data reports

monohydrate

CRYSTALLOGRAPHIC

OPEN a ACCESS

Crystal structure of 4*a*-hydroxy- 5α , 8β (H)-eudesm-7(11)-en-8, 12-olide

Qiang-Qiang Lu,^a Xin-Wei Shi^a* and Xing-Ke Yang^b

^aXi'an Botanical Garden, Institute of Botany of Shaanxi Province, Xi'an 710061, People's Republic of China, and ^bShaanxi Province Academy of Sciences, Xi'an 710061, People's Republic of China. *Correspondence e-mail: sxw@ms.xab.ac.cn

Received 30 May 2015; accepted 9 June 2015

Edited by V. V. Chernyshev, Moscow State University, Russia

The title compound, $C_{15}H_{22}O_3 \cdot H_2O_3$ is a natural producr isolated from Chloranthus japonicus, which is a eudesmane sesquiterpenoid. The two trans-fused six-membered rings have chair confomations. In the crystal, O-H···O hydrogen bonds link the components into corrugated layers parallel to the bc plane. There are C-H···O interactions present within and between the layers.

Keywords: crystal structure; eudesmane sesquiterpenoid; hydrogen bonds; Chloranthus japonicus.

CCDC reference: 1405865

1. Related literature

For the products isolated from the genus Chloranthus, see: Xiao et al. (2010); Sun et al. (2012). For the crystal structure of the related compound 6β -hydroxyeremophil-7(11)-en- 8β ,12olide, see: Su et al. (2011).

2. Experimental

2.1. Crystal data

C15H22O3·H2O $M_r = 268.34$ Monoclinic, P21 a = 10.2495 (2) Å b = 7.1061 (1) Åc = 10.5275 (2) Å $\beta = 100.026 \ (1)^{\circ}$ V = 755.05 (2) Å³ Z = 2Cu Ka radiation $\mu = 0.68 \text{ mm}^{-1}$

2.2. Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\rm min} = 0.772, T_{\rm max} = 0.821$

2.3. Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.130$ S = 1.141339 reflections 174 parameters

1 restraint H-atom parameters constrained $\Delta \rho_{\rm max} = 0.22 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$

T = 298 K

 $R_{\rm int}=0.018$

 $0.40 \times 0.40 \times 0.30 \text{ mm}$

3081 measured reflections 1339 independent reflections 1303 reflections with $I > 2\sigma(I)$

Table	1			
Hydro	gen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C5-H5···O4 ⁱ	0.98	2.63	3.407 (3)	136
C8−H8···O3 ⁱⁱ	0.98	2.64	3.308 (4)	126
$O1-H1\cdots O4^{i}$	0.82	1.91	2.718 (3)	169
O4−H4WA···O3 ⁱⁱ	0.83	2.05	2.850 (3)	162
$O4-H4WB\cdots O1^{iii}$	0.86	1.94	2.764 (3)	159

Symmetry codes: (i) x, y - 1, z; (ii) $-x + 1, y + \frac{1}{2}, -z + 1$; (iii) $-x + 1, y + \frac{1}{2}, -z + 2$.

Data collection: SMART (Bruker, 2002): cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL; software used to prepare material for publication: ORTEP (Johnson & Burnett, 1996).

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 31200257), The Overall Science and Technology Innovation program of Shaanxi Province (grant No. 2012 KTCL02-07) and the West Light Foundation of The Chinese Academy of Sciences (grant No. 2012DF05).

Supporting information for this paper is available from the IUCr electronic archives (Reference: CV5488).

References

- Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Johnson, C. K. & Burnett, M. N. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Su, R.-N., Shi, S., Wu, H.-B. & Wang, W.-S. (2011). Acta Cryst. E67, 01361.
- Sun, C.-L., Yan, H., Li, X.-H., Zheng, X.-F. & Liu, H.-Y. (2012). Nat. Prod. Bioprospect. 2, 156-159.
- Xiao, Z.-Y., Wang, X.-C., Zhang, G.-P., Huang, Z.-L. & Hu, L.-H. (2010). Helv. Chim. Acta, 93, 803-810.

supporting information

Acta Cryst. (2015). E71, o518 [doi:10.1107/S2056989015011251]

Crystal structure of 4α -hydroxy- 5α , 8β (H)-eudesm-7(11)-en-8,12-olide monohydrate

Qiang-Qiang Lu, Xin-Wei Shi and Xing-Ke Yang

S1. Comment

Chloranthus japonicus (Chloranthaceae, "yin-xian-cao"in chinese) is mainly distributed in the east of Asia and traditionally used as Chinese herbal medicine in the treatment of fractures, carbuncles, trauma, and rheumatism. In our current phytochemical investigation, the title compound - an eudesmane sesquiterpenoid, was isolated from the whole plant of *C. japonicus* for the first time. The compound was identified by NMR spectroscopic data, which were also elucidated by comparing with the literature data (Xiao *et al.*, 2010). Herein, we report its crystal structure.

The main molecule of the title compound consists of a fused three-ring system (Fig.1). The two methyl groups attached to C4 and C10 and the H atom at C8 are all in the axial position and assigned β -configuration, whereas, the hydroxy group at C4 site has α -orientation.

In the crystal, intermolecular O—H···O hydrogen bonds (Table 1, Fig. 2) link all moeties into corrugated layers parallel to *bc* plane, and weak C—H···O interactions (Table 1) consolidate further the crystal packing.

S2. Experimental

The title compound was isolated from the whole plant of C. japonicus following the known procedure (Xiao et al., 2010).

S3. Refinement

The hydrogen atoms were placed in calculated positions and refined as riding with $U_{iso}(H) = 1.2 U_{eq}(C)$ or 1.5 $U_{eq}(C, O)$. The positions of methyl and hydroxy hydrogens were rotationally optimized.

Figure 1

Molecular structure of the title compound showing the atomic numbering and 40% probability displacement ellipsoids.

Figure 2

A portion of the crystal packing showing O—H…O hydrogen bonds as dashed lines.

4α -Hydroxy- 5α , 8β (H)-eudesm-7(11)-en-8,12-olide monohydrate

Crystal data $C_{15}H_{22}O_3 \cdot H_2O$ $M_r = 268.34$

Monoclinic, *P*2₁ Hall symbol: P 2yb Cu *K* α radiation, $\lambda = 1.54178$ Å

 $\theta = 4.3 - 66.9^{\circ}$

 $\mu = 0.68 \text{ mm}^{-1}$

Block, colourless

 $0.40 \times 0.40 \times 0.30 \text{ mm}$

T = 298 K

Cell parameters from 2390 reflections

a = 10.2495 (2) Å b = 7.1061 (1) Å c = 10.5275 (2) Å $\beta = 100.026 (1)^{\circ}$ $V = 755.05 (2) \text{ Å}^{3}$ Z = 2 F(000) = 292 $D_{x} = 1.180 \text{ Mg m}^{-3}$

Data collection

Bruker SMART CCD area-detector	3081 measured reflections
diffractometer	1339 independent reflections
Radiation source: fine-focus sealed tube	1303 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.018$
phi and ω scans	$\theta_{\rm max} = 64.0^{\circ}, \ \theta_{\rm min} = 4.3^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$
(SADABS; Bruker, 2002)	$k = -6 \rightarrow 8$
$T_{\min} = 0.772, T_{\max} = 0.821$	$l = -11 \rightarrow 12$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.054$	Hydrogen site location: inferred from
$wR(F^2) = 0.130$	neighbouring sites
<i>S</i> = 1.18	H-atom parameters constrained
1339 reflections	$w = 1/[\sigma^2(F_o^2) + (0.092P)^2 + 0.043P]$
174 parameters	where $P = (F_o^2 + 2F_c^2)/3$
1 restraint	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.22 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}*/U_{ m eq}$
C1	0.0506 (3)	-0.0853 (6)	0.6719 (3)	0.0694 (9)
H1A	-0.0282	-0.0510	0.6111	0.083*
H1B	0.0885	-0.1959	0.6384	0.083*
C2	0.0108 (3)	-0.1346 (10)	0.7998 (3)	0.0938 (16)
H2A	-0.0511	-0.2391	0.7881	0.113*
H2B	-0.0331	-0.0277	0.8313	0.113*
C3	0.1333 (3)	-0.1883 (7)	0.8991 (3)	0.0795 (12)
H3A	0.1061	-0.2173	0.9807	0.095*
H3B	0.1732	-0.3005	0.8700	0.095*

