research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages 857-860

Crystal structure of 6-bromo-7-fluoro-4-oxo-4H-chromene-3-carbaldehyde

CROSSMARK_Color_square_no_text.svg

aSchool of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 , Japan
*Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 7 June 2015; accepted 22 June 2015; online 27 June 2015)

In the title compound, C10H4BrFO3, a brominated and fluorinated 3-formyl­chromone derivative, all atoms are essentially coplanar (r.m.s. deviation of 0.025 Å for the non-H atoms), with the largest deviation from the least-squares plane [0.050 (6) Å] being for a benzene-ring C atom. In the crystal, mol­ecules are linked through stacking inter­actions [centroid–centroid distance between the benzene and pyran rings = 3.912 (4) Å], C—H⋯O hydrogen bonds and short C⋯O contacts [2.865 (7) Å]. Unsymmetrical halogen⋯halogen inter­actions between the bromine and fluorine atoms [Br⋯F = 3.116 (4) Å, C—Br⋯F = 151.8 (2), C—F⋯Br = 154.1 (4)°] are also formed, giving a meandering two-dimensional network propagating in the (041) plane. A comparison with related structures is made and the various types of weak inter­actions are ranked in importance.

1. Chemical context

Halogen bonds and halogen⋯halogen inter­actions have recently attracted much attention in medicinal chemistry, chemical biology, supra­molecular chemistry and crystal engineering (Auffinger et al., 2004[Auffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789-16794.]; Metrangolo et al., 2005[Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386-395.]; Wilcken et al., 2013[Wilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363-1388.]; Mukherjee & Desiraju, 2014[Mukherjee, A. & Desiraju, G. R. (2014). IUCrJ, 1, 49-60.]; Metrangolo & Resnati, 2014[Metrangolo, P. & Resnati, G. (2014). IUCrJ, 1, 5-7.]; Persch et al., 2015[Persch, E., Dumele, O. & Diederich, F. (2015). Angew. Chem. Int. Ed. 54, 3290-3327.]). I have recently reported the crystal structures of the halogenated 3-formyl­chromone derivatives 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014a[Ishikawa, Y. (2014a). Acta Cryst. E70, o514.]), 6-bromo-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014b[Ishikawa, Y. (2014b). Acta Cryst. E70, o555.]) and 6-chloro-7-fluoro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014c[Ishikawa, Y. (2014c). Acta Cryst. E70, o825.]). A van der Waals contact between the formyl oxygen atom and the chlorine atom in 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Fig. 1[link]a) and a shorter contact (halogen bonding) between the formyl oxygen atom and the bromine atom in 6-bromo-4-oxo-4H-chromene-3-carbaldehyde (Fig. 1[link]b) are observed. On the other hand, an unsymmetrical halogen⋯halogen inter­action is formed between the chlorine and fluorine atoms in 6-chloro-7-fluoro-4-oxo-4H-chromene-3-carbaldehyde (Fig. 1[link]c). As part of our inter­est in these types of chemical bonding, I herein report the crystal structure of a brominated and fluorinated 3-formyl­chromone derivative 6-bromo-7-fluoro-4-oxo-4H-chromene-3-carbaldehyde. The objective of this study is to reveal the inductive effect of the vicinal electron-withdrawing substit­uent on the bromine atom at the 6-position and the inter­action mode(s).

[Scheme 1]
[Figure 1]
Figure 1
Sphere models of the crystal structures of (a) 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014a[Ishikawa, Y. (2014a). Acta Cryst. E70, o514.]), (b) 6-bromo-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014b[Ishikawa, Y. (2014b). Acta Cryst. E70, o555.]), (c) 6-chloro-7-fluoro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014c[Ishikawa, Y. (2014c). Acta Cryst. E70, o825.]) and (d) the title compound.

2. Structural commentary

The title compound is shown in Fig. 2[link]. The mean deviation of the least-square plane for the non-hydrogen atoms is 0.0253 Å, and the largest deviation is 0.050 (6) Å for C4. This means that these atoms are essentially coplanar.

[Figure 2]
Figure 2
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.

3. Supra­molecular features

In the crystal, the mol­ecules are linked through stacking inter­actions between the translation-symmetry equivalenti [centroid–centroid distance between the benzene and pyran rings of the 4H-chromene units = 3.872 (4) Å, symmetry code: (i) x, y, z − 1], and through C—H⋯O hydrogen bonds (Table 1[link]), as shown in Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O3i 0.95 2.41 3.240 (7) 146
C7—H3⋯O2ii 0.95 2.26 3.166 (7) 158
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y, z+{\script{1\over 2}}]; (ii) x+1, y, z+1.
[Figure 3]
Figure 3
A packing view of the title compound. C—H⋯O hydrogen bonds and Br⋯F unsymmetrical halogen⋯halogen inter­actions are represented as dashed lines.

A contact between the formyl oxygen atom and the bromine atom is not found in the title compound. Instead, an unsymmetrical halogen⋯halogen inter­action is formed between the bromine and fluorine atoms [Br1⋯F1 = 3.116 (4) Å, C5—Br1⋯F1(−[{1\over 2}] + x, [{1\over 2}] − y, 3 − z) = 151.8 (2)°, C6—F1⋯Br1([{1\over 2}] + x, [{1\over 2}] − y, 3 − z = 154.1 (4)°], as shown in Fig. 1[link]d. It is suggested that the electron-withdrawing fluorine atom at the 7-position should make the σ-hole of the bromine atom at the 6-position larger, and the electropositive region of the bromine atom should contact the electronegative region of the fluorine atom (Hathwar & Guru Row, 2011[Hathwar, V. R. & Guru Row, T. N. (2011). Cryst. Growth Des. 11, 1338-1346.]). Thus, halogen bonds (Cl⋯O and Br⋯O) are not observed in 6-chloro-7-fluoro-4-oxo-4H-chromene-3-carbaldehyde and the title compound, which might support the idea that the unsymmetrical halogen⋯halogen inter­actions (Cl⋯F and Br⋯F) are more favorable than the halogen bonds.

In addition to the C—H⋯O hydrogen bonds and the unsymmetrical halogen⋯halogen inter­action, a short contact between the formyl C10 and O3ii atoms [2.865 (7) Å, (ii): –x + [{1\over 2}], –y, z + [{1\over 2}], Fig. 3[link]] is revealed in the title compound. This extraordinary inter­action is also observed in 6-chloro-7-fluoro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014c[Ishikawa, Y. (2014c). Acta Cryst. E70, o825.]), but is not observed in 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014a[Ishikawa, Y. (2014a). Acta Cryst. E70, o514.]), 6-bromo-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa 2014b[Ishikawa, Y. (2014b). Acta Cryst. E70, o555.]) and 7-fluoro-4-oxochromene-3-carbaldehyde (Asad et al., 2011[Asad, M., Oo, C.-W., Osman, H., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o766.]). Thus, this inter­esting feature might be caused by a strong dipole–dipole inter­action between the formyl groups polarized extremely by introducing both the bromine and fluorine atoms into the chromone ring. These findings should be helpful in the understanding of inter­actions of halogenated ligands with proteins, and thus invaluable for rational drug design.

4. Synthesis and crystallization

5-Bromo-4-fluoro-2-hy­droxy­aceto­phenone was prepared from 4-bromo-3-fluoro­phenol by Fries rearrangement reaction. To a solution of 5-bromo-4-fluoro-2-hy­droxy­aceto­phenone (7.56 mmol) in N,N-di­methyl­formamide (15 ml) was added dropwise POCl3 (18.9 mmol) at 273 K. After the mixture had been stirred for 14 h at room temperature, water (50 ml) was added. The precipitates were collected, washed with water, and dried in vacuo (yield: 74%). 1H NMR (400 MHz, CDCl3): δ = 7.33 (d, 1H, J = 8.0 Hz), 8.52 (s, 1H), 8.54 (s, 1H), 10.36 (s, 1H). Colorless plates were obtained by slow evaporation of a 1,2-di­meth­oxy­ethane/n-hexane solution of the title compound at room temperature.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The Csp2-bound hydrogen atoms were placed in geometrical positions [C–H 0.95 Å, Uiso(H) = 1.2Ueq(C)], and refined using a riding model.

Table 2
Experimental details

Crystal data
Chemical formula C10H4BrFO3
Mr 271.04
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 5.784 (3), 33.713 (14), 4.633 (3)
V3) 903.4 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 4.56
Crystal size (mm) 0.30 × 0.25 × 0.10
 
Data collection
Diffractometer Rigaku AFC7R diffractometer
Absorption correction ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.])
Tmin, Tmax 0.388, 0.634
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections 1744, 1384, 1203
Rint 0.033
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.123, 1.12
No. of reflections 1384
No. of parameters 136
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.21, −1.53
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 110 Friedel pairs
Absolute structure parameter 0.02 (3)
Computer programs: WinAFC (Rigaku, 1999[Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.]), SIR2008 (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Chemical context top

Halogen bonds and halogen···halogen inter­actions have recently attracted much attention in medicinal chemistry, chemical biology, supra­molecular chemistry and crystal engineering (Auffinger et al., 2004; Metrangolo et al., 2005; Wilcken et al., 2013; Mukherjee & Desiraju, 2014; Metrangolo & Resnati, 2014; Persch et al., 2015). I have recently reported the crystal structures of the halogenated 3-formyl­chromone derivatives 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014a), 6-bromo-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014b) and 6-chloro-7-fluoro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014c). A van der Waals contact between the formyl oxygen atom and the chlorine atom in 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Fig. 1a) and a shorter contact (halogen bonding) between the formyl oxygen atom and the bromine atom in 6-bromo-4-oxo-4H-chromene-3-carbaldehyde (Fig. 1b) are observed. On the other hand, an unsymmetrical halogen···halogen inter­action is formed between the chlorine and fluorine atoms in 6-chloro-7-fluoro-4-oxo-4H-chromene-3-carbaldehyde (Fig. 1c). As part of our inter­est in these types of chemical bonding, I herein report the crystal structure of a brominated and fluorinated 3-formyl­chromone derivative 6-bromo-7-fluoro-4-oxo-4H-chromene-3-carbaldehyde. The objective of this study is to reveal the inductive effect of the vicinal electron-withdrawing substituent on the bromine atom at 6-position and the inter­action mode(s).

Structural commentary top

The title compound is shown in Fig. 1. The mean deviation of the least-square plane for the non-hydrogen atoms is 0.0253 Å, and the largest deviation is 0.050 (6) Å for C4. This means that these atoms are essentially coplanar.

Supra­molecular features top

In the crystal, the molecules are linked through stacking inter­actions between the translation-symmetry equivalenti [centroid–centroid distance between the benzene and pyran rings of the 4H-chromene units = 3.912 (4) Å [PLATON gives 3.872 (4) – please check], symmetry code: (i) x, y, z - 1], and through C—H···O hydrogen bonds (Table 1), as shown in Fig. 2.

A contact between the formyl oxygen atom and the bromine atom is not found in the title compound. Instead, an unsymmetrical halogen···halogen inter­action is formed between the bromine and fluorine atoms [Br1···F1 = 3.116 (4) Å, C5—Br1···F1(-1/2 + x, 1/2 - y, 3 - z) = 151.8 (2)°, C6—F1···Br1(1/2 + x, 1/2 - y, 3 - z = 154.1 (4)°], as shown in Fig. 1d. It is suggested that the electron-withdrawing fluorine atom at the 7-position should make the σ-hole of the bromine atom at the 6-position larger, and the electropositive region of the bromine atom should contact the electronegative region of the fluorine atom (Hathwar & Guru Row, 2011). Thus, halogen bonds (Cl···O and Br···O) are not observed in 6-chloro-7-fluoro-4-oxo-4H-chromene-3-carbaldehyde and the title compound, which might support the idea that the unsymmetrical halogen···halogen inter­actions (Cl···F and Br···F) are more favorable than the halogen bonds.

In addition to the C—H···O hydrogen bonds and the unsymmetrical halogen···halogen inter­action, a short contact between the formyl C10 and O3ii atoms [2.865 (7) Å, ii: –x + 1/2, –y, z + 1/2, Fig. 2] is revealed in the title compound. This extraordinary inter­action is also observed in 6-chloro-7-fluoro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014c), but is not observed in 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014a), 6-bromo-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa 2014b) and 7-fluoro-4-oxochromene-3-carbaldehyde (Asad et al., 2011). Thus, this inter­esting feature might be caused by a strong dipole–dipole inter­action between the formyl groups polarized extremely by introducing both the bromine and fluorine atoms into the chromone ring. These findings should be helpful in the understanding of inter­actions of halogenated ligands with proteins, and thus invaluable for rational drug design.

Synthesis and crystallization top

5-Bromo-4-fluoro-2-hy­droxy­aceto­phenone was prepared from 4-bromo-3-fluoro­phenol by Fries rearrangement reaction. To a solution of 5-bromo-4-fluoro-2-hy­droxy­aceto­phenone (7.56 mmol) in N,N-di­methyl­formamide (15 ml) was added dropwise POCl3 (18.9 mmol) at 273 K. After the mixture had been stirred for 14 h at room temperature, water (50 ml) was added. The precipitates were collected, washed with water, and dried in vacuo (yield: 74%). 1H NMR (400 MHz, CDCl3): δ = 7.33 (d, 1H, J = 8.0 Hz), 8.52 (s, 1H), 8.54 (s, 1H), 10.36 (s, 1H). Colorless plates were obtained by slow evaporation of a 1,2-di­meth­oxy­ethane/n-hexane solution of the title compound at room temperature.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The Csp2-bound hydrogen atoms were placed in geometrical positions [C–H 0.95 Å, Uiso(H) = 1.2Ueq(C)], and refined using a riding model.

Related literature top

For related structures, see: Ishikawa (2014a, b, c). For halogen bonding, see: Auffinger et al. (2004); Metrangolo et al. (2005); Wilcken et al. (2013); Persch et al. (2015). For halogen···halogen interaction, see: Hathwar et al. (2011); Metrangolo et al. (2014); Mukherjee et al. (2014).

Computing details top

Data collection: WinAFC (Rigaku, 1999); cell refinement: WinAFC (Rigaku, 1999); data reduction: WinAFC (Rigaku, 1999); program(s) used to solve structure: SIR2008 (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. Sphere models of the crystal structures of (a) 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014a), (b) 6-bromo-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014b), (c) 6-chloro-7-fluoro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014c) and (d) the title compound.
[Figure 2] Fig. 2. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.
[Figure 3] Fig. 3. A packing view of the title compound. C—H···O hydrogen bonds and Br···F unsymmetrical halogen···halogen interactions are represented as dashed lines.
6-Bromo-7-fluoro-4-oxo-4H-chromene-3-carbaldehyde top
Crystal data top
C10H4BrFO3F(000) = 528.00
Mr = 271.04Dx = 1.993 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 5.784 (3) Åθ = 15.1–16.6°
b = 33.713 (14) ŵ = 4.56 mm1
c = 4.633 (3) ÅT = 100 K
V = 903.4 (8) Å3Plate, colorless
Z = 40.30 × 0.25 × 0.10 mm
Data collection top
Rigaku AFC7R
diffractometer
Rint = 0.033
ω scansθmax = 27.5°
Absorption correction: ψ scan
(North et al., 1968)
h = 74
Tmin = 0.388, Tmax = 0.634k = 043
1744 measured reflectionsl = 36
1384 independent reflections3 standard reflections every 150 reflections
1203 reflections with F2 > 2.0σ(F2) intensity decay: 3.0%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0881P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
1384 reflectionsΔρmax = 1.21 e Å3
136 parametersΔρmin = 1.53 e Å3
0 restraintsAbsolute structure: Flack (1983), 110 Friedel Pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (3)
Secondary atom site location: difference Fourier map
Crystal data top
C10H4BrFO3V = 903.4 (8) Å3
Mr = 271.04Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.784 (3) ŵ = 4.56 mm1
b = 33.713 (14) ÅT = 100 K
c = 4.633 (3) Å0.30 × 0.25 × 0.10 mm
Data collection top
Rigaku AFC7R
diffractometer
1203 reflections with F2 > 2.0σ(F2)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.033
Tmin = 0.388, Tmax = 0.6343 standard reflections every 150 reflections
1744 measured reflections intensity decay: 3.0%
1384 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.123Δρmax = 1.21 e Å3
S = 1.12Δρmin = 1.53 e Å3
1384 reflectionsAbsolute structure: Flack (1983), 110 Friedel Pairs
136 parametersAbsolute structure parameter: 0.02 (3)
0 restraints
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.12276 (11)0.224324 (15)1.22910 (13)0.0241 (2)
F10.5835 (7)0.19539 (10)1.4414 (8)0.0246 (8)
O10.6802 (7)0.08180 (12)0.8763 (9)0.0163 (9)
O20.0653 (7)0.09910 (11)0.4588 (9)0.0181 (9)
O30.4556 (7)0.00248 (11)0.2458 (10)0.0206 (9)
C10.6066 (10)0.05663 (16)0.6730 (12)0.0156 (11)
C20.4022 (10)0.06057 (15)0.5311 (12)0.0136 (11)
C30.2522 (10)0.09394 (16)0.5850 (12)0.0146 (12)
C40.2095 (10)0.15532 (16)0.8912 (13)0.0174 (12)
C50.2924 (11)0.17998 (16)1.1017 (14)0.0174 (12)
C60.5054 (10)0.17161 (15)1.2299 (14)0.0174 (11)
C70.6356 (10)0.13944 (16)1.1538 (13)0.0166 (11)
C80.3361 (9)0.12153 (16)0.8105 (12)0.0143 (12)
C90.5490 (10)0.11445 (16)0.9405 (12)0.0142 (12)
C100.3392 (10)0.03094 (16)0.3123 (12)0.0173 (12)
H10.70260.03470.62500.0187*
H20.06640.16110.79950.0209*
H30.78030.13431.24350.0199*
H40.19590.03440.21530.0208*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0215 (4)0.0219 (3)0.0289 (4)0.0043 (3)0.0054 (3)0.0050 (3)
F10.0229 (19)0.0293 (18)0.0217 (17)0.0055 (16)0.0022 (18)0.0089 (15)
O10.0088 (19)0.024 (2)0.0159 (19)0.0017 (16)0.0026 (17)0.0016 (17)
O20.012 (2)0.024 (2)0.018 (2)0.0042 (17)0.0052 (18)0.0009 (17)
O30.0170 (19)0.0243 (19)0.020 (2)0.0020 (16)0.002 (2)0.0038 (19)
C10.012 (3)0.021 (3)0.014 (3)0.002 (3)0.001 (3)0.000 (2)
C20.014 (3)0.016 (3)0.011 (3)0.002 (3)0.000 (3)0.0019 (19)
C30.010 (3)0.022 (3)0.012 (3)0.003 (3)0.000 (3)0.003 (3)
C40.014 (3)0.021 (3)0.018 (3)0.003 (3)0.002 (3)0.003 (3)
C50.019 (3)0.015 (3)0.018 (3)0.000 (3)0.005 (3)0.001 (3)
C60.020 (3)0.016 (3)0.016 (3)0.003 (3)0.001 (3)0.005 (3)
C70.011 (3)0.024 (3)0.015 (3)0.003 (3)0.001 (3)0.001 (2)
C80.009 (3)0.023 (3)0.011 (3)0.001 (2)0.002 (3)0.001 (2)
C90.010 (3)0.023 (3)0.010 (3)0.001 (2)0.001 (2)0.005 (3)
C100.016 (3)0.023 (3)0.013 (3)0.001 (3)0.004 (3)0.002 (3)
Geometric parameters (Å, º) top
Br1—C51.883 (6)C4—C51.369 (9)
F1—C61.344 (7)C4—C81.405 (8)
O1—C11.338 (7)C5—C61.396 (9)
O1—C91.370 (7)C6—C71.367 (8)
O2—C31.241 (7)C7—C91.392 (8)
O3—C101.212 (7)C8—C91.392 (8)
C1—C21.359 (8)C1—H10.950
C2—C31.443 (8)C4—H20.950
C2—C101.469 (8)C7—H30.950
C3—C81.480 (8)C10—H40.950
Br1···F13.004 (4)Br1···H22.9352
F1···C93.588 (7)F1···H32.5252
O1···C32.849 (7)O1···H32.5222
O1···C63.588 (7)O2···H22.6181
O2···C13.583 (7)O2···H42.5704
O2···C42.881 (7)O3···H12.5121
O2···C102.873 (7)C1···H43.2714
O3···C12.831 (7)C3···H13.2873
C1···C73.576 (8)C3···H22.6949
C1···C82.764 (8)C3···H42.6597
C2···C92.760 (8)C5···H33.2809
C4···C72.800 (8)C6···H23.2480
C5···C92.764 (8)C8···H33.2878
C6···C82.754 (8)C9···H13.1856
Br1···F1i3.413 (4)C9···H23.2692
Br1···F1ii3.116 (4)C10···H12.5561
F1···Br1iii3.413 (4)H1···H43.4920
F1···Br1iv3.116 (4)Br1···H2v3.4115
F1···C4v3.293 (7)F1···H2vi3.4488
F1···C5v3.530 (8)O1···H2iii3.5011
F1···C8v3.342 (7)O1···H3ix3.4733
F1···C9v3.582 (7)O1···H4v3.5880
O1···O2iii3.007 (6)O2···H1i3.1145
O1···O2vi3.547 (6)O2···H3viii2.2632
O1···O3v3.431 (6)O3···H1ix3.3905
O1···O3vii3.589 (6)O3···H1x2.4077
O1···C2v3.507 (7)O3···H4xi2.8893
O1···C3iii3.596 (7)O3···H4xii2.6535
O1···C10v3.303 (7)C1···H3ix3.4389
O2···O1viii3.547 (6)C1···H4v3.5384
O2···O1i3.007 (6)C1···H4xii3.5368
O2···C1i3.174 (7)C2···H3ix3.5689
O2···C4ix3.347 (8)C2···H4v3.5005
O2···C5ix3.449 (7)C2···H4xii3.3605
O2···C7viii3.166 (7)C3···H3viii3.4362
O2···C8ix3.471 (7)C3···H4v3.5589
O3···O1ix3.431 (6)C4···H3i3.0546
O3···O1x3.589 (6)C5···H2v3.5448
O3···O3xi3.324 (6)C5···H3i3.4028
O3···O3xii3.324 (6)C7···H2iii3.0718
O3···C1ix3.337 (7)C8···H4v3.5793
O3···C1x3.240 (7)C9···H2iii3.4429
O3···C2xi3.129 (7)C9···H3ix3.5587
O3···C3xi3.545 (7)C10···H1x3.5611
O3···C10xi2.865 (7)C10···H4xi3.5406
O3···C10xii3.326 (7)C10···H4xii2.8936
C1···O2iii3.174 (7)H1···O2iii3.1145
C1···O3v3.337 (7)H1···O3v3.3905
C1···O3vii3.240 (7)H1···O3vii2.4077
C1···C10v3.452 (8)H1···C10vii3.5611
C2···O1ix3.507 (7)H1···H1x3.3395
C2···O3xii3.129 (7)H1···H1vii3.3395
C2···C7ix3.456 (8)H1···H4iii3.4266
C2···C9ix3.392 (8)H1···H4xii3.3038
C3···O1i3.596 (7)H2···Br1ix3.4115
C3···O3xii3.545 (7)H2···F1viii3.4488
C3···C6ix3.422 (8)H2···O1i3.5011
C3···C7ix3.356 (8)H2···C5ix3.5448
C3···C9ix3.513 (8)H2···C7i3.0718
C4···F1ix3.293 (7)H2···C9i3.4429
C4···O2v3.347 (8)H2···H3viii3.1920
C4···C6ix3.552 (9)H2···H3i2.7898
C4···C7i3.576 (9)H3···O1v3.4733
C5···F1ix3.530 (8)H3···O2vi2.2632
C5···O2v3.449 (7)H3···C1v3.4389
C6···C3v3.422 (8)H3···C2v3.5689
C6···C4v3.552 (9)H3···C3vi3.4362
C6···C8v3.323 (9)H3···C4iii3.0546
C7···O2vi3.166 (7)H3···C5iii3.4028
C7···C2v3.456 (8)H3···C9v3.5587
C7···C3v3.356 (8)H3···H2iii2.7898
C7···C4iii3.576 (9)H3···H2vi3.1920
C7···C8v3.552 (8)H4···O1ix3.5880
C8···F1ix3.342 (7)H4···O3xi2.6535
C8···O2v3.471 (7)H4···O3xii2.8893
C8···C6ix3.323 (9)H4···C1ix3.5384
C8···C7ix3.552 (8)H4···C1xi3.5368
C9···F1ix3.582 (7)H4···C2ix3.5005
C9···C2v3.392 (8)H4···C2xi3.3605
C9···C3v3.513 (8)H4···C3ix3.5589
C9···C10v3.517 (8)H4···C8ix3.5793
C10···O1ix3.303 (7)H4···C10xi2.8936
C10···O3xi3.326 (7)H4···C10xii3.5406
C10···O3xii2.865 (7)H4···H1i3.4266
C10···C1ix3.452 (8)H4···H1xi3.3038
C10···C9ix3.517 (8)H4···H4xi3.3354
C10···C10xi3.284 (8)H4···H4xii3.3354
C10···C10xii3.284 (8)
C1—O1—C9119.1 (5)C3—C8—C4121.8 (5)
O1—C1—C2123.8 (5)C3—C8—C9119.2 (5)
C1—C2—C3121.0 (5)C4—C8—C9119.0 (5)
C1—C2—C10118.9 (5)O1—C9—C7116.2 (5)
C3—C2—C10120.0 (5)O1—C9—C8122.3 (5)
O2—C3—C2123.5 (5)C7—C9—C8121.5 (5)
O2—C3—C8122.0 (5)O3—C10—C2125.2 (6)
C2—C3—C8114.5 (5)O1—C1—H1118.124
C5—C4—C8120.0 (6)C2—C1—H1118.120
Br1—C5—C4121.5 (5)C5—C4—H2120.003
Br1—C5—C6119.1 (5)C8—C4—H2120.030
C4—C5—C6119.3 (6)C6—C7—H3121.140
F1—C6—C5119.1 (5)C9—C7—H3121.139
F1—C6—C7118.4 (5)O3—C10—H4117.421
C5—C6—C7122.5 (6)C2—C10—H4117.409
C6—C7—C9117.7 (6)
C1—O1—C9—C7179.9 (4)C8—C4—C5—Br1177.2 (5)
C1—O1—C9—C82.9 (8)C8—C4—C5—C61.4 (9)
C9—O1—C1—C22.7 (8)H2—C4—C5—Br12.8
C9—O1—C1—H1177.3H2—C4—C5—C6178.6
O1—C1—C2—C32.5 (8)H2—C4—C8—C30.4
O1—C1—C2—C10179.8 (5)H2—C4—C8—C9177.8
H1—C1—C2—C3177.5Br1—C5—C6—F10.2 (8)
H1—C1—C2—C100.2Br1—C5—C6—C7178.4 (4)
C1—C2—C3—O2179.2 (5)C4—C5—C6—F1178.4 (5)
C1—C2—C3—C82.2 (8)C4—C5—C6—C70.2 (9)
C1—C2—C10—O30.3 (9)F1—C6—C7—C9178.1 (5)
C1—C2—C10—H4179.7F1—C6—C7—H31.9
C3—C2—C10—O3178.1 (5)C5—C6—C7—C90.1 (9)
C3—C2—C10—H41.9C5—C6—C7—H3179.9
C10—C2—C3—O21.4 (8)C6—C7—C9—O1177.9 (5)
C10—C2—C3—C8180.0 (5)C6—C7—C9—C80.7 (8)
O2—C3—C8—C40.8 (8)H3—C7—C9—O12.1
O2—C3—C8—C9178.9 (5)H3—C7—C9—C8179.3
C2—C3—C8—C4179.4 (5)C3—C8—C9—O12.9 (8)
C2—C3—C8—C92.4 (7)C3—C8—C9—C7179.9 (5)
C5—C4—C8—C3179.6 (5)C4—C8—C9—O1178.9 (5)
C5—C4—C8—C92.2 (8)C4—C8—C9—C71.9 (8)
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+1/2, z+3; (iii) x+1, y, z; (iv) x+1/2, y+1/2, z+3; (v) x, y, z+1; (vi) x+1, y, z+1; (vii) x+3/2, y, z+1/2; (viii) x1, y, z1; (ix) x, y, z1; (x) x+3/2, y, z1/2; (xi) x+1/2, y, z1/2; (xii) x+1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O3vii0.952.413.240 (7)146
C7—H3···O2vi0.952.263.166 (7)158
Symmetry codes: (vi) x+1, y, z+1; (vii) x+3/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O3i0.952.413.240 (7)146
C7—H3···O2ii0.952.263.166 (7)158
Symmetry codes: (i) x+3/2, y, z+1/2; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC10H4BrFO3
Mr271.04
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)5.784 (3), 33.713 (14), 4.633 (3)
V3)903.4 (8)
Z4
Radiation typeMo Kα
µ (mm1)4.56
Crystal size (mm)0.30 × 0.25 × 0.10
Data collection
DiffractometerRigaku AFC7R
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.388, 0.634
No. of measured, independent and
observed [F2 > 2.0σ(F2)] reflections
1744, 1384, 1203
Rint0.033
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.123, 1.12
No. of reflections1384
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.21, 1.53
Absolute structureFlack (1983), 110 Friedel Pairs
Absolute structure parameter0.02 (3)

