data reports

open 👌 access

Crystal structure of *N*-[(naphthalen-1-yl)-carbamothioyl]cyclohexanecarboxamide

G. Vimala,^a J. Haribabu,^b S. Aishwarya,^b R. Karvembu^b and A. SubbiahPandi^a*

^aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and ^bDepartment of Chemistry, National Institute of Technology, Trichy 620 015, India. *Correspondence e-mail: aspandian59@gmail.com

Received 14 June 2015; accepted 22 June 2015

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

The title compound, $C_{18}H_{20}N_2OS$, displays whole-molecule disorder over two adjacent sets of sites with an occupancy ratio of 0.630 (11):0.370 (11). In each disorder component, the cyclohexyl ring shows a chair conformation with the exocyclic C-C bond in an equatorial orientation. The dihedral angles between the cyclohexyl ring (all atoms) and the naphthyl ring system are 36.9 (6) for the major component and 20.7 (12)° for the minor component. Each component features an intramolecular $N-H\cdots O$ hydrogen bond, which closes an S(5)ring. In the crystal, inversion dimers linked by pairs of N- $H\cdots S$ hydrogen bonds generate $R_2^2(8)$ loops for both components. Aromatic $\pi-\pi$ stacking interactions [shortest centroid–centroid separation = 3.593 (9) Å] and a $C-H\cdots\pi$ interaction are also observed.

Keywords: crystal structure; whole-molecule disorder; thiourea derivatives; intramolecular N—H···O hydrogen bond; N—H···S hydrogen bonds; π - π stacking interactions; C—H··· π interactions.

CCDC reference: 1408027

1. Related literature

For background to the varied properties of thiourea derivatives, see: Sun *et al.* (2006); Shen *et al.* (2006). For related structures, see: Hu *et al.* (2011); Gangadharan *et al.* (2015).

 $\gamma = 104.022 \ (3)^{\circ}$

Z = 2

V = 835.24 (9) Å³

Mo $K\alpha$ radiation

 $0.35 \times 0.30 \times 0.25$ mm

14064 measured reflections

2945 independent reflections

1930 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

 $\mu = 0.20 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.031$

refinement $\Delta \rho_{\rm max} = 0.87 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$

2. Experimental

2.1. Crystal data $C_{18}H_{20}N_2OS$ $M_r = 312.42$ Triclinic, $P\overline{1}$ a = 7.0464 (5) Å b = 11.0379 (5) Å c = 12.4151 (8) Å $\alpha = 110.873$ (3)° $\beta = 100.660$ (3)°

2.2. Data collection

```
Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
T_{min} = 0.934, T_{max} = 0.952
```

```
2.3. Refinement

R[F^2 > 2\sigma(F^2)] = 0.068

wR(F^2) = 0.219

S = 1.05

2945 reflections

404 parameters

1056 restraints
```

 Table 1

 Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1-C5/C10 ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} \hline & \\ N2-H2A\cdots O1 \\ N2'-H2A\cdots O1' \\ N1-H1A\cdots S1^{i} \\ N1'-H1A\cdots S1'^{i} \\ C18-H18B\cdots Cg1^{ii} \\ \end{array}$	0.88 (4)	1.97 (4)	2.667 (15)	135 (4)
	0.93 (4)	2.03 (4)	2.62 (3)	120 (4)
	0.87 (3)	2.53 (3)	3.370 (19)	161 (4)
	0.90 (4)	2.59 (4)	3.44 (3)	159 (4)
	0.90	2.66	3.527 (2)	148

Symmetry codes: (i) -x + 2, -y, -z + 1; (ii) -x + 2, -y + 1, -z + 1.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *PLATON* (Spek, 2009).

Acknowledgements

The authors thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection. JH thanks UGC for the fellowship.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7448).

References

- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Gangadharan, R., Haribabu, J., Karvembu, R. & Sethusankar, K. (2015). Acta Cryst. E71, 305–308.
- Hu, J.-H., Luo, Z.-Y., Ding, C.-F. & Song, X.-L. (2011). Acta Cryst. E67, o376. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Shen, C. B., Wang, S. G., Yang, H. Y., Long, K. & Wang, F. H. (2006). Corros. Sci. 48, 1655–1665.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Sun, C., Huang, H., Feng, M., Shi, X., Zhang, X. & Zhou, P. (2006). Bioorg. Med. Chem. Lett. 16, 162–166.

supporting information

Acta Cryst. (2015). E71, o508-o509 [doi:10.1107/S2056989015011950]

Crystal structure of *N*-[(naphthalen-1-yl)carbamothioyl]cyclohexanecarboxamide

G. Vimala, J. Haribabu, S. Aishwarya, R. Karvembu and A. SubbiahPandi

S1. Comment

The design and synthesis of thiourea are of considerable interest because of their use in agriculture, medicine and analytical chemistry (J·H. Hu *et al.*, 2011). Thiourea derivatives are driven by their potential as biological active compounds (Sun *et al.*, 2006) and in the material application such as anti corrosion (Shen *et al.*, 2006). As part of our own studies in this area, the crystal structure of the title compound has been determined and the results are presented herein.

For the major disorder component, the cyclohexane ring (C13—C18) adopts chair conformation [puckering amplitudes and smallest displacement parameters are q = 0.568 Å, θ = 177.7 (8)°, φ = 19 (29)° and ΔC_s = 0.9 (14) Å]. Similarly, for the minor disorder component, the cyclohexane ring (C13′—C18′) adopts a chair conformation. [puckering amplitudes and smallest displacement parameters are q = 0.56 (3) Å, θ = 180 (3)°, φ = 354 (31)° and ΔC_s = 3.0 (4) Å]. The dihedral angles between cyclohexane and benzene rings (C5—C8/C10) and (C5—C10) of naphthalene moiety are 37.0 (7)and 36.5 (7)° (major component). In the case of minor component, the dihedral angles between cyclohexane and benzene rings (C5—C8/C10)and (C5—C10) of naphthalene are 37.0 (7)and 36.5 (7)°, respectively. The molecular conformation is consolidated by an intramolecular N—H···O hydrogen bond, forming S(5) ring motif.

The crystal packing features N—H···S hydrogen bonds with the symmetry code: (i) 2 - x, -y, 1 - z, which links the molecules into centrosymmetric dimers with graph-set descriptor of $R^2_2(8)$. The crystal packing also features C—H··· π (Table 1) and π - π interactions ($Cg2\cdots Cg2^{ii} = 3.593$ (9) Å; Cg2 is the centroid of a ring C5—C10; symmetry code: (ii) 3 - x, 1 - y, 2 - z. The packing view of the title compound is shown in Fig. 3.

S2. Experimental

A solution of cyclohexane carbonyl chloride (1.4661 g, 10 mmol) in acetone (60 ml) was added drop wise to a suspension of potassium thiocyanate (0.9718 g, 10 mmol) in anhydrous acetone (60 ml). The reaction mixture was heated under reflux for 45 minutes and then cooled to room temperature. A solution of substituted naphthalen-1-amine (1.43 g, 10 mmol) in acetone (60 ml) was added and the resulting mixture was stirred for 2 h at room temperature. Hydrochloric acid (0.1 N, 500 ml) was added and the resulting white solid was filtered off, washed with water and dried in vaccum. The yield of the isolated product was 89%, giving colourless blocks.

S3. Refinement

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C)$ for all other H atoms.

Figure 1

The molecular structure of the major component of the title compound, with displacement ellipsoids drawn at 40% probability level.

Figure 2

Stick plot of both major and minor components of the title compound, with the atoms label for non-H atoms.

Figure 3

The crystal packing of the title compound, viewed along the *b* axis. The hydrogen bonds are shown as dashed lines (see Table 1 for details).

N-[(Naphthalen-1-yl)carbamothioyl]cyclohexanecarboxamide

Crystal data	
$C_{18}H_{20}N_2OS$	Z = 2
$M_r = 312.42$	F(000) = 332
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.242 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 7.0464 (5) Å	Cell parameters from 1930 reflections
b = 11.0379 (5) Å	$\theta = 2.1 - 25.0^{\circ}$
c = 12.4151 (8) Å	$\mu=0.20~\mathrm{mm^{-1}}$
$\alpha = 110.873 \ (3)^{\circ}$	T = 293 K
$\beta = 100.660 \ (3)^{\circ}$	Block, white
$\gamma = 104.022 \ (3)^{\circ}$	$0.35 \times 0.30 \times 0.25 \text{ mm}$
$V = 835.24 (9) \text{ Å}^3$	

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scan Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2004) $T_{\min} = 0.934, T_{\max} = 0.952$ Refinement	14064 measured reflections 2945 independent reflections 1930 reflections with $I > 2\sigma(I)$ $R_{int} = 0.031$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.1^{\circ}$ $h = -8 \rightarrow 8$ $k = -13 \rightarrow 13$ $l = -14 \rightarrow 14$
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.068$ $wR(F^2) = 0.219$ S = 1.05 2945 reflections 404 parameters 1056 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0972P)^2 + 1.1049P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.053$ $\Delta\rho_{max} = 0.87$ e Å ⁻³ $\Delta\rho_{min} = -0.25$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	1.4139 (12)	0.4829 (15)	0.6995 (10)	0.072 (3)	0.630 (11)
C2	1.5803 (14)	0.5008 (15)	0.6610 (8)	0.058 (2)	0.630 (11)
H2	1.5690	0.4550	0.5798	0.069*	0.630 (11)
C3	1.7732 (13)	0.5902 (11)	0.7454 (8)	0.064 (2)	0.630 (11)
Н3	1.8908	0.6065	0.7214	0.076*	0.630 (11)
C4	1.7793 (14)	0.6525 (12)	0.8658 (8)	0.065 (2)	0.630 (11)
H4	1.9016	0.7111	0.9257	0.078*	0.630 (11)
C5	1.5918 (13)	0.6230 (12)	0.8936 (7)	0.0446 (17)	0.630 (11)
C6	1.5952 (14)	0.6835 (11)	1.0116 (8)	0.062 (2)	0.630 (11)
H6	1.7193	0.7418	1.0700	0.075*	0.630 (11)
C7	1.4217 (16)	0.6606 (16)	1.0460 (8)	0.082 (3)	0.630 (11)
H7	1.4294	0.7032	1.1270	0.099*	0.630 (11)
C8	1.2357 (16)	0.5753 (16)	0.9622 (9)	0.076 (3)	0.630 (11)
H8	1.1199	0.5574	0.9875	0.091*	0.630 (11)
C9	1.2189 (15)	0.5164 (15)	0.8419 (8)	0.062 (2)	0.630 (11)