C4	0.2366 (3)	-0.0303 (5)	0.9198 (2)	0.0545 (7)
C5	0.2709 (2)	0.0271 (3)	0.7882 (2)	0.0400 (5)
Н5	0.3093	-0.0863	0.7567	0.048*
C6	0.3814 (2)	0.1752 (4)	0.7989 (2)	0.0482 (6)
H6A	0.3501	0.2943	0.8272	0.058*
H6B	0.4571	0.1352	0.8616	0.058*
C7	0.4201 (2)	0.1974 (3)	0.6697 (2)	0.0438 (5)
C8	0.3125 (3)	0.2269 (4)	0.5558 (2)	0.0493 (6)
H8	0.2754	0.3536	0.5590	0.059*
С9	0.2037 (2)	0.0820 (4)	0.5517 (2)	0.0468 (6)
H9A	0.2377	-0.0411	0.5347	0.056*
H9B	0.1317	0.1120	0.4820	0.056*
C10	0.1512 (2)	0.0772 (4)	0.6805 (2)	0.0480 (6)
C11	0.5357 (2)	0.1772 (4)	0.6310(2)	0.0469 (6)
C12	0.5101 (3)	0.1860 (4)	0.4896 (3)	0.0507 (6)
C13	0.6713 (3)	0.1422 (6)	0.7066 (3)	0.0659 (8)
H13A	0.6695	0.1563	0.7970	0.099*
H13B	0.7324	0.2312	0.6812	0.099*
H13C	0.6990	0.0169	0.6901	0.099*
C14	0.0832 (4)	0.2651 (6)	0.7002 (4)	0.0763 (10)
H14A	0.0210	0.2956	0.6237	0.114*
H14B	0.1487	0.3627	0.7171	0.114*
H14C	0.0373	0.2545	0.7720	0.114*
C15	0.1959 (3)	0.1322 (8)	0.9998 (3)	0.0838 (13)
H15A	0.1939	0.0893	1.0859	0.126*
H15B	0.1096	0.1764	0.9613	0.126*
H15C	0.2588	0.2329	1.0025	0.126*
01	0.35464 (17)	-0.1021 (3)	0.99853 (14)	0.0547 (5)
H1	0.3829	-0.1911	0.9619	0.082*
02	0.37912 (19)	0.2109 (3)	0.44542 (16)	0.0572 (5)
03	0.5884 (2)	0.1702 (4)	0.41479 (17)	0.0635 (6)
O4	0.4640 (3)	0.6381 (4)	0.85924 (19)	0.0861 (8)
H4WA	0.4612	0.6284	0.7803	0.103*
H4WB	0.5174	0.5467	0.8853	0.103*

Atomic a	displa	cement	parameters	$(Å^2)$
----------	--------	--------	------------	---------

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0398 (13)	0.106 (3)	0.0599 (16)	-0.0191 (17)	0.0010 (11)	0.0081 (18)
C2	0.0463 (14)	0.165 (5)	0.0689 (19)	-0.033 (2)	0.0068 (13)	0.020 (3)
C3	0.0572 (17)	0.123 (3)	0.0595 (16)	-0.025 (2)	0.0128 (13)	0.025 (2)
C4	0.0433 (13)	0.0820 (19)	0.0394 (12)	0.0026 (13)	0.0106 (9)	0.0026 (14)
C5	0.0330 (11)	0.0499 (13)	0.0371 (11)	0.0018 (9)	0.0065 (8)	-0.0020 (9)
C6	0.0447 (12)	0.0580 (14)	0.0414 (11)	-0.0076 (12)	0.0057 (9)	-0.0093 (12)
C7	0.0467 (12)	0.0426 (12)	0.0412 (11)	-0.0065 (10)	0.0054 (9)	-0.0028 (10)
C8	0.0525 (13)	0.0519 (13)	0.0432 (12)	0.0018 (11)	0.0072 (10)	0.0079 (11)
C9	0.0416 (12)	0.0578 (14)	0.0384 (11)	0.0031 (11)	-0.0006 (9)	0.0050 (11)
C10	0.0352 (11)	0.0638 (15)	0.0433 (12)	0.0049 (12)	0.0022 (9)	0.0014 (12)

supporting information

C11	0.0474 (12)	0.0495 (13)	0.0441 (12)	-0.0106 (11)	0.0090 (9)	-0.0033 (11)
C12	0.0594 (14)	0.0468 (13)	0.0481 (12)	-0.0101 (12)	0.0152 (10)	0.0021 (12)
C13	0.0443 (13)	0.094 (2)	0.0591 (15)	-0.0076 (16)	0.0085 (11)	-0.0161 (17)
C14	0.0619 (18)	0.095 (3)	0.0706 (19)	0.0369 (19)	0.0087 (14)	0.0012 (18)
C15	0.0711 (19)	0.135 (4)	0.0500 (15)	0.036 (2)	0.0229 (13)	-0.010 (2)
01	0.0528 (10)	0.0745 (13)	0.0355 (8)	0.0038 (9)	0.0039 (7)	0.0017 (8)
O2	0.0614 (11)	0.0679 (12)	0.0431 (9)	-0.0022 (10)	0.0112 (7)	0.0131 (9)
O3	0.0697 (12)	0.0720 (13)	0.0536 (10)	-0.0126 (11)	0.0248 (9)	0.0002 (11)
O4	0.1200 (19)	0.0856 (18)	0.0479 (10)	0.0426 (17)	0.0013 (11)	-0.0041 (11)

Geometric parameters (Å, °)

C1—C2	1.515 (4)	C8—C9	1.512 (4)
C1-C10	1.541 (4)	C8—H8	0.9800
C1—H1A	0.9700	C9—C10	1.545 (3)
C1—H1B	0.9700	С9—Н9А	0.9700
C2—C3	1.536 (5)	С9—Н9В	0.9700
C2—H2A	0.9700	C10—C14	1.537 (4)
C2—H2B	0.9700	C11—C12	1.468 (4)
C3—C4	1.532 (5)	C11—C13	1.497 (4)
С3—Н3А	0.9700	C12—O3	1.223 (3)
С3—Н3В	0.9700	C12—O2	1.354 (4)
C4—O1	1.436 (3)	C13—H13A	0.9600
C4—C15	1.530 (5)	C13—H13B	0.9600
C4—C5	1.542 (3)	C13—H13C	0.9600
C5—C6	1.536 (3)	C14—H14A	0.9600
C5—C10	1.559 (3)	C14—H14B	0.9600
С5—Н5	0.9800	C14—H14C	0.9600
C6—C7	1.490 (3)	C15—H15A	0.9600
С6—Н6А	0.9700	C15—H15B	0.9600
С6—Н6В	0.9700	C15—H15C	0.9600
C7—C11	1.325 (3)	O1—H1	0.8200
C7—C8	1.496 (3)	O4—H4WA	0.8291
C8—O2	1.451 (3)	O4—H4WB	0.8628
C2-C1-C10	113.7 (3)	O2—C8—H8	109.8
C2—C1—H1A	108.8	C7—C8—H8	109.8
C10-C1-H1A	108.8	C9—C8—H8	109.8
C2—C1—H1B	108.8	C8—C9—C10	110.9 (2)
C10-C1-H1B	108.8	С8—С9—Н9А	109.5
H1A—C1—H1B	107.7	С10—С9—Н9А	109.5
C1—C2—C3	110.4 (2)	C8—C9—H9B	109.5
C1—C2—H2A	109.6	С10—С9—Н9В	109.5
C3—C2—H2A	109.6	H9A—C9—H9B	108.0
C1—C2—H2B	109.6	C14—C10—C1	110.2 (2)
C3—C2—H2B	109.6	C14—C10—C9	109.5 (2)
H2A—C2—H2B	108.1	C1—C10—C9	107.3 (2)
C4—C3—C2	112.2 (4)	C14—C10—C5	114.7 (2)

С4—С3—НЗА	109.2	C1—C10—C5	107.8 (2)
С2—С3—НЗА	109.2	C9—C10—C5	107.04 (18)
C4—C3—H3B	109.2	C7—C11—C12	107.2 (2)
С2—С3—Н3В	109.2	C7—C11—C13	130.6 (2)
H3A—C3—H3B	107.9	C12—C11—C13	122.1(2)
01-C4-C15	107.5 103.5(2)	03-C12-02	120.9(3)
01 - C4 - C3	108.3(2)	03 - C12 - C11	120.9(3) 128.9(3)
$C_{15} C_{4} C_{3}$	1125(3)	$O_2 C_{12} C_{11}$	120.9(3)
$C_{13} = C_{4} = C_{5}$	112.3(3) 108.18(10)	C_{11} C_{12} H_{13A}	110.2 (2)
$C_1 = C_4 = C_5$	100.10(19) 114.0(2)	$C_{11} = C_{12} = H_{12} P$	109.4
$C_1 = C_4 = C_5$	114.9(3)		109.4
C_{3}	109.1(2)		109.5
$C_{6} - C_{5} - C_{4}$	113.3 (2)		109.5
C6-C5-C10	112.0 (2)	H13A—C13—H13C	109.5
C4—C5—C10	116.10 (19)	H13B—C13—H13C	109.5
C6—C5—H5	104.7	C10—C14—H14A	109.5
C4—C5—H5	104.7	C10—C14—H14B	109.5
C10—C5—H5	104.7	H14A—C14—H14B	109.5
C7—C6—C5	108.42 (18)	C10—C14—H14C	109.5
С7—С6—Н6А	110.0	H14A—C14—H14C	109.5
С5—С6—Н6А	110.0	H14B—C14—H14C	109.5
С7—С6—Н6В	110.0	C4—C15—H15A	109.5
С5—С6—Н6В	110.0	C4—C15—H15B	109.5
H6A—C6—H6B	108.4	H15A—C15—H15B	109.5
C11—C7—C6	131.6 (2)	C4—C15—H15C	109.5
C11—C7—C8	110.0 (2)	H15A—C15—H15C	109.5
C6-C7-C8	118.0 (2)	H15B—C15—H15C	109.5
02	104.3 (2)	C4—O1—H1	109.5
02-08-09	111.8 (2)	C12 - C8	108 18 (19)
$C_{7}^{-}C_{8}^{-}C_{9}^{-}$	111.0(2) 111.4(2)	H4WA = 04 = H4WB	99 5
	111.4 (2)		<i>))</i> .5
C10-C1-C2-C3	-581(6)	C_{2} C_{1} C_{10} C_{5}	53 2 (4)
$C_1 C_2 C_3 C_4$	57.9 (5)	$C_2 = C_1 = C_{10} = C_3$	55.2(4)
$C_1 = C_2 = C_3 = C_4$	-1716(3)	$C_{8} = C_{9} = C_{10} = C_{14}$	-1750(2)
$C_2 = C_3 = C_4 = C_1^2$	1/1.0(3)	$C_{8} = C_{9} = C_{10} = C_{1}$	175.0(2)
$C_2 = C_3 = C_4 = C_{13}$	(4.7(5))	$C_{0} = C_{0} = C_{10} = C_{14}$	-39.3(3)
$C_2 = C_3 = C_4 = C_5$	-54.1 (4)	$C_{0} = C_{0} = C_{10} = C_{14}$	-60.4(3)
01 - 4 - 5 - 6	-58.2(3)	C4 - C5 - C10 - C14	/1.8 (3)
C15-C4-C5-C6	56.8 (3)	C6—C5—C10—C1	176.4 (2)
C3—C4—C5—C6	-175.8 (2)	C4—C5—C10—C1	-51.3 (3)
O1—C4—C5—C10	170.1 (2)	C6—C5—C10—C9	61.3 (3)
C15—C4—C5—C10	-74.9 (3)	C4—C5—C10—C9	-166.4 (2)
C3—C4—C5—C10	52.6 (3)	C6—C7—C11—C12	170.7 (3)
C4—C5—C6—C7	171.3 (2)	C8—C7—C11—C12	-1.8 (3)
C10—C5—C6—C7	-55.0 (3)	C6-C7-C11-C13	-6.6 (5)
C5—C6—C7—C11	-122.4 (3)	C8—C7—C11—C13	-179.0 (3)
C5—C6—C7—C8	49.6 (3)	C7—C11—C12—O3	-178.5 (3)
C11—C7—C8—O2	3.0 (3)	C13—C11—C12—O3	-1.0 (5)
C6—C7—C8—O2	-170.6 (2)	C7—C11—C12—O2	-0.1 (3)
C11—C7—C8—C9	123.7 (2)	C13—C11—C12—O2	177.4 (3)

C6—C7—C8—C9	-49.9 (3)	O3—C12—O2—C8	-179.4 (3)
O2—C8—C9—C10	169.80 (19)	C11—C12—O2—C8	2.1 (3)
C7—C8—C9—C10	53.6 (3)	C7—C8—O2—C12	-3.0 (3)
C2-C1-C10-C14	-72.7 (4)	C9—C8—O2—C12	-123.5 (2)
C2-C1-C10-C9	168.2 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
C5—H5…O4 ⁱ	0.98	2.63	3.407 (3)	136
C8—H8…O3 ⁱⁱ	0.98	2.64	3.308 (4)	126
O1—H1···O4 ⁱ	0.82	1.91	2.718 (3)	169
O4—H4 <i>WA</i> ···O3 ⁱⁱ	0.83	2.05	2.850 (3)	162
O4—H4 <i>WB</i> ···O1 ⁱⁱⁱ	0.86	1.94	2.764 (3)	159

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) -*x*+1, *y*+1/2, -*z*+1; (iii) -*x*+1, *y*+1/2, -*z*+2.