Computer programs: WinAFC (Rigaku, 1999), SIR2008 (Burla et al., 2007), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010).

 

Acknowledgements

I acknowledge University of Shizuoka for instrumental support.

References

First citationAsad, M., Oo, C.-W., Osman, H., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o766.  CSD CrossRef IUCr Journals Google Scholar
First citationAuffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789–16794.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHathwar, V. R. & Guru Row, T. N. (2011). Cryst. Growth Des. 11, 1338–1346.  Web of Science CSD CrossRef CAS Google Scholar
First citationIshikawa, Y. (2014a). Acta Cryst. E70, o514.  CSD CrossRef IUCr Journals Google Scholar
First citationIshikawa, Y. (2014b). Acta Cryst. E70, o555.  CSD CrossRef IUCr Journals Google Scholar
First citationIshikawa, Y. (2014c). Acta Cryst. E70, o825.  CSD CrossRef IUCr Journals Google Scholar
First citationMetrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMetrangolo, P. & Resnati, G. (2014). IUCrJ, 1, 5–7.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMukherjee, A. & Desiraju, G. R. (2014). IUCrJ, 1, 49–60.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPersch, E., Dumele, O. & Diederich, F. (2015). Angew. Chem. Int. Ed. 54, 3290–3327.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363–1388.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages 857-860
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds