16)154
C21—H21···O10Av0.932.533.277 (8)138
C23—H23···O7A0.932.303.154 (19)152
C23—H23···O7B0.932.493.31 (2)147
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x+1, y+1/2, z+1/2; (v) x, y+1/2, z+1/2.
Selected bond lengths (Å) top
Cu1—O11.950 (3)Cu2—O31.947 (3)
Cu1—N11.932 (3)Cu2—O42.213 (3)
Cu1—N21.982 (3)Cu2—N41.989 (3)
Cu1—N32.013 (3)Cu2—N51.991 (3)
Cu2—O21.952 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O1i0.841.892.666 (3)153.2
O4—H4B···O10B0.911.932.740 (8)146.3
O4—H4B···O11A0.912.103.009 (7)170.9
O7A—H7A···O30.862.513.27 (2)147.4
O7B—H7D···O5ii0.862.513.305 (18)153.4
C3—H3···O8iii0.932.523.193 (5)129.7
C15—H15···O9Aiii0.932.553.335 (7)142.1
C15—H15···O11Biii0.932.493.384 (10)161.6
C16—H16···O6iii0.932.543.195 (5)127.6
C10A—H10A···O6ii0.972.443.202 (9)135.0
C11A—H11A···O4iv0.972.543.409 (7)149.8
C13A—H13B···O4i0.962.493.382 (16)154.1
C21—H21···O10Av0.932.533.277 (8)137.8
C23—H23···O7A0.932.303.154 (19)151.9
C23—H23···O7B0.932.493.31 (2)147.4
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x+1, y+1/2, z+1/2; (v) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu2(C13H16N3O3)(C12H6N2O2)(H2O)]ClO4·0.5H2O
Mr726.03
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.7430 (6), 17.3066 (9), 14.1086 (8)
β (°) 98.154 (1)
V3)2838.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.66
Crystal size (mm)0.30 × 0.12 × 0.06
Data collection
DiffractometerBruker APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.636, 0.907
No. of measured, independent and
observed [I > 2σ(I)] reflections
21066, 6432, 4831
Rint0.054
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.114, 1.05
No. of reflections6432
No. of parameters478
No. of restraints31
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 0.47

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 2012).

 

Acknowledgements

This project was supported by the Fundamental Research Funds for the Central Universities, China (grant No. 201213020) and the Program for Science and Technology of Shandong Province, China (grant No. 2012GHY11525).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalderazzo, F., Pampaloni, G. & Passarelli, V. (2002). Inorg. Chim. Acta, 330, 136–142.  Web of Science CrossRef CAS Google Scholar
First citationChetana, P. R., Rao, R., Roy, M. & Patra, A. K. (2009). Inorg. Chim. Acta, 362, 4692–4698.  CSD CrossRef CAS Google Scholar
First citationDickeson, J. E. & Summers, L. A. (1970). Aust. J. Chem. 23, 1023–1027.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGalet, A., Muñoz, M. C., Agustí, G., Martínez, V., Gaspar, A. B. & Real, J. A. (2005). Z. Anorg. Allg. Chem. 631, 1985–1987.  CSD CrossRef CAS Google Scholar
First citationGao, Z. & Wang, Y. (2010). Acta Cryst. E66, m1249–m1250.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGirgis, A. Y., Sohn, Y. S. & Balch, A. L. (1975). Inorg. Chem. 14, 2327–2331.  CrossRef CAS Google Scholar
First citationLi, X.-W., Li, X., Li, Y.-T., Wu, Z.-Y. & Yan, C.-W. (2012). J. Organomet. Chem. 700, 48–57.  CSD CrossRef CAS Google Scholar
First citationLi, X.-W., Zheng, Y.-J., Li, Y.-T., Wu, Z.-Y. & Yan, C.-W. (2011). Eur. J. Med. Chem. 46, 3851–3857.  CSD CrossRef CAS PubMed Google Scholar
First citationLu, H.-H., Li, Y.-T., Wu, Z.-Y., Zheng, K. & Yan, C.-W. (2011). J. Coord. Chem. 64, 1360–1374.  CSD CrossRef CAS Google Scholar
First citationMessori, L., Shaw, J., Camalli, M., Mura, P. & Marcon, G. (2003). Inorg. Chem. 42, 6166–6168.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOjima, H. & Nonoyama, K. (1988). Coord. Chem. Rev. 92, 85–111.  CrossRef CAS Web of Science Google Scholar
First citationRuiz, R., Faus, J., Lloret, F., Julve, M. & Journaux, Y. (1999). Coord. Chem. Rev. 193–195, 1069–1117.  Web of Science CrossRef CAS Google Scholar
First citationSaravani, H., Rezvani, A. R., Mansouri, G., Rad, A. R. S., Khavasi, H. R. & Hadadzadeh, H. (2007). Inorg. Chim. Acta, 360, 2829–2834.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-L., Gao, Q., Tian, A.-X., Zhao, D. & Liu, X.-J. (2013). J. Coord. Chem. 66, 358–366.  CSD CrossRef CAS Google Scholar
First citationXu, G.-J., Kou, Y.-Y., Feng, L., Yan, S.-P., Liao, D.-Z., Jiang, Z.-H. & Cheng, P. (2006). Appl. Organomet. Chem. 20, 351–356.  CrossRef CAS Google Scholar
First citationYamada, Y., Sakurai, H., Miyashita, Y., Fujisawa, K. & Okamoto, K. (2002). Polyhedron, 21, 2143–2147.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, W.-J., Wang, F., Li, Y.-T. & Wu, Z.-Y. (2013). Transition Met. Chem. 38, 69–78.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages 667-670
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds