data reports

OPEN a ACCESS

Redetermined structure of gossypol (P3 polymorph)

Muhabbat Honkeldieva,* Rishad Kunafiev and Havrullo I. Hamidov

Institute of Biorganic Chemistry, Mirzo-Ulughbek Str. 83, Tashkent 100125, Uzbekistan. *Correspondence e-mail: muhabbat.n75@mail.ru

Received 20 April 2015; accepted 18 May 2015

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

An improved crystal structure of the title compound. $C_{30}H_{30}O_8$ (systematic name: 1,1',6,6',7,7'-hexahydroxy-5,5'diisopropyl-3,3'-dimethyl[2,2'-binaphthalene]-8,8'-dicarbaldehyde), was determined based on modern CCD data. Compared to the previous structure [Talipov et al. (1985). Khim. Prirod. Soedin. (Chem. Nat. Prod.), 6, 20-24], geometrical precision has been improved (typical C-C bond-distance s.u. = 0.002 Å in the present structure compared to 0.005 Å in the previous structure) and the locations of several H atoms have been corrected. The gossypol molecules are in the aldehyde tautomeric form and the dihedral angle between the naphthyl fragments is 80.42 (4)°. Four intramolecular O-H···O hydrogen bonds are formed. In the crystal, inversion dimers with graph-set motif $R_2^2(20)$ are formed by pairs of $O-H \cdots O$ hydrogen bonds; another pair of $O-H \cdots O$ hydrogen bonds with the same graph-set motif links the dimers into [001] chains. The packing of such chains in the crystal leads to the formation of channels (diameter = 5-8 Å) propagating in the [101] direction. The channels presumably contain highly disordered solvent molecules; their contribution to the scattering was removed with the SQUEEZE [Spek (2015). Acta Cryst. C71, 9-18] routine in PLATON and the stated molecular mass, density etc., do not take them into account.

Keywords: crystal structure; redetermination; gossypol; polymorph; hydrogen bonding.

CCDC reference: 1401388

1. Related literature

For the previous structure determination of gossypol P3 polymorph, see: Talipov et al., (1985). For details of the extraction and synthesis of gossypol and its derivatives, see: Adams et al. (1960). For its synthesis and biological activities, see: Baram & Ismailov (1993); Polsky et al. (1989); Radloff et al. (1985). For information on crystalline inclusion compounds, see: Ibragimov & Talipov (1999, 2004); Ibragimov et al. (1997); Gdaniec et al. (1996); Talipov et al. (1988). For the use of SQUEEZE, see: Spek (2015).

V = 5677.29 (16) Å³

 $0.30 \times 0.30 \times 0.30$ mm

13408 measured reflections

5810 independent reflections

4382 reflections with $I > 2\sigma(I)$

Cu $K\alpha$ radiation $\mu = 0.73 \text{ mm}^-$

Z = 8

T = 293 K

 $R_{\rm int} = 0.021$

2. Experimental

2.1. Crystal data

C30H30O8 $M_r = 518.54$ Monoclinic, C2/c a = 21.2196 (4) Å b = 19.0886 (2) Å c = 15.2564 (2) Å $\beta = 113.262 \ (2)^{\circ}$

2.2. Data collection

Oxford Diffraction Xcalibur Ruby diffractometer Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) $T_{\min} = 0.730, T_{\max} = 1.000$

2.3. Refinement

$R[F^2 > 2\sigma(F^2)] = 0.047$	H atoms treated by a mixture of
$wR(F^2) = 0.161$	independent and constrained
S = 1.11	refinement
5810 reflections	$\Delta \rho_{\rm max} = 0.44 \ {\rm e} \ {\rm \AA}^{-3}$
374 parameters	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
O1−H1···O6 ⁱ	0.90 (2)	2.16 (2)	2.9692 (17)	150 (2)
O3−H3···O2	0.90 (3)	1.59 (3)	2.454 (2)	160 (3)
O5−H5···O3 ⁱⁱ	0.83 (2)	2.30 (2)	2.9546 (17)	136 (2)
$O4-H4A\cdots O3$	0.98 (4)	1.88 (4)	2.601 (2)	128 (3)
$O4-H4A\cdots O5^{ii}$	0.98 (4)	2.46 (4)	3.278 (2)	141 (3)
$O7 - H7 \cdots O6$	0.92 (3)	1.63 (3)	2.479 (2)	152 (3)
O8−H8···O7	0.87 (4)	2.02 (4)	2.575 (2)	120 (3)
C22−H22···O1	0.93	2.12	2.721 (2)	121
$C26-H26B\cdots O8^{iii}$	0.96	2.55	3.483 (2)	165
C27−H27···O4 ^{iv}	0.93	2.31	3.138 (2)	148
C27-H27···O5	0.93	2.07	2.727 (2)	127

Symmetry codes: (i) $-x, y, -z + \frac{1}{2}$; (ii) -x, -y, -z + 1; (iii) $x, -y + 1, z + \frac{1}{2}$; (iv) $x, -v, z - \frac{1}{2}$

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2009); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2*.

Acknowledgements

We thank the Academy of Sciencesof the Republic of Uzbekistan for supporting this study (F7-T048).

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7412).

References

Adams, R., Geissman, T. A. & Edwards, J. D. (1960). Chem. Rev. 60, 555–574. Baram, N. I. & Ismailov, A. I. (1993). Khim. Prir. Soedin. p. 334.

- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Gdaniec, M., Ibragimov, B. T. & Talipov, S. A. (1996). Gossypol, edited by D. D. MacNicol, F. Toda & R. Bishop, Solid-state supramolecular chemistry: crystal engineering, Vol. 6, Comprehensive supramolecular chemistry, pp. 117–146. Oxford: Pergamon Press.

- Ibragimov, B. T. & Talipov, S. A. (2004). Gossypol, in Encyclopedia of Supramolecular Chemistry, edited by J. L. Atwood & J. W. Steed, pp. 606– 614. New York: Dekker.
- Ibragimov, B. T., Tiljakov, Z. G., Beketov, K. M. & Talipov, S. A. (1997). J. Inclusion Phenom. Mol. Recognit. Chem. 27, 99–104.
- Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
- Polsky, B., Segal, S. J., Baron, P. A., Gold, J. W. M., Ueno, H. & Armstrong, D. (1989). Contraception, 39, 579–587.
- Radloff, R. I., Deck, L. M., Royer, R. E. & Vander Jagt, D. L. (1985). *Pharmacol. Res. Commun.* 18, 1063.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2015). Acta Cryst. C71, 9-18.
- Talipov, S. A., Ibragimov, B. T., Nazarov, G. B., Aripov, T. F. & Sadikov, A. S. (1985). Khim. Prir. Soedin (Russ.) (Chem. Nat. Compd.), pp. 835–836.
- Talipov, S. A., Ibragimov, B. T., Tishchenko, G. N., Aripov, T. F., Nazarov, G. B., Strokopytov, B. V. & Polyakov, K. M. (1988). Kristallografiya, 33, 384–389.

Ibragimov, B. T. & Talipov, S. A. (1999). J. Struct. Chem. 40, 686-704.

supporting information

Acta Cryst. (2015). E71, o442-o443 [doi:10.1107/S205698901500941X]

Redetermined structure of gossypol (P3 polymorph)

Muhabbat Honkeldieva, Rishad Kunafiev and Hayrullo I. Hamidov

S1. Experimental

S1.1. Synthesis and crystallization

Preparative details of the material

S1.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1.

S2. Results and discussion

Comment

Gossypol, a phenolic pigment extracted from cotton seeds [Adams et al., 1960], demonstrates a wide range of biological activity [Baram et al., 1993; Polsky et al., 1989: Radloff et al., 1985] and versatile host properties [Ibragimov, Talipov. 1999; 2004; Gdaniec et al., 1996]. Unique ability as a host compound to form crystalline inclusion compounds with many organic solvents makes gossypol an interesting object of solid supramolecular chemistry. Gossypol has also been found to form pseudopolymorphic structures with same guest molecule, e.g., clathrates formed with dichloromethane [Ibragimov et al., 1997] and diethyl ether [Talipov et al., 1988]. Unsolvated polymorphs of the compound are also known [Gdaniec et al., 1996]. In the crystal of the title compound, gossypol (1,1',6,6',7,7'-hexahydroxy -5,5'diisopropyl - 3,3'dimethyl[2,2' binaphthalene] - 8,8'- dicarboxaldehyde), $C_{30}H_{30}O_8$, is one independent molecule in the asymmetric part of the unit cell. The crystals of the title compound were obtained after decomposition of gossypol clathrate with dichloromethane, where the single crystals are not destroyed and their cell volumes are only reduced by $\sim 4\%$. In the title compound gossypol molecules are in the aldehyde tautomeric form (Fig. 1). H-bonds O4—H···O3 (O8—H···O7) and O3—H···O2 (O7— H···O6) form five- and six-membered rings. Naphthyl fragments C(1)—C(10) (C7 0.07A) and C(11)—C(20) (C12 0.04 A) are planar and dihedral angle between their planes are equal to 80.42 (4)°. One of the most commonly found associations is a centrosymmetric dimer that is linked by two pairs O5-H···O3 and O4-H···O5 hydrogen bonds and hydrophobic stacking interactions between two of the naphthalene rings [Gdaniec et al., 1996]. In the title crystal centrosymmetric dimers are formed as above, these assemble into extended serpentine chains by other pair of hydrogen bonds O1—H…O6 directed along the c axis through a twofold rotation axis with direction [0 1 0]. The packing of such chains in the crystal leads to the formation of broadly rough channels (Fig. 2) (where diameter varied 5-7 A), parallel to the ac diagonal.

Figure 1

The molecular structure of title compound, with displacement ellipsoids shown at the 50% probability level.

Figure 2

A packing diagram for title compound.

1,1',6,6',7,7'-Hexahydroxy-5,5'-diisopropyl-3,3'-dimethyl[2,2'-binaphthalene]-8,8'-dicarbaldehyde

Crystal data	
$C_{30}H_{30}O_8$	<i>c</i> = 15.2564 (2) Å
$M_r = 518.54$	$\beta = 113.262 \ (2)^{\circ}$
Monoclinic, C2/c	V = 5677.29 (16) Å ³
a = 21.2196 (4) Å	Z = 8
b = 19.0886 (2) Å	F(000) = 2192

 $D_x = 1.213 \text{ Mg m}^{-3}$ Melting point: 455 K Cu *Ka* radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 6170 reflections $\theta = 3.9-75.6^{\circ}$

Data collection

Oxford Diffraction Xcalibur Ruby diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 10.2576 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2009) $T_{\min} = 0.730, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.161$ S = 1.115810 reflections 374 parameters 0 restraints Primary atom site location: structure-invariant direct methods Hydrogen site location: mixed $\mu = 0.73 \text{ mm}^{-1}$ T = 293 KPrism, light brown $0.30 \times 0.30 \times 0.30 \text{ mm}$

13408 measured reflections 5810 independent reflections 4382 reflections with $I > 2\sigma(I)$ $R_{int} = 0.021$ $\theta_{max} = 75.8^{\circ}, \ \theta_{min} = 3.9^{\circ}$ $h = -26 \rightarrow 25$ $k = -23 \rightarrow 20$ $l = -17 \rightarrow 19$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0994P)^2 + 0.2158P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.44$ e Å⁻³ $\Delta\rho_{min} = -0.30$ e Å⁻³ Extinction correction: *SHELXL2014* (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.00026 (5)

Special details

Experimental. Absorption correction: CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.40 (release 27-04-2009 CrysAlis171 .NET) (compiled Apr 27 2009,10:20:11) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates a	and isotropic	or equivalent	isotropic dis	splacement	parameters ($(Å^2)$
	1	1	1	1 .	<i>1</i> , ,	\ /

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.04702 (8)	0.15341 (8)	0.55658 (11)	0.0429 (3)	
C2	0.10359 (8)	0.18397 (8)	0.54801 (11)	0.0447 (3)	
C3	0.16553 (8)	0.14655 (9)	0.57686 (13)	0.0547 (4)	
C4	0.16876 (9)	0.08045 (9)	0.61308 (14)	0.0564 (4)	
H4	0.2100	0.0562	0.6322	0.068*	
C5	0.11810 (9)	-0.02370 (8)	0.65817 (12)	0.0518 (4)	
C6	0.06006 (9)	-0.05514 (8)	0.65630 (12)	0.0512 (4)	
C7	-0.00297 (9)	-0.01904 (8)	0.62878 (11)	0.0480 (4)	
C8	-0.00888 (8)	0.05136 (8)	0.60352 (11)	0.0465 (3)	
C9	0.04970 (8)	0.08525 (8)	0.59537 (11)	0.0433 (3)	
C10	0.11255 (8)	0.04756 (8)	0.62278 (12)	0.0472 (4)	

C11	0.09182 (8)	0.26474 (7)	0.41457 (11)	0.0428 (3)
C12	0.09891 (8)	0.25641 (7)	0.50805 (11)	0.0427 (3)
C13	0.10483 (9)	0.31582 (8)	0.56537 (11)	0.0477 (4)
C14	0.10549 (9)	0.38096 (8)	0.52707 (11)	0.0466 (4)
H14	0.1090	0.4202	0.5649	0.056*
C15	0.10583 (9)	0.46057(7)	0.39810 (11)	0.0479 (4)
C16	0.10033(11)	0 46668 (8)	0 30665 (13)	0.0605 (5)
C17	0.08923 (10)	0.40867 (9)	0.24522(12)	0.0559 (4)
C18	0.08645(8)	0.34087(7)	0.27596(11)	0.0539(1) 0.0434(3)
C10	0.00049(0)	0.34007(7) 0.33132(7)	0.27390(11) 0.37324(10)	0.0494(3)
C20	0.09239(7) 0.10103(7)	0.33132(7) 0.30000(7)	0.37324(10) 0.43325(10)	0.0373(3)
C20	0.10103(7) 0.22811(10)	0.39099(7) 0.17856(12)	0.45525(10)	0.0407(3)
U21	0.22811 (10)	0.17850 (12)	0.5084 (2)	0.0817(7)
П21А 1121D	0.2170	0.1903	0.5050	0.123*
H21B	0.2052	0.1455	0.5899	0.123*
H2IC	0.2413	0.2201	0.6070	0.123*
022	-0.0/150 (10)	0.08521 (11)	0.59498 (18)	0.0725 (6)
H22	-0.0/4/	0.1336	0.5872	0.08/*
C23	0.18663 (11)	-0.06196 (10)	0.69912 (17)	0.0703 (6)
H23	0.2214	-0.0300	0.6947	0.084*
C24	0.18936 (15)	-0.12839 (16)	0.6460 (2)	0.1056 (9)
H24A	0.1578	-0.1621	0.6520	0.158*
H24B	0.2350	-0.1473	0.6725	0.158*
H24C	0.1771	-0.1178	0.5798	0.158*
C25	0.20640 (17)	-0.0777 (2)	0.8058 (2)	0.1318 (14)
H25A	0.2067	-0.0348	0.8390	0.198*
H25B	0.2512	-0.0986	0.8320	0.198*
H25C	0.1736	-0.1094	0.8128	0.198*
C26	0.11096 (13)	0.30777 (10)	0.66665 (13)	0.0706 (6)
H26A	0.0693	0.2881	0.6666	0.106*
H26B	0.1188	0.3528	0.6971	0.106*
H26C	0.1487	0.2772	0.7007	0.106*
C27	0.07713 (11)	0.28657 (9)	0.20641 (13)	0.0591 (4)
H27	0.0776	0.2404	0.2260	0.071*
C28	0.11809 (12)	0.52550 (8)	0.46049(13)	0.0629(5)
H28	0.1217	0.5097	0.5234	0.075*
C29	0.05884(17)	0 57648 (13)	0.4239(2)	0 1027 (9)
H29A	0.0533	0 5928	0.3618	0.154*
H29R	0.0680	0.6156	0.4668	0.154*
H29C	0.0000	0.5534	0.4199	0.154*
C30	0.18621 (17)	0.5554	0.4199 0.4751(2)	0.134 0.1138 (11)
U20A	0.10021 (17)	0.5263	0.4731(2) 0.4878	0.171*
1130A 1120D	0.2213	0.5203	0.4878	0.171^{*}
11300	0.1987	0.5929	0.3281	0.171*
П30С	0.1815	0.3807	0.4183	$0.1/1^{\circ}$
	-0.01393(0)	0.10020(0)	0.32701(9)	0.034/(3)
02	-0.12101(8)	0.05299 (9)	0.59/43(15)	0.0931(6)
03	-0.05495 (/)	-0.05604 (7)	0.03411 (10)	0.0615(3)
04	0.06055 (9)	-0.12336 (6)	0.68412 (11)	0.0692 (4)
05	0.08350 (7)	0.20689 (6)	0.35806 (9)	0.0590(3)

O6	0.06858 (8)	0.29704 (7)	0.12265 (9)	0.0644 (4)	
O7	0.08315 (11)	0.42438 (8)	0.15667 (10)	0.0847 (5)	
08	0.10566 (13)	0.53046 (7)	0.26920 (13)	0.1047 (8)	
H1	-0.0135 (11)	0.2226 (13)	0.4879 (17)	0.077 (7)*	
H3	-0.0864 (15)	-0.0220 (15)	0.6236 (19)	0.095 (9)*	
H5	0.0875 (12)	0.1717 (13)	0.3922 (16)	0.075 (7)*	
H7	0.0769 (15)	0.3820 (18)	0.126 (2)	0.111 (10)*	
H4A	0.0132 (19)	-0.1253 (18)	0.680 (3)	0.147 (13)*	
H8	0.094 (2)	0.523 (2)	0.209 (3)	0.150 (14)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	<i>U</i> ³³	U^{12}	U^{13}	U ²³
C1	0.0461 (8)	0.0365 (7)	0.0473 (7)	0.0015 (6)	0.0197 (6)	0.0053 (6)
C2	0.0508 (8)	0.0338 (7)	0.0500 (8)	-0.0038 (6)	0.0206 (7)	0.0057 (6)
C3	0.0477 (9)	0.0472 (8)	0.0699 (10)	-0.0027 (7)	0.0240 (8)	0.0120 (8)
C4	0.0468 (9)	0.0466 (9)	0.0758 (11)	0.0064 (7)	0.0242 (8)	0.0159 (8)
C5	0.0574 (9)	0.0379 (8)	0.0594 (9)	0.0047 (7)	0.0224 (8)	0.0097 (7)
C6	0.0695 (10)	0.0341 (7)	0.0532 (9)	-0.0007 (7)	0.0275 (8)	0.0091 (6)
C7	0.0574 (9)	0.0423 (8)	0.0479 (8)	-0.0098 (7)	0.0246 (7)	0.0035 (6)
C8	0.0485 (8)	0.0411 (7)	0.0512 (8)	-0.0023 (6)	0.0213 (7)	0.0078 (6)
C9	0.0474 (8)	0.0357 (7)	0.0476 (7)	-0.0029 (6)	0.0198 (6)	0.0047 (6)
C10	0.0502 (8)	0.0361 (7)	0.0543 (8)	0.0005 (6)	0.0197 (7)	0.0085 (6)
C11	0.0479 (8)	0.0323 (7)	0.0509 (8)	-0.0046 (6)	0.0224 (6)	-0.0012 (6)
C12	0.0448 (8)	0.0337 (7)	0.0506 (8)	-0.0049 (6)	0.0199 (6)	0.0045 (6)
C13	0.0583 (9)	0.0410 (8)	0.0445 (8)	-0.0044 (7)	0.0209 (7)	0.0028 (6)
C14	0.0616 (9)	0.0335 (7)	0.0466 (8)	-0.0037 (6)	0.0233 (7)	-0.0017 (6)
C15	0.0642 (10)	0.0327 (7)	0.0498 (8)	-0.0031 (6)	0.0256 (7)	0.0002 (6)
C16	0.0982 (14)	0.0334 (7)	0.0564 (9)	-0.0045 (8)	0.0377 (10)	0.0046 (7)
C17	0.0837 (12)	0.0442 (8)	0.0472 (8)	-0.0039 (8)	0.0336 (8)	0.0027 (7)
C18	0.0487 (8)	0.0366 (7)	0.0474 (8)	-0.0038 (6)	0.0217 (6)	-0.0010 (6)
C19	0.0396 (7)	0.0347 (7)	0.0449 (7)	-0.0022 (5)	0.0179 (6)	0.0016 (6)
C20	0.0445 (7)	0.0328 (6)	0.0453 (7)	-0.0029 (5)	0.0184 (6)	0.0018 (6)
C21	0.0505 (10)	0.0701 (13)	0.1269 (19)	-0.0021 (9)	0.0375 (11)	0.0316 (13)
C22	0.0609 (11)	0.0571 (10)	0.1109 (17)	0.0042 (9)	0.0459 (11)	0.0266 (11)
C23	0.0620 (11)	0.0503 (10)	0.0965 (15)	0.0120 (8)	0.0291 (10)	0.0236 (10)
C24	0.0982 (19)	0.0973 (19)	0.123 (2)	0.0388 (16)	0.0454 (17)	0.0012 (17)
C25	0.097 (2)	0.178 (3)	0.0897 (19)	0.064 (2)	0.0040 (15)	0.005 (2)
C26	0.1167 (17)	0.0480 (9)	0.0512 (9)	-0.0095 (10)	0.0375 (10)	0.0026 (8)
C27	0.0861 (13)	0.0436 (8)	0.0529 (9)	-0.0074 (8)	0.0332 (9)	-0.0031 (7)
C28	0.1036 (15)	0.0339 (7)	0.0555 (9)	-0.0079 (8)	0.0361 (10)	-0.0011 (7)
C29	0.146 (3)	0.0668 (14)	0.0910 (17)	0.0310 (15)	0.0415 (17)	-0.0126 (12)
C30	0.132 (3)	0.0823 (17)	0.120 (2)	-0.0452 (17)	0.0423 (19)	-0.0307 (16)
01	0.0512 (6)	0.0445 (6)	0.0724 (8)	0.0076 (5)	0.0288 (6)	0.0194 (5)
O2	0.0632 (9)	0.0838 (11)	0.1484 (16)	0.0039 (7)	0.0589 (10)	0.0385 (10)
O3	0.0680 (8)	0.0479 (7)	0.0764 (8)	-0.0133 (6)	0.0369 (7)	0.0076 (6)
O4	0.0928 (10)	0.0367 (6)	0.0868 (10)	0.0017 (6)	0.0449 (8)	0.0167 (6)
O5	0.0923 (9)	0.0322 (5)	0.0590 (7)	-0.0084 (6)	0.0367 (6)	-0.0027 (5)

supporting information

06	0.0897 (9)	0.0578 (7)	0.0516 (7)	-0.0050 (6)	0.0343 (6)	-0.0086 (5)
07	0.1637 (17)	0.0497 (7)	0.0551 (8)	-0.0093 (9)	0.0587 (9)	0.0028 (6)
08	0.222 (2)	0.0387 (7)	0.0723 (10)	-0.0190 (10)	0.0786 (13)	0.0043 (6)

Geometric parameters (Å, °)

C1—C2	1.387 (2)	C19—C20	1.428 (2)	
С1—С9	1.421 (2)	C21—H21A	0.9600	
C101	1.3633 (18)	C21—H21B	0.9600	
C2—C3	1.405 (2)	C21—H21C	0.9600	
C2-C12	1.4985 (19)	C22—H22	0.9300	
C3—C4	1.368 (2)	C22—O2	1.242 (2)	
C3—C21	1.513 (2)	С23—Н23	0.9800	
C4—H4	0.9300	C23—C24	1.519 (4)	
C4—C10	1.406 (2)	C23—C25	1.541 (4)	
C5—C6	1.360 (2)	C24—H24A	0.9600	
C5-C10	1.451 (2)	C24—H24B	0.9600	
C5—C23	1.523 (2)	C24—H24C	0.9600	
C6—C7	1.413 (2)	C25—H25A	0.9600	
C6—O4	1.3685 (18)	C25—H25B	0.9600	
С7—С8	1.390 (2)	C25—H25C	0.9600	
С7—ОЗ	1.3392 (19)	C26—H26A	0.9600	
C8—C9	1.450 (2)	C26—H26B	0.9600	
C8—C22	1.436 (2)	C26—H26C	0.9600	
C9—C10	1.425 (2)	C27—H27	0.9300	
C11—C12	1.383 (2)	C27—O6	1.234 (2)	
C11—C19	1.4218 (19)	C28—H28	0.9800	
C11—O5	1.3688 (18)	C28—C29	1.512 (3)	
C12—C13	1.407 (2)	C28—C30	1.533 (4)	
C13—C14	1.376 (2)	C29—H29A	0.9600	
C13—C26	1.507 (2)	C29—H29B	0.9600	
C14—H14	0.9300	С29—Н29С	0.9600	
C14—C20	1.410 (2)	С30—Н30А	0.9600	
C15—C16	1.358 (2)	C30—H30B	0.9600	
C15—C20	1.4509 (19)	С30—Н30С	0.9600	
C15—C28	1.521 (2)	O1—H1	0.90 (2)	
C16—C17	1.409 (2)	O3—H3	0.90 (3)	
C16—O8	1.368 (2)	O4—H4A	0.98 (4)	
C17—C18	1.386 (2)	O5—H5	0.83 (2)	
С17—О7	1.339 (2)	O7—H7	0.92 (3)	
C18—C19	1.449 (2)	O8—H8	0.87 (4)	
C18—C27	1.440 (2)			
C2—C1—C9	122.05 (14)	C3—C21—H21A	109.5	
O1—C1—C2	120.70 (13)	C3—C21—H21B	109.5	
01—C1—C9	117.25 (13)	C3—C21—H21C	109.5	
C1—C2—C3	119.61 (14)	H21A—C21—H21B	109.5	
C1—C2—C12	120.39 (14)	H21A—C21—H21C	109.5	

C3—C2—C12	120.00 (13)	H21B—C21—H21C	109.5
C2—C3—C21	120.78 (15)	C8—C22—H22	118.4
C4—C3—C2	119.13 (15)	O2—C22—C8	123.15 (18)
C4—C3—C21	120.08 (16)	O2—C22—H22	118.4
C3—C4—H4	118.5	С5—С23—Н23	107.2
C3—C4—C10	123.02 (15)	C5—C23—C25	110.12 (19)
C10—C4—H4	118.5	C24—C23—C5	114.39 (19)
C6—C5—C10	117.78 (15)	C24—C23—H23	107.2
C6—C5—C23	120.46 (15)	C24—C23—C25	110.5 (2)
C10—C5—C23	121.73 (16)	С25—С23—Н23	107.2
C5—C6—C7	122.28 (14)	C23—C24—H24A	109.5
C5—C6—O4	121.16 (16)	C23—C24—H24B	109.5
O4—C6—C7	116.53 (15)	C23—C24—H24C	109.5
C8—C7—C6	121.68 (14)	H24A—C24—H24B	109.5
O3—C7—C6	115.50 (14)	H24A—C24—H24C	109.5
O3—C7—C8	122.71 (16)	H24B—C24—H24C	109.5
C7—C8—C9	117.94 (14)	С23—С25—Н25А	109.5
C7—C8—C22	116.05 (14)	С23—С25—Н25В	109.5
C22—C8—C9	125.83 (14)	С23—С25—Н25С	109.5
C1—C9—C8	123.34 (14)	H25A—C25—H25B	109.5
C1—C9—C10	117.61 (13)	H25A—C25—H25C	109.5
С10—С9—С8	118.97 (13)	H25B—C25—H25C	109.5
C4—C10—C5	120.68 (15)	С13—С26—Н26А	109.5
C4—C10—C9	118.55 (13)	С13—С26—Н26В	109.5
C9—C10—C5	120.76 (14)	С13—С26—Н26С	109.5
C12—C11—C19	122.99 (13)	H26A—C26—H26B	109.5
O5—C11—C12	119.42 (13)	H26A—C26—H26C	109.5
O5—C11—C19	117.59 (13)	H26B—C26—H26C	109.5
C11—C12—C2	119.23 (13)	C18—C27—H27	117.7
C11—C12—C13	119.66 (13)	O6—C27—C18	124.58 (16)
C13—C12—C2	121.04 (14)	O6—C27—H27	117.7
C12—C13—C26	120.37 (14)	C15—C28—H28	106.9
C14—C13—C12	118.54 (14)	C15—C28—C30	111.80 (19)
C14—C13—C26	121.09 (15)	C29—C28—C15	112.44 (18)
C13—C14—H14	118.5	С29—С28—Н28	106.9
C13—C14—C20	123.09 (14)	C29—C28—C30	111.5 (2)
C20—C14—H14	118.5	С30—С28—Н28	106.9
C16—C15—C20	117.91 (14)	С28—С29—Н29А	109.5
C16—C15—C28	119.79 (14)	C28—C29—H29B	109.5
C20—C15—C28	122.29 (14)	С28—С29—Н29С	109.5
C15—C16—C17	122.66 (14)	H29A—C29—H29B	109.5
C15—C16—O8	121.16 (15)	H29A—C29—H29C	109.5
O8—C16—C17	116.18 (15)	H29B—C29—H29C	109.5
C18—C17—C16	121.81 (14)	С28—С30—Н30А	109.5
O7—C17—C16	114.77 (15)	C28—C30—H30B	109.5
O7—C17—C18	123.41 (15)	C28—C30—H30C	109.5
C17—C18—C19	117.74 (13)	H30A—C30—H30B	109.5
C17—C18—C27	115.76 (14)	H30A—C30—H30C	109.5

supporting information

C27—C18—C19	126.49 (14) 123.67 (13)	H30B—C30—H30C	109.5
C11—C19—C18 C11—C19—C20	116.70 (13)	С7—О3—Н3	100.3 (13)
C20—C19—C18	119.62 (12)	C6—O4—H4A	98 (2)
C14—C20—C15	120.88 (13)	C11—O5—H5	107.5 (16)
C14—C20—C19	118.94 (12)	С17—О7—Н7	104.4 (19)
C19—C20—C15	120.17 (13)	С16—О8—Н8	105 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
01—H1…O6 ⁱ	0.90 (2)	2.16 (2)	2.9692 (17)	150 (2)
O3—H3…O2	0.90 (3)	1.59 (3)	2.454 (2)	160 (3)
O5—H5…O3 ⁱⁱ	0.83 (2)	2.30 (2)	2.9546 (17)	136 (2)
O4—H4 <i>A</i> …O3	0.98 (4)	1.88 (4)	2.601 (2)	128 (3)
O4—H4A···O5 ⁱⁱ	0.98 (4)	2.46 (4)	3.278 (2)	141 (3)
O7—H7…O6	0.92 (3)	1.63 (3)	2.479 (2)	152 (3)
O8—H8…O7	0.87 (4)	2.02 (4)	2.575 (2)	120 (3)
C22—H22…O1	0.93	2.12	2.721 (2)	121
C26—H26 <i>B</i> ···O8 ⁱⁱⁱ	0.96	2.55	3.483 (2)	165
C27—H27····O4 ^{iv}	0.93	2.31	3.138 (2)	148
С27—Н27…О5	0.93	2.07	2.727 (2)	127

Symmetry codes: (i) -*x*, *y*, -*z*+1/2; (ii) -*x*, -*y*, -*z*+1; (iii) *x*, -*y*+1, *z*+1/2; (iv) *x*, -*y*, *z*-1/2.