

open 👌 access

Crystal structure of 4-methylbenzyl N'-[(thiophen-2-yl)methylidene]hydrazinecarbodithioate

Syahirah binti Ramli,^a* Thahira Begum S. A. Ravoof,^a* Mohamed Ibrahim Mohamed Tahir^a and Edward R. T. Tiekink^b

^aDepartment of Chemistry, Universiti Putra Malaysia, 43400 Serdang, Malaysia, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia. *Correspondence e-mail: thahira@upm.edu.my

Received 3 June 2015; accepted 8 June 2015

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

In the title compound, $C_{15}H_{16}N_2S_3$ [systematic name: [({[(4-methylphenyl)methyl]sulfanyl]methanethioyl)amino][1-(thiophen-2-yl)ethylidene]amine], the central CN_2S_2 residue is almost planar (r.m.s. deviation = 0.0061 Å) and forms dihedral angles of 7.39 (10) and 64.91 (5)° with the thienyl and *p*-tolyl rings, respectively; the dihedral angle between these rings is 57.52 (6)°. The non-thione S atoms are *syn*, and with respect to the thione S atom, the benzyl group is *anti*. In the crystal, centrosymmetrically related molecules self-associate *via* eightmembered {···HNCS}₂ synthons. The dimeric aggregates stack along the *a* axis and are are consolidated into a three-dimensional architecture *via* methyl-C-H···π(benzene) and benzene-C-H···π(thienyl) interactions.

Keywords: crystal structure; hydrogen bonding; dithiocarbazate; C— $H \cdots \pi$ interactions.

CCDC reference: 1405284

1. Related literature

For the structure of the parent compound, in which the benzyl residue is *syn* to the thione S atom, see: Chan *et al.* (2003). For the synthesis, see: Tarafder *et al.* (2002).

2. Experimental

2.1. Crystal data

 $\begin{array}{l} C_{15}H_{16}N_2S_3 \\ M_r = 320.48 \\ \text{Monoclinic, } P2_1/c \\ a = 5.6956 \ (4) \ \text{\AA} \\ b = 14.3424 \ (9) \ \text{\AA} \\ c = 18.9255 \ (11) \ \text{\AA} \\ \beta = 90.263 \ (5)^\circ \end{array}$

2.2. Data collection

Oxford Diffraction Xcaliber Eos Gemini diffractometer Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011)

 $T_{\min} = 0.774, \ T_{\max} = 1.000$

2.3. Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.109$ S = 1.062830 reflections 186 parameters 1 restraint Z = 4Cu K\alpha radiation $\mu = 4.30 \text{ mm}^{-1}$ T = 150 K $0.15 \times 0.10 \times 0.06 \text{ mm}$

V = 1545.98 (17) Å³

8463 measured reflections 2830 independent reflections 2506 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.023$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.49 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.33 \text{ e } \text{\AA}^{-3}$

Table 1Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the S3,C3-C6 and C8-C13 rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\overline{\begin{array}{c} N1 - H1N \cdots S2^{i} \\ C2' - H2'2 \cdots Cg2^{ii} \\ C12 - H12 \cdots Cg1^{iii} \end{array}}$	0.87 (2) 0.98 0.95	2.57 (2) 2.85 2.89	3.4433 (18) 3.616 (3) 3.560 (2)	176 (3) 138 130
Symmetry codes: (i) $-x + 1, -$	y + 2, -z + 1;	(ii) $x - 1, -y +$	$-\frac{1}{2}, z - \frac{1}{2};$ (iii)

Symmetry codes: (1) -x + 1, -y + 2, -z + 1; (ii) $x - 1, -y + \frac{1}{2}, z - \frac{1}{2}$; (iii) -x + 1, -y + 1, -z + 1.

Data collection: *CrysAlis PRO* (Agilent, 2011); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2015); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Acknowledgements

The research was funded by Universiti Putra Malaysia (UPM) under Research University Grant Schemes (RUGS No. 9419400), the Fundamental Research Grant Scheme (FRGS No. 5524425) and the Science Fund (Science Fund No. 06-01-04-SF810). SR thanks the UPM for the award of a Graduate Research Fellowship.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7439).

References

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Chan, M.-H. E., Crouse, K. A., Tarafder, M. T. H. & Yamin, B. M. (2003). Acta

- *Cryst.* E**59**, 0628–0629.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Tarafder, M. T. H., Khoo, T.-J., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). *Polyhedron*, **21**, 2691–2698.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2015). E71, o475-o476 [doi:10.1107/S205698901501107X]

Crystal structure of 4-methylbenzyl *N'*-[(thiophen-2-yl)methylidene]hydrazinecarbodithioate

Syahirah binti Ramli, Thahira Begum S. A. Ravoof, Mohamed Ibrahim Mohamed Tahir and Edward R. T. Tiekink

S1. Experimental

The title compound was prepared as per a reported procedure (Tarafder *et al.*, 2002). The light-yellow precipitate formed was filtered off and recrystallized from its acetonitrile solution as yellow prisms. Yield 56%; *M*.pt: 175–177 °C. Anal. Calcd for C₁₅H₁₆N₂S₃: C, 56.21; H, 5.03; N, 8.74. Found: C, 55.97; H, 4.96; N, 8.10. IR (cm⁻¹, FT—IR): 3143 w, 1511 m, 1060 m, 924 s. ¹H-NMR: (DMSO-d₆, p.p.m.) δ : 12.42 (s, 1H, NH), 7.24–7.55 (multiplet, 4H, Ar–H), 7.03–7.10 (multiplet, 3H, thiophene-H), 4.37 (s, 2H, –SCH₂), 2.24, 2.36 (s, 6H, –CH₃), 13 C-NMR:(DMSO-d₆, p.p.m.) δ : 197.98 (C=S), 159.15 (C=N), 129.32–142.86 (Ar–C), 128.39–129.90 (thiophene-C), 38.23 (SCH₂), 15.58, 21.24 (CH₃).

S2. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation with $U_{iso}(H) = 1.2-1.5U_{eq}(C)$. The N—H atom was refined with N—H = 0.88±0.01 Å, and with $U_{iso}(H) = 1.2U_{eq}(N)$.

Figure 1

The molecular structure of the title compound showing displacement ellipsoids at the 70% probability level.

Figure 2

Overlay diagram of the title compound (red image) with the parent compound (blue). The molecules have been overlapped so that the thienyl residues are coincident.

Figure 3

A view of the unit-cell contents in projection down the *a* axis. The N—H···S (orange) and C—H··· π (purple) interactions are shown as dashed lines.

[({[(4-Methylphenyl)methyl]sulfanyl}methanethioyl)amino][1-(thiophen-2-yl)ethylidene]amine

F(000) = 672

 $\theta = 3.1 - 71.3^{\circ}$

 $\mu = 4.30 \text{ mm}^{-1}$ T = 150 K

Prism, yellow

 $0.15 \times 0.10 \times 0.06 \text{ mm}$

 $D_{\rm x} = 1.377 {\rm Mg} {\rm m}^{-3}$

Cu $K\alpha$ radiation, $\lambda = 1.54182$ Å Cell parameters from 3915 reflections

Crystal data

 $C_{15}H_{16}N_{2}S_{3}$ $M_{r} = 320.48$ Monoclinic, $P2_{1}/c$ a = 5.6956 (4) Å b = 14.3424 (9) Å c = 18.9255 (11) Å $\beta = 90.263$ (5)° V = 1545.98 (17) Å³ Z = 4

Data collection

Oxford Diffraction Acaliber Eos Gemini	8463 measured reflections
diffractometer	2830 independent reflections
Radiation source: fine-focus sealed tube	2506 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.023$
Detector resolution: 16.1952 pixels mm ⁻¹	$\theta_{\rm max} = 71.3^\circ, \theta_{\rm min} = 3.9^\circ$
ω scans	$h = -6 \rightarrow 6$
Absorption correction: multi-scan	$k = -17 \rightarrow 17$
(CrysAlis PRO; Agilent, 2011)	$l = -16 \rightarrow 22$
$T_{\min} = 0.774, \ T_{\max} = 1.000$	
Dofin our out	

Refinement

Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.039$	and constrained refinement
$wR(F^2) = 0.109$	$w = 1/[\sigma^2(F_o^2) + (0.0667P)^2 + 0.9619P]$
<i>S</i> = 1.06	where $P = (F_o^2 + 2F_c^2)/3$
2830 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
186 parameters	$\Delta ho_{ m max} = 0.49 \ { m e} \ { m \AA}^{-3}$
1 restraint	$\Delta ho_{ m min} = -0.33 \ m e \ m A^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional	atomic	coordinates	and is	sotropic	c or e	auivalent	isotropi	ic dis	placement	parameters	$(Å^2$?)
1		0001000000		, o o p . c		100000000000000000000000000000000000000	100110001	·• ••••	p	pen ennerer b	(/

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.51174 (9)	0.72659 (3)	0.42082 (3)	0.01620 (16)	
S2	0.71326 (10)	0.92093 (3)	0.43627 (3)	0.02009 (17)	
S3	-0.06660 (10)	0.60844 (4)	0.53247 (3)	0.02183 (17)	
N1	0.3513 (3)	0.85288 (12)	0.50603 (10)	0.0179 (4)	
H1N	0.339 (5)	0.9097 (9)	0.5222 (13)	0.021*	
N2	0.1971 (3)	0.78079 (12)	0.51907 (10)	0.0170 (4)	
C1	0.5185 (4)	0.83886 (14)	0.45784 (12)	0.0171 (4)	
C2	0.0454 (4)	0.79016 (15)	0.56846 (12)	0.0179 (5)	
C2′	0.0181 (5)	0.87383 (16)	0.61556 (13)	0.0258 (5)	
H2′1	0.1735	0.8977	0.6287	0.039*	

H2′2	-0.0675	0.8559	0.6583	0.039*
H2′3	-0.0696	0.9224	0.5904	0.039*
C3	-0.1146 (4)	0.71133 (15)	0.57733 (12)	0.0174 (4)
C4	-0.3185 (4)	0.56050 (16)	0.56418 (13)	0.0237 (5)
H4	-0.3703	0.4993	0.5530	0.028*
C5	-0.4368 (4)	0.61936 (17)	0.60721 (13)	0.0243 (5)
Н5	-0.5818	0.6033	0.6286	0.029*
C6	-0.3258 (4)	0.70718 (14)	0.61767 (12)	0.0175 (5)
H6	-0.3834	0.7557	0.6470	0.021*
C7	0.7561 (4)	0.73279 (15)	0.35948 (12)	0.0184 (5)
H7A	0.7341	0.7856	0.3265	0.022*
H7B	0.9052	0.7421	0.3856	0.022*
C8	0.7625 (4)	0.64185 (14)	0.31920 (11)	0.0165 (4)
C9	0.5788 (4)	0.61510 (15)	0.27450 (12)	0.0186 (5)
Н9	0.4473	0.6551	0.2684	0.022*
C10	0.5867 (4)	0.53072 (15)	0.23898 (12)	0.0188 (5)
H10	0.4602	0.5136	0.2087	0.023*
C11	0.7773 (4)	0.47032 (15)	0.24688 (11)	0.0179 (5)
C11′	0.7835 (4)	0.37808 (16)	0.20945 (14)	0.0259 (5)
H11A	0.8516	0.3863	0.1624	0.039*
H11B	0.6235	0.3537	0.2048	0.039*
H11C	0.8795	0.3341	0.2367	0.039*
C12	0.9610 (4)	0.49777 (15)	0.29108 (12)	0.0179 (5)
H12	1.0934	0.4581	0.2968	0.022*
C13	0.9533 (4)	0.58213 (15)	0.32682 (12)	0.0177 (5)
H13	1.0800	0.5993	0.3569	0.021*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0185 (3)	0.0122 (3)	0.0180 (3)	-0.00068 (18)	0.0030 (2)	-0.00096 (18)
S2	0.0217 (3)	0.0135 (3)	0.0251 (3)	-0.0034 (2)	0.0057 (2)	-0.0019 (2)
S3	0.0233 (3)	0.0177 (3)	0.0244 (3)	-0.0018 (2)	-0.0013 (2)	-0.0007(2)
N1	0.0208 (10)	0.0120 (8)	0.0209 (10)	-0.0019 (7)	0.0041 (8)	-0.0017 (7)
N2	0.0180 (9)	0.0139 (8)	0.0192 (9)	-0.0007 (7)	0.0008 (7)	0.0009 (7)
C1	0.0205 (11)	0.0131 (10)	0.0176 (11)	0.0012 (8)	-0.0015 (9)	-0.0002 (8)
C2	0.0188 (11)	0.0159 (10)	0.0190 (11)	0.0000 (8)	-0.0014 (9)	-0.0011 (8)
C2′	0.0298 (13)	0.0226 (11)	0.0251 (13)	-0.0066 (10)	0.0095 (10)	-0.0053 (10)
C3	0.0186 (11)	0.0169 (10)	0.0168 (11)	-0.0001 (8)	-0.0023 (9)	-0.0008 (8)
C4	0.0232 (12)	0.0205 (11)	0.0272 (13)	-0.0058 (9)	-0.0092 (10)	0.0064 (9)
C5	0.0185 (12)	0.0320 (13)	0.0225 (12)	-0.0039 (10)	-0.0024 (9)	0.0099 (10)
C6	0.0182 (11)	0.0146 (10)	0.0198 (11)	0.0005 (8)	-0.0076 (9)	0.0023 (8)
C7	0.0181 (11)	0.0168 (10)	0.0204 (11)	-0.0022 (8)	0.0061 (9)	-0.0006 (8)
C8	0.0178 (11)	0.0160 (10)	0.0157 (10)	-0.0023 (8)	0.0052 (8)	0.0008 (8)
C9	0.0169 (11)	0.0199 (10)	0.0190 (11)	0.0026 (8)	0.0012 (9)	0.0026 (8)
C10	0.0165 (11)	0.0230 (11)	0.0167 (11)	-0.0019 (9)	-0.0008 (9)	0.0002 (9)
C11	0.0194 (11)	0.0179 (10)	0.0164 (11)	-0.0014 (8)	0.0038 (9)	-0.0009 (8)
C11′	0.0259 (13)	0.0222 (11)	0.0296 (13)	0.0003 (9)	0.0008 (10)	-0.0073 (10)

supporting information

C12	0.0161 (11)	0.0179 (10)	0.0198 (11)	0.0026 (8)	0.0003 (9)	0.0011 (8)
C13	0.0154 (11)	0.0203 (10)	0.0175 (11)	-0.0016 (8)	-0.0008 (9)	0.0003 (8)

Geometric parameters (Å, °)

S1—C1	1.756 (2)	С6—Н6	0.9500
S1—C7	1.818 (2)	C7—C8	1.511 (3)
S2—C1	1.670 (2)	С7—Н7А	0.9900
S3—C4	1.703 (2)	С7—Н7В	0.9900
S3—C3	1.725 (2)	C8—C13	1.391 (3)
N1—C1	1.337 (3)	C8—C9	1.396 (3)
N1—N2	1.379 (3)	C9—C10	1.385 (3)
N1—H1N	0.874 (10)	С9—Н9	0.9500
N2—C2	1.283 (3)	C10—C11	1.396 (3)
C2—C3	1.462 (3)	C10—H10	0.9500
C2—C2′	1.503 (3)	C11—C12	1.393 (3)
C2′—H2′1	0.9800	C11—C11′	1.501 (3)
C2'—H2'2	0.9800	C11'—H11A	0.9800
C2'—H2'3	0.9800	C11'—H11B	0.9800
C3—C6	1.429 (3)	C11'—H11C	0.9800
C4—C5	1.354 (4)	C12—C13	1.387 (3)
C4—H4	0.9500	C12—H12	0.9500
C5—C6	1.423 (3)	С13—Н13	0.9500
С5—Н5	0.9500		
C1—S1—C7	101.21 (10)	C8—C7—S1	107.47 (14)
C4—S3—C3	92.08 (12)	С8—С7—Н7А	110.2
C1—N1—N2	117.73 (17)	S1—C7—H7A	110.2
C1—N1—H1N	115.8 (18)	С8—С7—Н7В	110.2
N2—N1—H1N	125.9 (18)	S1—C7—H7B	110.2
C2—N2—N1	118.90 (18)	H7A—C7—H7B	108.5
N1—C1—S2	122.48 (16)	C13—C8—C9	118.5 (2)
N1—C1—S1	113.31 (16)	C13—C8—C7	120.0 (2)
S2—C1—S1	124.21 (14)	C9—C8—C7	121.5 (2)
N2—C2—C3	115.14 (19)	C10—C9—C8	120.5 (2)
N2—C2—C2′	126.0 (2)	С10—С9—Н9	119.7
C3—C2—C2′	118.9 (2)	С8—С9—Н9	119.7
C2—C2′—H2′1	109.5	C9—C10—C11	121.1 (2)
C2—C2′—H2′2	109.5	C9—C10—H10	119.4
H2'1—C2'—H2'2	109.5	C11—C10—H10	119.4
C2—C2′—H2′3	109.5	C12—C11—C10	118.0 (2)
H2'1—C2'—H2'3	109.5	C12—C11—C11′	120.9 (2)
H2′2—C2′—H2′3	109.5	C10—C11—C11′	121.1 (2)
C6—C3—C2	128.3 (2)	C11—C11′—H11A	109.5
C6—C3—S3	111.28 (16)	C11—C11′—H11B	109.5
C2—C3—S3	120.31 (17)	H11A-C11'-H11B	109.5
C5—C4—S3	112.48 (18)	C11—C11′—H11C	109.5
C5—C4—H4	123.8	H11A—C11′—H11C	109.5

S3—C4—H4	123.8	H11B—C11′—H11C	109.5
C4—C5—C6	114.4 (2)	C13—C12—C11	120.9 (2)
C4—C5—H5	122.8	C13—C12—H12	119.5
C6—C5—H5	122.8	C11—C12—H12	119.5
C5—C6—C3	109.7 (2)	C12—C13—C8	120.9 (2)
C5—C6—H6	125.1	C12—C13—H13	119.6
C3—C6—H6	125.1	C8—C13—H13	119.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 175.2 \ (2) \\ 179.03 \ (15) \\ -1.3 \ (3) \\ 179.94 \ (17) \\ -0.39 \ (17) \\ 178.49 \ (18) \\ -0.5 \ (3) \\ -167.3 \ (2) \\ 11.7 \ (3) \\ 9.2 \ (3) \\ -171.73 \ (17) \\ 0.80 \ (17) \\ -176.29 \ (18) \\ 0.04 \ (19) \\ -0.9 \ (3) \\ 1.5 \ (3) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$175.4 (2) \\ -1.4 (2) \\ -176.13 (15) \\ -115.3 (2) \\ 63.9 (2) \\ 0.3 (3) \\ -178.9 (2) \\ 0.1 (3) \\ -0.6 (3) \\ 178.8 (2) \\ 0.7 (3) \\ -178.7 (2) \\ -0.3 (3) \\ -0.2 (3) \\ 179.1 (2)$

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the S3,C3–C6 and C8–C13 rings, respectively.

D—H···A	D—H	H…A	D····A	D—H··· A
N1—H1N····S2 ⁱ	0.87 (2)	2.57 (2)	3.4433 (18)	176 (3)
$C2'$ — $H2'2\cdots Cg2^{ii}$	0.98	2.85	3.616 (3)	138
C12—H12····Cg1 ⁱⁱⁱ	0.95	2.89	3.560 (2)	130

Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x-1, -y+1/2, z-1/2; (iii) -x+1, -y+1, -z+1.