

Mo $K\alpha$ radiation

 $0.32 \times 0.32 \times 0.16 \text{ mm}$

 $\mu = 0.11 \text{ mm}^{-1}$

T = 100 K

ISSN 2056-9890

Crystal structure of 3-(hydroxymethyl)chromone

Yoshinobu Ishikawa

School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan. *Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

Received 11 June 2015; accepted 16 June 2015

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

In the title compound, $C_{10}H_8O_3$ (systematic name 3-hydroxymethyl-4*H*-chromen-4-one), the fused-ring system is slightly puckered [dihedral angle between the rings = 3.84 (11)°]. The hydroxy O atom deviates from the heterocyclic ring by 1.422 (1) Å. In the crystal, inversion dimers linked by pairs of O-H···O hydrogen bonds generate $R_2^2(12)$ loops. The dimers are linked by aromatic π - π stacking [shortest centroidcentroid distance = 3.580 (3) Å], and C-H···O hydrogen bonds, generating a three-dimensional network.

Keywords: crystal structure; chromone; hydrogen bonding; π – π stacking.

CCDC reference: 1406927

1. Related literature

For the biological activities of related compounds, see: Sun *et al.* (2009); Helguera *et al.* (2013); Venkateswararao *et al.* (2014). For the synthesis of the title compound, see: Araya-Maturana *et al.* (2003).

2. Experimental

2.1. Crystal data

$C_{10}H_8O_3$	a = 6.756 (4) Å
$M_r = 176.17$	b = 7.988 (6) Å
Triclinic, $P\overline{1}$	c = 7.991 (6) Å

OPEN (a) ACCESS $\alpha = 94.48 (6)^{\circ}$ $\beta = 108.27 (5)^{\circ}$ $\gamma = 103.31 (5)^{\circ}$ $V = 393.2 (5) Å^{3}$ Z = 2

2.2. Data collection

Rigaku AFC-7R diffractometer $R_{int} = 0.089$ 2219 measured reflections3 standard reflections every 1501805 independent reflectionsreflections1537 reflections with $F^2 > 2.0\sigma(F^2)$ intensity decay: 0.1%

2.3. Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.065$ $wR(F^2) = 0.202$ S = 1.061805 reflections 119 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.42$ e Å⁻³ $\Delta \rho_{min} = -0.49$ e Å⁻³

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$03 - H8 \cdots O2^{i}$	0.84	1.94	2.757 (3)	165
$C1 - H1 \cdots O2^{ii}$	0.95	2.58	3.283 (4)	131

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) x - 1, y, z.

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software; program(s) used to solve structure: SIR2008 (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure.

Acknowledgements

The University of Shizuoka is acknowledged for instrumental support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7444).

References

- Araya-Maturana, R., Heredia-Moya, J., Pessoa-Mahana, H. & Weiss-López, B. (2003). Synth. Commun. 33, 3225–3231.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.

Helguera, A. M., Pérez-Garrido, A., Gaspar, A., Reis, J., Cagide, F., Vina, D., Cordeiro, M. N. & Borges, F. (2013). Eur. J. Med. Chem. 59, 75–90.

- Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sun, W., Carroll, P. J., Soprano, D. R. & Canney, D. J. (2009). Bioorg. Med. Chem. Lett. 19, 4339–4342.
- Venkateswararao, E., Sharma, V. K., Manickam, M., Yun, J. & Jung, S. H. (2014). Bioorg. Med. Chem. Lett. 24, 5256–5259.

supporting information

Acta Cryst. (2015). E71, o495 [doi:10.1107/S2056989015011627]

Crystal structure of 3-(hydroxymethyl)chromone

Yoshinobu Ishikawa

S1. Comment

Many derivatives of the title compound (3-hydroxymethylchromone) are reported as retinoic acid receptor binders (Sun *et al.* (2009)), human monoamine oxidase inhibitors (Helguera *et al.* (2013)) and anti-proliferative agents (Venkateswararao *et al.* (2014)).

The mean deviation of the least-square planes for the non-hydrogen atoms except hydroxy O3 atom is 0.0479 Å, and the largest deviation is 0.146 (2) Å for C10. These mean that these atoms are essentially coplanar (Fig.1). The dihedral angle of C3–C2–C10–O3 is 70.6 (2). In the crystal, the pyran rings are stacked [centroid–centroid distance between the pyran rings of the 4*H*-chromene units = 3.894 (3) Å], and C–H···O hydrogen bonds are formed to give dimers running along the *c* direction, as shown in Fig.2.

S2. Experimental

The title compound was synthesized from 3-formylchromone according to the literature method (Araya-Maturana *et al.* 2003). Colourless blocks were obtained by slow evaporation of an ethyl acetate solution of the title compound at room temperature.

S3. Refinement

All hydrogen atoms were placed in geometrical positions [C–H 0.95 Å and O–H 0.84 Å], and refined using a riding model with $U_{iso}(H) = 1.2U_{eq}$ of the parent atoms.

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

Z = 2

F(000) = 184.00

 $\theta = 15.5 - 17.3^{\circ}$

 $\mu = 0.11 \text{ mm}^{-1}$

Block, colorless

 $0.32\times0.32\times0.16~mm$

T = 100 K

 $D_{\rm x} = 1.488 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71069$ Å

Cell parameters from 25 reflections

Figure 2

A view of the packing of the title compound. O—H…O hydrogen bonds are represented as dashed lines.

3-(Hydroxymethyl)-4H-chromen-4-one

Crystal data

C₁₀H₈O₃ $M_r = 176.17$ Triclinic, *P*1 Hall symbol: -P 1 a = 6.756 (4) Å b = 7.988 (6) Å c = 7.991 (6) Å a = 94.48 (6)° $\beta = 108.27$ (5)° $\gamma = 103.31$ (5)° V = 393.2 (5) Å³

Data collection

Rigaku AFC-7R	$\theta_{\rm max} = 27.5^{\circ}$
diffractometer	$h = -4 \rightarrow 8$
ω –2 θ scans	$k = -10 \rightarrow 10$
2219 measured reflections	$l = -10 \rightarrow 9$
1805 independent reflections	3 standard reflections every 150 reflections
1537 reflections with $F^2 > 2.0\sigma(F^2)$	intensity decay: 0.1%
$R_{\rm int} = 0.089$	

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.1399P)^2 + 0.1723P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.42 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{\rm min} = -0.49 \text{ e } \text{\AA}^{-3}$

Special details

Refinement. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on F^2 . *R*-factor (gt) are based on *F*. The threshold expression of $F^2 > 2.0 \sigma(F^2)$ is used only for calculating *R*-factor (gt).

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.72779 (19)	1.01991 (17)	0.70911 (18)	0.0179 (4)
O2	1.19522 (19)	0.80874 (17)	0.63213 (18)	0.0190 (4)
O3	0.7925 (2)	0.48525 (17)	0.56522 (17)	0.0195 (4)
C1	0.6785 (3)	0.8666 (3)	0.6006 (3)	0.0167 (4)
C2	0.8224 (3)	0.7871 (3)	0.5707 (3)	0.0146 (4)
C3	1.0527 (3)	0.8696 (3)	0.6575 (3)	0.0133 (4)
C4	1.3221 (3)	1.1214 (3)	0.8824 (3)	0.0168 (4)
C5	1.3681 (3)	1.2688 (3)	1.0053 (3)	0.0209 (5)
C6	1.1985 (3)	1.3325 (3)	1.0269 (3)	0.0218 (5)
C7	0.9868 (3)	1.2504 (3)	0.9255 (3)	0.0200 (5)
C8	1.1070 (3)	1.0325 (3)	0.7810 (3)	0.0147 (4)
С9	0.9416 (3)	1.0995 (3)	0.8033 (3)	0.0153 (4)
C10	0.7477 (3)	0.6132 (3)	0.4539 (3)	0.0165 (4)
H1	0.5294	0.8101	0.5403	0.0201*
H2	1.4369	1.0798	0.8665	0.0202*
Н3	1.5139	1.3272	1.0751	0.0251*
H4	1.2306	1.4333	1.1123	0.0262*
Н5	0.8729	1.2955	0.9382	0.0240*
H6A	0.5905	0.5855	0.3870	0.0198*
H7B	0.8247	0.6145	0.3669	0.0198*
H8	0.8200	0.4052	0.5093	0.0234*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

Atomic	displ	lacement	parameters	(\mathring{A}^2)
--------	-------	----------	------------	--------------------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
01	0.0130 (6)	0.0202 (7)	0.0240 (7)	0.0070 (5)	0.0090 (5)	0.0043 (5)	
O2	0.0112 (6)	0.0225 (7)	0.0252 (7)	0.0067 (5)	0.0075 (5)	0.0032 (6)	
O3	0.0195 (7)	0.0188 (7)	0.0236 (7)	0.0069 (5)	0.0104 (6)	0.0052 (5)	
C1	0.0110 (8)	0.0212 (9)	0.0193 (9)	0.0041 (7)	0.0061 (7)	0.0073 (7)	
C2	0.0108 (8)	0.0202 (9)	0.0144 (8)	0.0046 (7)	0.0050 (6)	0.0067 (7)	

supporting information

C3	0.0115 (8)	0.0168 (9)	0.0129 (8)	0.0043 (6)	0.0052 (6)	0.0053 (6)
C4	0.0158 (8)	0.0179 (9)	0.0168 (8)	0.0054 (7)	0.0044 (7)	0.0050 (7)
C5	0.0205 (9)	0.0212 (10)	0.0174 (9)	0.0040 (7)	0.0021 (7)	0.0055 (7)
C6	0.0302 (10)	0.0184 (9)	0.0171 (9)	0.0071 (8)	0.0077 (8)	0.0042 (7)
C7	0.0264 (9)	0.0198 (9)	0.0212 (9)	0.0113 (8)	0.0136 (8)	0.0068 (7)
C8	0.0144 (8)	0.0179 (9)	0.0140 (8)	0.0055 (7)	0.0061 (7)	0.0071 (7)
C9	0.0149 (8)	0.0191 (9)	0.0144 (8)	0.0055 (7)	0.0068 (7)	0.0069 (7)
C10	0.0101 (8)	0.0204 (9)	0.0178 (9)	0.0026 (7)	0.0039 (6)	0.0038 (7)

Geometric parameters (Å, °)

01—C1	1.352 (3)	C6—C7	1.375 (3)
O1—C9	1.371 (2)	C7—C9	1.400 (3)
O2—C3	1.236 (3)	C8—C9	1.396 (3)
O3—C10	1.429 (3)	O3—H8	0.840
C1—C2	1.346 (3)	C1—H1	0.950
C2—C3	1.455 (3)	C4—H2	0.950
C2C10	1.495 (3)	С5—Н3	0.950
C3—C8	1.468 (3)	C6—H4	0.950
C4—C5	1.381 (3)	С7—Н5	0.950
C4—C8	1.404 (3)	C10—H6A	0.990
C5—C6	1.407 (4)	C10—H7B	0.990
C1—O1—C9	117.98 (17)	O3—C10—C2	108.17 (15)
O1—C1—C2	125.63 (15)	С10—О3—Н8	109.472
C1—C2—C3	119.38 (17)	O1—C1—H1	117.186
C1-C2-C10	120.66 (15)	C2—C1—H1	117.188
C3—C2—C10	119.93 (18)	C5—C4—H2	119.761
O2—C3—C2	123.48 (17)	C8—C4—H2	119.765
O2—C3—C8	121.37 (15)	С4—С5—Н3	120.061
C2—C3—C8	115.15 (18)	С6—С5—Н3	120.064
C5—C4—C8	120.5 (2)	С5—С6—Н4	119.658
C4—C5—C6	119.88 (16)	С7—С6—Н4	119.653
C5—C6—C7	120.69 (19)	C6—C7—H5	120.506
С6—С7—С9	119.0 (3)	С9—С7—Н5	120.503
C3—C8—C4	121.64 (19)	O3—C10—H6A	110.064
C3—C8—C9	119.77 (15)	O3—C10—H7B	110.063
C4—C8—C9	118.56 (17)	С2—С10—Н6А	110.069
O1—C9—C7	116.70 (19)	C2—C10—H7B	110.064
O1—C9—C8	121.91 (17)	H6A—C10—H7B	108.407
С7—С9—С8	121.38 (16)		
C1—O1—C9—C7	-174.88 (15)	C5—C4—C8—C3	-176.20 (17)
C1—O1—C9—C8	4.2 (3)	C5—C4—C8—C9	1.9 (3)
C9-01-C1-C2	-2.8 (3)	C8—C4—C5—C6	-1.2 (3)
C9-01-C1-H1	177.2	C8—C4—C5—H3	178.8
Н8—О3—С10—С2	-148.1	H2—C4—C5—C6	178.8
Н8—О3—С10—Н6А	91.6	H2—C4—C5—H3	-1.2

H8—O3—C10—H7B	-27.8	H2—C4—C8—C3	3.8
O1—C1—C2—C3	-1.0 (3)	H2—C4—C8—C9	-178.1
O1—C1—C2—C10	177.18 (16)	C4—C5—C6—C7	-0.7 (3)
H1-C1-C2-C3	179.0	C4—C5—C6—H4	179.3
H1-C1-C2-C10	-2.8	H3—C5—C6—C7	179.3
C1—C2—C3—O2	-177.19 (17)	H3—C5—C6—H4	-0.7
C1—C2—C3—C8	3.3 (3)	C5—C6—C7—C9	1.6 (3)
C1—C2—C10—O3	-107.56 (19)	С5—С6—С7—Н5	-178.4
С1—С2—С10—Н6А	12.7	H4—C6—C7—C9	-178.4
C1—C2—C10—H7B	132.2	H4—C6—C7—H5	1.6
C3—C2—C10—O3	70.6 (2)	C6—C7—C9—O1	178.25 (17)
С3—С2—С10—Н6А	-169.1	C6—C7—C9—C8	-0.8 (3)
С3—С2—С10—Н7В	-49.7	H5—C7—C9—O1	-1.8
C10—C2—C3—O2	4.6 (3)	Н5—С7—С9—С8	179.2
C10—C2—C3—C8	-174.93 (15)	C3—C8—C9—O1	-1.8 (3)
O2—C3—C8—C4	-3.4 (3)	C3—C8—C9—C7	177.23 (16)
O2—C3—C8—C9	178.52 (16)	C4—C8—C9—O1	-179.96 (16)
C2—C3—C8—C4	176.19 (15)	C4—C8—C9—C7	-0.9 (3)
C2—C3—C8—C9	-1.9 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —H	H···A	D···A	D—H··· A
O3—H8···O2 ⁱ	0.84	1.94	2.757 (3)	165
C1—H1…O2 ⁱⁱ	0.95	2.58	3.283 (4)	131

Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x-1, y, z.