data reports

OPEN a ACCESS

Cystal structure of N-[2-(benzo[d][1,3]dioxol-5-yl)ethyl]-4-methylbenzenesulfonamide

Ke-Bin Huang^a and Gui-lie Zhang^b*

^aSchool of Chemistry and Chemical Engineering, Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education), Guangxi Normal University, Guilin 541004, People's Republic of China, and ^bCollege of Pharmacy, Guilin Medical College, Guilin 541004, People's Republic of China. *Correspondence e-mail: zhangguijie001@126.com

Received 25 May 2015; accepted 1 June 2015

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

In the title compound, $C_{16}H_{17}NO_4S$, the heterocyclic ring is almost planar (r.m.s. deviation = 0.007Å) and the dihedral angle between the benzene rings is $28.18 (10)^{\circ}$. The N-C-C-C torsion angle for the central chain is $62.4 (3)^{\circ}$: overall, the molecule has a Z-shape. In the crystal, inversion dimers linked by pairs of N-H···O hydrogen bonds generate $R_2^2(8)$ loops.

Keywords: crystal structure; methylbenzenesulfonamide derivatives; hydrogen bonding.

CCDC reference: 1401539

1. Related literature

For background to methylbenzenesulfonamide derivatives, see: Barn et al. (2001); Ghorai et al. (2010).

^{2.} Experimental

2.1. Crystal data C₁₆H₁₇NO₄S

 $M_r = 319.37$

Monoclinic, $P2_1/n$
a = 12.3265 (2) Å
b = 9.96026 (16) Å
c = 12.7021 (3) Å
$\beta = 100.5980 \ (18)^{\circ}$
V = 1532.90 (5) Å ³

2.2. Data collection

Agilent SuperNova (single source at	12219 measured reflections
offset), Eos diffractometer	3136 independent reflections
Absorption correction: multi-scan	2587 reflections with $I > 2\sigma(I)$
(CrysAlis PRO; Agilent, 2011)	$R_{\rm int} = 0.029$
$T_{\min} = 0.868, \ T_{\max} = 1.000$	

2.3. Refinement

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$

Z = 4

Mo $K\alpha$ radiation

 $0.40 \times 0.20 \times 0.12 \text{ mm}$

 $\mu = 0.23 \text{ mm}^{-1}$

T = 293 K

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1 - H1 \cdots O4^i$	0.84 (2)	2.19 (2)	3.026 (2)	172 (2)
Symmetry code: (i) -	-x, -v, -z + 1.			

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX (Dolomanov et al., 2009); software used to prepare material for publication: OLEX.

Acknowledgements

The authors thank the National Natural Science Foundation of China (21401031), the Natural Science Foundation of Guangxi Province (2014GXNSFBA118035) as well as the Key Laboratory Open Fund of the Ministry of Education for financial support (CMEMR2013-A14).

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7436).

References

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.

Barn, D. R., Caulfield, W. L., Cottney, J., McGurk, K., Morphy, J. R., Rankovic, Z. & Roberts, B. (2001). Bioorg. Med. Chem. 9, 2609-2624.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.

Ghorai, M. K., Kumar, A. & Tiwari, D. P. (2010). J. Org. Chem. 75, 137-151. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2015). E71, o452 [doi:10.1107/S2056989015010555]

Cystal structure of *N*-[2-(benzo[*d*][1,3]dioxol-5-yl)ethyl]-4-methylbenzenesulfonamide

Ke-Bin Huang and Gui-Jie Zhang

S1. Experimental

A solution of sulfonylchloride (10 mmol) in dichloromethane (15 mL) was slowly added to a cooled solution of methylenedioxyphenethylamine (15 mmol) in dichloromethane (10 ml) and triethylamine (15 mmol). Yellow blocks of the title compound were obtained by slow evaporation of a solution in methanol.

S2. Refinement

Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F², conventional *R*-factors *R* are based on F, with F set to zero for negative F². The threshold expression of $F^2 > 2\text{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Figure 1

The molecular structure of title compound, with atom labelling. Displacement ellipsoids are drawn at 30% probability level.

N-[2-(Benzo[d][1,3]dioxol-5-yl)ethyl]-4-methylbenzenesulfonamide

Crystal data	
$C_{16}H_{17}NO_4S$ M = 210, 27	$V = 1532.90 (5) Å^{3}$
$M_r = 519.57$ Monoclinic, $P2_1/n$	E = 4 F(000) = 672
a = 12.3265 (2) Å	$D_{\rm x} = 1.384 {\rm Mg} {\rm m}^{-3}$
b = 9.96026 (16) A c = 12.7021 (3) Å	Mo K α radiation, $\lambda = 0.7107$ A Cell parameters from 5283 reflections
$\beta = 100.5980 \ (18)^{\circ}$	$\theta = 2.9 - 28.7^{\circ}$

 $\mu = 0.23 \text{ mm}^{-1}$ T = 293 K

Data collection

Dura concerion	
Agilent SuperNova (single source at offset), Eos diffractometer	$T_{\min} = 0.868, T_{\max} = 1.000$ 12219 measured reflections
Radiation source: SuperNova (Mo) X-ray Source	3136 independent reflections 2587 reflections with $I > 2\sigma(I)$
Mirror monochromator	$R_{\rm int} = 0.029$
Detector resolution: 16.1623 pixels mm ⁻¹	$\theta_{\text{max}} = 26.4^\circ, \ \theta_{\text{min}} = 2.9^\circ$
ω scans	$h = -15 \rightarrow 15$
Absorption correction: multi-scan	$k = -12 \rightarrow 12$
(CrysAlis PRO; Agilent, 2011)	$l = -15 \rightarrow 15$
Refinement	
Refinement on F^2 Least-squares matrix: full	Secondary atom site location: difference Fourier
$R[F^2 > 2\sigma(F^2)] = 0.043$	Hydrogen site location: inferred from
$wR(F^2) = 0.115$	neighbouring sites
S = 1.05	H atoms treated by a mixture of independent
3136 reflections	and constrained refinement
204 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0499P)^2 + 0.4898P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{ m max}$ < 0.001
direct methods	$\Delta \rho_{\rm max} = 0.19 \text{ e } \text{\AA}^{-3}$
	$\Delta ho_{ m min} = -0.39 \ m e \ m \AA^{-3}$

Block, yellow

 $0.40 \times 0.20 \times 0.12 \text{ mm}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	V	Ζ	$U_{\rm iso}^*/U_{\rm eq}$	
S1	0.01040 (4)	0.17100 (5)	0.62290 (4)	0.04836 (17)	
01	0.10241 (14)	-0.39697 (19)	0.99233 (14)	0.0834 (5)	
02	0.07337 (17)	-0.43875 (18)	0.81134 (15)	0.0899 (6)	
03	0.04945 (13)	0.23231 (16)	0.72422 (12)	0.0689 (4)	
04	0.08943 (10)	0.12122 (14)	0.56207 (12)	0.0602 (4)	
N1	-0.06387 (14)	0.04327 (17)	0.64128 (15)	0.0521 (4)	
H1	-0.0777 (17)	-0.003 (2)	0.5849 (18)	0.058 (7)*	
C1	0.1333 (2)	-0.4786 (3)	0.9109 (2)	0.0844 (8)	
H1A	0.2117	-0.4692	0.9115	0.101*	
H1B	0.1181	-0.5721	0.9239	0.101*	
C2	0.02598 (17)	-0.3080(2)	0.93953 (17)	0.0564 (5)	
C3	-0.0287 (2)	-0.2082 (3)	0.98013 (18)	0.0725 (7)	

H3	-0.0176	-0.1910	1.0533	0.087*
C4	-0.10220 (19)	-0.1330 (2)	0.90745 (18)	0.0657 (6)
H4	-0.1404	-0.0633	0.9331	0.079*
C5	-0.12075 (16)	-0.1574 (2)	0.79891 (16)	0.0515 (5)
C6	-0.06264 (17)	-0.2603 (2)	0.76031 (16)	0.0556 (5)
H6	-0.0725	-0.2786	0.6874	0.067*
C7	0.00883 (17)	-0.3334 (2)	0.83196 (17)	0.0538 (5)
C8	-0.20189 (18)	-0.0740(2)	0.7228 (2)	0.0676 (6)
H8A	-0.2671	-0.0597	0.7541	0.081*
H8B	-0.2244	-0.1242	0.6569	0.081*
C9	-0.15798 (18)	0.0611 (2)	0.6958 (2)	0.0654 (6)
H9A	-0.2159	0.1108	0.6499	0.078*
H9B	-0.1351	0.1124	0.7610	0.078*
C10	-0.07539 (13)	0.28694 (17)	0.54277 (14)	0.0397 (4)
C11	-0.08585 (15)	0.41631 (18)	0.57810 (15)	0.0462 (4)
H11	-0.0486	0.4434	0.6451	0.055*
C12	-0.15261 (15)	0.50503 (18)	0.51218 (16)	0.0491 (4)
H12	-0.1592	0.5927	0.5354	0.059*
C13	-0.20962 (14)	0.46749 (17)	0.41312 (15)	0.0437 (4)
C14	-0.28241 (19)	0.5655 (2)	0.34252 (19)	0.0665 (6)
H14A	-0.2651	0.5636	0.2719	0.100*
H14B	-0.2702	0.6543	0.3717	0.100*
H14C	-0.3583	0.5411	0.3389	0.100*
C15	-0.19811 (16)	0.33719 (18)	0.37970 (15)	0.0505 (5)
H15	-0.2365	0.3099	0.3132	0.061*
C16	-0.13115 (16)	0.24717 (18)	0.44277 (15)	0.0490 (5)
H16	-0.1233	0.1602	0.4186	0.059*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0424 (3)	0.0496 (3)	0.0495 (3)	0.00838 (19)	-0.0009 (2)	0.0022 (2)
O1	0.0771 (11)	0.0969 (13)	0.0694 (11)	0.0077 (10)	-0.0045 (9)	0.0205 (10)
O2	0.1130 (14)	0.0765 (11)	0.0788 (12)	0.0330 (10)	0.0134 (11)	-0.0013 (10)
O3	0.0695 (9)	0.0724 (10)	0.0540 (9)	0.0114 (8)	-0.0171 (7)	-0.0045 (8)
O4	0.0426 (7)	0.0613 (8)	0.0773 (10)	0.0105 (6)	0.0124 (7)	0.0019 (7)
N1	0.0576 (10)	0.0477 (9)	0.0524 (10)	0.0109 (7)	0.0135 (8)	0.0075 (8)
C1	0.0721 (16)	0.0828 (18)	0.100(2)	0.0123 (14)	0.0206 (15)	0.0238 (16)
C2	0.0544 (11)	0.0642 (13)	0.0483 (11)	-0.0089 (10)	0.0031 (9)	0.0088 (10)
C3	0.0907 (18)	0.0882 (17)	0.0389 (11)	-0.0001 (14)	0.0124 (11)	-0.0021 (12)
C4	0.0749 (14)	0.0733 (14)	0.0537 (13)	0.0090 (12)	0.0244 (11)	0.0001 (11)
C5	0.0477 (10)	0.0564 (11)	0.0514 (11)	-0.0090 (8)	0.0115 (9)	0.0062 (9)
C6	0.0674 (13)	0.0554 (12)	0.0416 (11)	-0.0091 (10)	0.0037 (9)	-0.0052 (9)
C7	0.0590 (12)	0.0484 (11)	0.0537 (12)	-0.0069 (9)	0.0100 (9)	-0.0037 (9)
C8	0.0518 (12)	0.0843 (16)	0.0671 (14)	0.0040 (11)	0.0118 (10)	0.0182 (12)
C9	0.0657 (13)	0.0674 (14)	0.0676 (14)	0.0216 (11)	0.0244 (11)	0.0168 (11)
C10	0.0367 (8)	0.0398 (9)	0.0414 (9)	0.0008 (7)	0.0039 (7)	0.0008 (7)
C11	0.0465 (10)	0.0457 (10)	0.0441 (10)	-0.0004 (8)	0.0020 (8)	-0.0077 (8)

supporting information

C12	0.0532 (10)	0.0364 (9)	0.0562 (12)	0.0027 (8)	0.0059 (9)	-0.0071 (8)
C13	0.0414 (9)	0.0421 (9)	0.0475 (10)	0.0016 (7)	0.0079 (8)	0.0052 (8)
C14	0.0713 (14)	0.0559 (12)	0.0669 (14)	0.0134 (10)	-0.0019 (11)	0.0107 (11)
C15	0.0574 (11)	0.0472 (10)	0.0417 (10)	0.0022 (8)	-0.0043 (8)	-0.0042 (8)
C16	0.0574 (11)	0.0382 (9)	0.0476 (11)	0.0040 (8)	-0.0005 (9)	-0.0057 (8)

Geometric parameters (Å, °)

S1—O3	1.4259 (15)	C6—C7	1.356 (3)
S1—O4	1.4383 (14)	C8—H8A	0.9700
S1—N1	1.6092 (18)	C8—H8B	0.9700
S1-C10	1.7584 (17)	C8—C9	1.513 (3)
01—C1	1.421 (3)	С9—Н9А	0.9700
O1—C2	1.375 (3)	С9—Н9В	0.9700
O2—C1	1.400 (3)	C10—C11	1.378 (2)
O2—C7	1.371 (3)	C10—C16	1.386 (2)
N1—H1	0.84 (2)	C11—H11	0.9300
N1—C9	1.467 (3)	C11—C12	1.380 (3)
C1—H1A	0.9700	C12—H12	0.9300
C1—H1B	0.9700	C12—C13	1.375 (3)
C2—C3	1.355 (3)	C13—C14	1.505 (3)
C2—C7	1.367 (3)	C13—C15	1.381 (3)
С3—Н3	0.9300	C14—H14A	0.9600
C3—C4	1.388 (3)	C14—H14B	0.9600
C4—H4	0.9300	C14—H14C	0.9600
C4—C5	1.377 (3)	C15—H15	0.9300
C5—C6	1.390 (3)	C15—C16	1.372 (3)
C5—C8	1.507 (3)	C16—H16	0.9300
С6—Н6	0.9300		
O3—S1—O4	118.88 (9)	C5—C8—H8B	108.7
O3—S1—N1	108.32 (10)	C5—C8—C9	114.39 (18)
O3—S1—C10	107.96 (9)	H8A—C8—H8B	107.6
O4—S1—N1	105.37 (9)	C9—C8—H8A	108.7
O4—S1—C10	108.07 (9)	C9—C8—H8B	108.7
N1—S1—C10	107.79 (8)	N1—C9—C8	110.25 (17)
C2	105.37 (18)	N1—C9—H9A	109.6
C7—O2—C1	105.8 (2)	N1—C9—H9B	109.6
S1—N1—H1	109.7 (15)	С8—С9—Н9А	109.6
C9—N1—S1	119.55 (15)	C8—C9—H9B	109.6
C9—N1—H1	114.4 (15)	H9A—C9—H9B	108.1
O1—C1—H1A	109.8	C11—C10—S1	120.52 (13)
01—C1—H1B	109.8	C11—C10—C16	120.34 (16)
02—C1—O1	109.2 (2)	C16—C10—S1	119.13 (13)
O2—C1—H1A	109.8	C10-C11-H11	120.6
O2—C1—H1B	109.8	C10-C11-C12	118.82 (17)
H1A—C1—H1B	108.3	C12—C11—H11	120.6
C3—C2—O1	129.2 (2)	C11—C12—H12	119.1

C3—C2—C7	121.3 (2)	C13—C12—C11	121.88 (17)
C7—C2—O1	109.5 (2)	C13—C12—H12	119.1
С2—С3—Н3	121.5	C12—C13—C14	121.13 (17)
C2—C3—C4	116.9 (2)	C12—C13—C15	118.21 (16)
С4—С3—Н3	121.5	C15—C13—C14	120.67 (18)
C3—C4—H4	118.7	C13—C14—H14A	109.5
C5—C4—C3	122.5 (2)	C13—C14—H14B	109.5
С5—С4—Н4	118.7	C13—C14—H14C	109.5
C4—C5—C6	118.8 (2)	H14A—C14—H14B	109.5
C4—C5—C8	120.9 (2)	H14A—C14—H14C	109.5
C6—C5—C8	120.3 (2)	H14B—C14—H14C	109.5
С5—С6—Н6	120.9	C13—C15—H15	119.4
C7—C6—C5	118.18 (19)	C16—C15—C13	121.29 (17)
С7—С6—Н6	120.9	C16—C15—H15	119.4
C2—C7—O2	110.14 (19)	C10—C16—H16	120.3
C6—C7—O2	127.6 (2)	C15—C16—C10	119.46 (16)
C6—C7—C2	122.2 (2)	C15—C16—H16	120.3
С5—С8—Н8А	108.7		
S1—N1—C9—C8	-169.30 (16)	C3—C2—C7—C6	0.5 (3)
S1—C10—C11—C12	178.98 (14)	C3—C4—C5—C6	-0.9 (3)
S1—C10—C16—C15	-179.88 (15)	C3—C4—C5—C8	179.5 (2)
O1—C2—C3—C4	-179.9 (2)	C4—C5—C6—C7	0.9 (3)
O1—C2—C7—O2	-0.2 (2)	C4—C5—C8—C9	79.5 (3)
O1—C2—C7—C6	-179.87 (19)	C5—C6—C7—O2	179.6 (2)
O3—S1—N1—C9	55.48 (18)	C5—C6—C7—C2	-0.8 (3)
O3—S1—C10—C11	6.21 (18)	C5—C8—C9—N1	62.4 (3)
O3—S1—C10—C16	-174.78 (15)	C6—C5—C8—C9	-100.1 (2)
O4—S1—N1—C9	-176.30 (16)	C7—O2—C1—O1	1.0 (3)
O4—S1—C10—C11	-123.57 (16)	C7—C2—C3—C4	-0.4 (3)
O4—S1—C10—C16	55.44 (17)	C8—C5—C6—C7	-179.48 (18)
N1-S1-C10-C11	123.02 (16)	C10—S1—N1—C9	-61.09 (18)
N1—S1—C10—C16	-57.97 (17)	C10-C11-C12-C13	0.7 (3)
C1C3C3	-179.6 (2)	C11—C10—C16—C15	-0.9 (3)
C1C7	0.8 (2)	C11—C12—C13—C14	179.75 (19)
C1—O2—C7—C2	-0.5 (3)	C11—C12—C13—C15	-0.5 (3)
C1—O2—C7—C6	179.1 (2)	C12-C13-C15-C16	-0.5 (3)
C2-01-C1-02	-1.1 (3)	C13—C15—C16—C10	1.1 (3)
C2—C3—C4—C5	0.6 (4)	C14—C13—C15—C16	179.33 (19)
C3—C2—C7—O2	-179.8 (2)	C16—C10—C11—C12	0.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1···O4 ⁱ	0.84 (2)	2.19 (2)	3.026 (2)	172 (2)

Symmetry code: (i) -x, -y, -z+1.