H9	1.0919	0.4657	0.7838	0.074*	0.630(11)
C10	1.4035 (19)	0.536(2)	0.8090 (10)	0.063 (3)	0.630 (11)
C11	1.1480 (17)	0.2490 (13)	0.5594 (10)	0.042 (2)	0.630 (11)
C12	0.839 (2)	0.2236 (13)	0.4017 (11)	0.042 (3)	0.630(11)
C13	0.643 (2)	0.113 (2)	0.3153 (11)	0.052 (3)	0.630 (11)
H13	0.6743	0.0287	0.2776	0.062*	0.630 (11)
C14	0.4915 (15)	0.0832 (11)	0.3824 (10)	0.067 (2)	0.630 (11)
H14A	0.4669	0.1674	0.4258	0.080*	0.630(11)
H14B	0.5514	0.0538	0.4413	0.080*	0.630(11)
C15	0.2882 (18)	-0.0269 (11)	0.2994 (11)	0.084 (3)	0.630(11)
H15A	0.1929	-0.0367	0.3455	0.101*	0.630(11)
H15B	0.3083	-0.1146	0.2629	0.101*	0.630 (11)
C16	0.2014 (19)	0.0145 (14)	0.2016 (11)	0.088(3)	0.630 (11)
H16A	0.0733	-0.0568	0.1475	0.106*	0.630 (11)
H16B	0.1720	0.0986	0.2389	0.106*	0.630 (11)
C17	0.3457 (16)	0.0371 (10)	0.1289 (11)	0.074 (3)	0.630 (11)
H17A	0.2864	0.0664	0.0697	0.088*	0.630 (11)
H17B	0.3691	-0.0479	0.0865	0.088*	0.630 (11)
C18	0.5478(15)	0 1477 (9)	0.2156 (9)	0.000	0.630(11)
H18A	0.6436	0.1599	0.1703	0.071*	0.630(11)
H18B	0.5240	0.2342	0.2514	0.071*	0.630(11)
S1	1 2576 (18)	0.1673 (11)	0.2311 0.6264 (10)	0.0567 (16)	0.630(11)
N1	0.938(2)	0.1073(11) 0.1781(12)	0.0204(10) 0.4817(12)	0.0307(10) 0.044(3)	0.630(11)
N2	1,2224 (9)	0.1701(12) 0.3819(7)	0.4017(12) 0.5845(5)	0.0416(16)	0.630(11)
01	0.886(2)	0.3438(12)	0.3843(3)	0.0410(10)	0.030(11)
C1'	1.4044(16)	0.3430(12) 0.4630(19)	0.4191(12) 0.6642(11)	0.033(3)	0.030(11) 0.370(11)
C1'	1.574 (2)	0.4000(1))	0.6233(13)	0.052(5)	0.370(11)
С2 H2'	1.574 (2)	0.4330	0.5412	0.005 (4)	0.370(11)
C2'	1.5555	0.45504 (10)	0.5412 0.6057 (14)	0.060 (4)	0.370(11)
С5 H3'	1.7040 (19)	0.5594 (19)	0.6530	0.000 (4)	0.370(11)
CA'	1.8720	0.5049	0.0050 0.8205 (14)	0.072	0.370(11)
U4 U4/	1.022(2)	0.033 (2)	0.8203 (14)	0.070 (4)	0.370(11)
П 4 С5/	1.9326	0.0931	0.8/11 0.8628 (14)	0.064°	0.370(11)
C5 C6'	1.032(3)	0.018(3)	0.8038(14)	0.007 (4)	0.370(11)
С0 Ц6/	1.030 (3)	0.082(3)	0.9636 (10)	0.097 (3)	0.370(11)
C7'	1.7801	0.7371	1.0373 1.0264 (14)	0.117	0.370(11)
U7/	1.469 (5)	0.000 (3)	1.0204 (14)	0.077(3)	0.370(11)
П/ С ^{9/}	1.3100	0.7078	1.1092	0.092	0.370(11)
	1.298 (5)	0.393 (3)	0.9338 (14)	0.070 (4)	0.370(11)
	1.16/4	0.5978	0.9844	0.084°	0.370(11)
C9 ⁷	1.261 (3)	0.507 (3)	0.8293 (12)	0.076 (5)	0.370 (11)
H9 ⁷	1.1367	0.4381	0.7805	0.091*	0.370 (11)
	1.434 (2)	0.536 (3)	0.7873(12)	0.037(3)	0.370 (11)
	1.100 (3)	0.253 (2)	0.5789 (19)	0.049 (4)	0.370(11)
C12'	0.809 (3)	0.221 (2)	0.424 (2)	0.042 (4)	0.370 (11)
C13'	0.629 (3)	0.110 (4)	0.3220 (19)	0.051 (4)	0.370 (11)
H13′	0.6531	0.0227	0.3069	0.061*	0.370 (11)
C14′	0.444 (3)	0.103 (3)	0.364 (2)	0.096 (5)	0.370 (11)
H14C	0.4248	0.1923	0.3884	0.116*	0.370(11)

H14D	0.4647	0.0828	0.4344	0.116*	0.370 (11)
C15′	0.256 (4)	-0.005 (3)	0.2673 (18)	0.102 (6)	0.370 (11)
H15C	0.2702	-0.0944	0.2488	0.123*	0.370 (11)
H15D	0.1378	-0.0039	0.2970	0.123*	0.370 (11)
C16′	0.219 (3)	0.017 (2)	0.1542 (17)	0.081 (5)	0.370 (11)
H16C	0.1000	-0.0564	0.0919	0.098*	0.370 (11)
H16D	0.1951	0.1042	0.1694	0.098*	0.370 (11)
C17′	0.408 (3)	0.018 (2)	0.116 (2)	0.090 (6)	0.370 (11)
H17C	0.3886	0.0311	0.0420	0.108*	0.370 (11)
H17D	0.4230	-0.0711	0.0981	0.108*	0.370 (11)
C18′	0.602 (3)	0.126 (2)	0.2064 (17)	0.083 (5)	0.370 (11)
H18C	0.7176	0.1164	0.1762	0.099*	0.370 (11)
H18D	0.5957	0.2172	0.2197	0.099*	0.370 (11)
S1′	1.222 (3)	0.1767 (19)	0.6457 (17)	0.065 (4)	0.370 (11)
N2′	1.1590 (19)	0.3881 (14)	0.6219 (11)	0.083 (4)	0.370 (11)
N1′	0.972 (3)	0.176 (2)	0.461 (2)	0.036 (4)	0.370 (11)
O1′	0.838 (4)	0.341 (2)	0.448 (2)	0.057 (4)	0.370 (11)
H1A	0.918 (6)	0.0899 (17)	0.454 (4)	0.069*	
H2A	1.129 (5)	0.415 (4)	0.560 (3)	0.069*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
C1	0.079 (5)	0.052 (5)	0.075 (7)	0.020 (4)	-0.001 (5)	0.030 (6)	
C2	0.071 (4)	0.050 (5)	0.046 (5)	0.024 (3)	0.007 (4)	0.017 (4)	
C3	0.072 (4)	0.066 (6)	0.051 (6)	0.026 (4)	0.016 (4)	0.021 (5)	
C4	0.054 (4)	0.058 (5)	0.075 (5)	0.014 (3)	-0.001 (4)	0.034 (5)	
C5	0.052 (4)	0.031 (3)	0.039 (4)	0.011 (3)	-0.008 (3)	0.013 (3)	
C6	0.070 (5)	0.057 (4)	0.070 (4)	0.028 (5)	0.022 (4)	0.033 (4)	
C7	0.104 (7)	0.077 (5)	0.068 (5)	0.042 (6)	0.022 (5)	0.027 (4)	
C8	0.084 (6)	0.081 (6)	0.080 (5)	0.037 (5)	0.036 (4)	0.043 (4)	
С9	0.064 (5)	0.056 (4)	0.066 (4)	0.035 (4)	0.004 (3)	0.024 (3)	
C10	0.074 (5)	0.051 (4)	0.063 (5)	0.017 (4)	0.005 (4)	0.032 (4)	
C11	0.047 (5)	0.037 (3)	0.035 (4)	0.011 (3)	0.006 (3)	0.012 (3)	
C12	0.053 (5)	0.037 (3)	0.032 (4)	0.008 (3)	0.007 (3)	0.017 (3)	
C13	0.058 (4)	0.036 (4)	0.053 (4)	0.009 (4)	-0.001 (4)	0.022 (3)	
C14	0.058 (5)	0.069 (4)	0.070 (5)	0.021 (3)	0.011 (4)	0.031 (3)	
C15	0.066 (5)	0.082 (5)	0.099 (6)	0.007 (4)	0.013 (5)	0.049 (4)	
C16	0.063 (5)	0.092 (5)	0.089 (7)	0.005 (4)	-0.012 (5)	0.046 (5)	
C17	0.072 (6)	0.056 (4)	0.070 (5)	0.018 (4)	-0.013 (5)	0.020 (4)	
C18	0.066 (5)	0.050 (4)	0.055 (4)	0.016 (3)	-0.009 (3)	0.031 (3)	
S1	0.069 (3)	0.035 (2)	0.054 (3)	0.0193 (14)	-0.0060 (17)	0.017 (2)	
N1	0.056 (5)	0.031 (3)	0.036 (5)	0.009 (3)	-0.001 (4)	0.013 (3)	
N2	0.047 (3)	0.033 (3)	0.038 (3)	0.013 (2)	0.001 (2)	0.014 (2)	
01	0.060 (6)	0.036 (3)	0.059 (6)	0.002 (3)	-0.004 (3)	0.028 (3)	
C1′	0.049 (5)	0.025 (5)	0.015 (4)	0.012 (4)	-0.004 (3)	0.007 (4)	
C2′	0.085 (6)	0.051 (7)	0.041 (7)	0.021 (5)	0.001 (5)	0.014 (6)	
C3′	0.053 (6)	0.057 (7)	0.063 (8)	0.018 (5)	0.010 (6)	0.020(7)	

C4′	0.080(7)	0.060 (7)	0.057 (9)	0.026 (6)	0.004 (7)	0.018 (8)
C5′	0.076 (7)	0.051 (5)	0.060 (7)	0.019 (6)	0.001 (6)	0.020 (6)
C6′	0.103 (9)	0.075 (7)	0.090 (8)	0.025 (8)	-0.001 (7)	0.027 (7)
C7′	0.084 (10)	0.075 (7)	0.080(7)	0.032 (9)	0.027 (7)	0.038 (6)
C8′	0.079 (8)	0.074 (7)	0.063 (6)	0.028 (7)	0.030 (6)	0.030 (5)
C9′	0.058 (7)	0.055 (6)	0.112 (7)	0.018 (7)	0.004 (6)	0.044 (6)
C10′	0.049 (5)	0.022 (4)	0.025 (5)	0.007 (4)	-0.011 (4)	0.006 (5)
C11′	0.056 (7)	0.032 (5)	0.050 (7)	0.023 (5)	-0.002 (6)	0.011 (5)
C12′	0.053 (6)	0.033 (5)	0.040 (7)	0.008 (5)	0.007 (5)	0.022 (5)
C13′	0.053 (6)	0.041 (6)	0.052 (6)	0.010 (6)	-0.003 (6)	0.024 (5)
C14′	0.073 (8)	0.101 (8)	0.084 (7)	0.009(7)	0.012 (6)	0.024 (7)
C15′	0.079 (8)	0.104 (8)	0.100 (9)	-0.005 (7)	0.013 (7)	0.047 (7)
C16′	0.069 (7)	0.072 (6)	0.082 (9)	0.011 (6)	-0.005 (8)	0.031 (7)
C17′	0.074 (8)	0.082 (8)	0.074 (7)	0.019 (7)	-0.011 (7)	0.008 (6)
C18′	0.064 (8)	0.083 (8)	0.066 (7)	0.014 (6)	-0.001 (6)	0.010 (6)
S1′	0.074 (7)	0.033 (2)	0.060 (6)	0.020 (3)	-0.016 (4)	0.006 (3)
N2′	0.097 (7)	0.040 (5)	0.065 (7)	0.020 (6)	-0.041 (5)	0.006 (5)
N1′	0.045 (6)	0.028 (4)	0.031 (6)	0.011 (4)	0.009 (4)	0.009 (4)
01′	0.061 (10)	0.041 (5)	0.058 (9)	0.007 (6)	-0.003 (6)	0.025 (5)

Geometric parameters (Å, °)

1.298 (10)	C1′—C2′	1.378 (11)
1.344 (9)	C1′—C10′	1.396 (12)
1.589 (8)	C1'—N2'	1.616 (10)
1.416 (9)	C2'—C3'	1.341 (13)
0.9300	C2'—H2'	0.9300
1.392 (8)	C3'—C4'	1.408 (11)
0.9300	C3'—H3'	0.9300
1.418 (9)	C4′—C5′	1.399 (14)
0.9300	C4'—H4'	0.9300
1.370 (9)	C5′—C6′	1.359 (14)
1.392 (11)	C5′—C10′	1.399 (15)
1.364 (9)	C6'—C7'	1.378 (12)
0.9300	C6'—H6'	0.9300
1.373 (10)	C7′—C8′	1.336 (14)
0.9300	C7'—H7'	0.9300
1.369 (9)	C8′—C9′	1.432 (13)
0.9300	C8′—H8′	0.9300
1.424 (10)	C9'—C10'	1.422 (14)
0.9300	С9'—Н9'	0.9300
1.329 (14)	C11′—N2′	1.31 (2)
1.451 (19)	C11′—N1′	1.40 (3)
1.653 (6)	C11′—S1′	1.652 (8)
1.214 (6)	C12′—O1′	1.214 (8)
1.411 (9)	C12′—N1′	1.413 (11)
1.502 (7)	C12′—C13′	1.500 (9)
1.511 (10)	C13′—C14′	1.490 (14)
	$\begin{array}{c} 1.298 \ (10) \\ 1.344 \ (9) \\ 1.589 \ (8) \\ 1.416 \ (9) \\ 0.9300 \\ 1.392 \ (8) \\ 0.9300 \\ 1.392 \ (8) \\ 0.9300 \\ 1.370 \ (9) \\ 1.392 \ (11) \\ 1.364 \ (9) \\ 0.9300 \\ 1.373 \ (10) \\ 0.9300 \\ 1.369 \ (9) \\ 0.9300 \\ 1.369 \ (9) \\ 0.9300 \\ 1.424 \ (10) \\ 0.9300 \\ 1.329 \ (14) \\ 1.451 \ (19) \\ 1.653 \ (6) \\ 1.214 \ (6) \\ 1.411 \ (9) \\ 1.502 \ (7) \\ 1.511 \ (10) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

C13_C14	1 512 (8)	C13' - C18'	1 491 (13)
С13Н13	0.9800	C13'H13'	0.9800
C14 C15	1 520 (8)	C14' $C15'$	1.502(13)
C14 = H14A	0.0700	C14' - C15'	0.0700
C14 H14R	0.9700	C14' = H14D	0.9700
	1 521 (9)	$C_{14} = M_{14}$	1.405(12)
C15—C10	1.321 (8)	$C_{15} = C_{10}$	1.493(13)
CIS—HISA CIS—UISD	0.9700	C_{15} $-H_{15}$	0.9700
С15—ПІЗВ	0.9700	C15 - H15D	0.9700
	1.512 (9)		1.492 (14)
	0.9700		0.9700
C10—H16B	0.9700	$C10^{-}$ H16D	0.9700
	1.526 (8)		1.498 (13)
	0.9700		0.9700
С1/—Н1/В	0.9700	C17'—H17D	0.9700
C18—H18A	0.9700	C18′—H18C	0.9700
C18—H18B	0.9700	C18'—H18D	0.9700
N1—H1A	0.874 (19)	N2'—H2A	0.927 (18)
N2—H2A	0.883 (18)	N1′—H1A	0.906 (19)
C10-C1-C2	128 3 (8)	C2'-C1'-C10'	117.6(9)
C_{10} C_{1} N_{2}	120.5(0) 124.4(8)	$C_2 = C_1 = C_{10}$	117.0(9) 1/3.7(10)
$C_1 C_1 N_2$	124.4(0) 107.4(7)	$C_{10'}$ $C_{1'}$ $N_{2'}$	143.7(10)
$C_2 = C_1 = N_2$	107.4(7) 110.2(6)	$C_{10} - C_{1} - N_{2}$	123 A (8)
$C_1 = C_2 = C_3$	119.2 (0)	$C_3 - C_2 - C_1$	123.4 (0)
$C_1 = C_2 = H_2$	120.4	$C_3 - C_2 - H_2$	110.5
$C_3 = C_2 = H_2$	120.4	C1 - C2 - H2	118.3
C4 - C3 - C2	117.2 (6)	$C_2 = C_3 = C_4$	121.2 (8)
C4 - C3 - H3	121.4	C2' - C3' - H3'	119.4
C2—C3—H3	121.4	C4' - C3' - H3'	119.4
C3-C4-C5	117.5 (6)	C5' - C4' - C3'	116.1 (10)
C3—C4—H4	121.3	C5'—C4'—H4'	122.0
C5—C4—H4	121.3	C3'—C4'—H4'	121.9
C6—C5—C10	117.4 (6)	C6'—C5'—C10'	117.6 (11)
C6—C5—C4	118.2 (6)	C6'—C5'—C4'	120.2 (12)
C10—C5—C4	124.4 (6)	C10'—C5'—C4'	122.3 (10)
C7—C6—C5	121.9 (7)	C5'—C6'—C7'	120.2 (12)
С7—С6—Н6	119.0	С5'—С6'—Н6'	119.9
С5—С6—Н6	119.0	С7'—С6'—Н6'	119.9
C6—C7—C8	120.6 (6)	C8'—C7'—C6'	122.9 (9)
С6—С7—Н7	119.7	С8'—С7'—Н7'	118.6
С8—С7—Н7	119.7	С6'—С7'—Н7'	118.5
C9—C8—C7	120.7 (6)	C7'—C8'—C9'	120.3 (9)
С9—С8—Н8	119.6	С7'—С8'—Н8'	119.8
С7—С8—Н8	119.6	С9'—С8'—Н8'	119.9
C8—C9—C10	117.4 (7)	C10′—C9′—C8′	113.6 (10)
С8—С9—Н9	121.3	С10'—С9'—Н9'	123.2
С10—С9—Н9	121.3	C8'—C9'—H9'	123.2
C1—C10—C5	113.4 (8)	C5'—C10'—C1'	119.3 (10)
C1—C10—C9	124.9 (9)	C5'—C10'—C9'	123.6 (10)
	× /		× /

C5 C10 C0	121((7))	C1I = C10I = C0I	11(((11)))
C_{3}	121.0(7)	C1 - C10 - C9	110.0(11)
N2 C11 S1	115.4 (9)	N2 - C11 - N1	118.4(13)
N2-C11-S1	125.0 (9)	$N_2 - C_{11} - S_{1}$	120.8 (10)
NI-CII-SI	118.1 (10)		118.6 (18)
01—C12—N1	122.6 (12)	OI' = CI2' = NI'	121 (2)
01	125.0 (14)	O1'—C12'—C13'	121 (2)
N1—C12—C13	110.6 (11)	N1'-C12'-C13'	115 (2)
C12—C13—C18	112.6 (11)	C14'—C13'—C18'	113 (2)
C12—C13—C14	110.4 (10)	C14'—C13'—C12'	108 (2)
C18—C13—C14	110.4 (11)	C18'—C13'—C12'	114 (2)
C12—C13—H13	107.7	C14'—C13'—H13'	107.2
C18—C13—H13	107.8	C18'—C13'—H13'	107.2
C14—C13—H13	107.7	C12'—C13'—H13'	107.2
C13—C14—C15	112.9 (10)	C13'—C14'—C15'	111 (2)
C13—C14—H14A	109.0	C13'—C14'—H14C	109.3
C15—C14—H14A	109.0	C15' - C14' - H14C	109.3
C13 - C14 - H14B	109.0	C13' - C14' - H14D	109.5
C_{15} C_{14} H_{14B}	100.0	C15' $C14'$ $H14D$	100.3
H_{14} C_{14} H_{14} H_{14}	107.0	$H_{14} = C_{14} = H_{14}$	109.5
$\frac{114}{14} - \frac{14}{14} - \frac{114}{14} = \frac{114}{14}$	107.0	$\frac{114}{114} - \frac{114}{114} - \frac{114}{114}$	100.0
C14 - C15 - C16	109.0 (8)	$C16^{}-C15^{}-C14^{}$	112.4 (17)
CI4—CI5—HI5A	109.9	C16'-C15'-H15C	109.1
С16—С15—Н15А	109.9	C14'—C15'—H15C	109.1
C14—C15—H15B	109.9	C16'—C15'—H15D	109.1
C16—C15—H15B	109.9	C14'—C15'—H15D	109.1
H15A—C15—H15B	108.3	H15C—C15′—H15D	107.9
C17—C16—C15	112.9 (11)	C17'—C16'—C15'	106 (2)
C17—C16—H16A	109.0	C17'—C16'—H16C	110.6
C15—C16—H16A	109.0	C15'—C16'—H16C	110.6
C17—C16—H16B	109.0	C17'—C16'—H16D	110.5
C15—C16—H16B	109.0	C15'—C16'—H16D	110.6
H16A—C16—H16B	107.8	H16C—C16′—H16D	108.7
C16—C17—C18	108.3 (9)	C16'—C17'—C18'	115.5 (19)
С16—С17—Н17А	110.0	C16'—C17'—H17C	108.4
C18 - C17 - H17A	110.0	C18' - C17' - H17C	108.4
C16 - C17 - H17B	110.0	C16' - C17' - H17D	108.4
C18 C17 H17B	110.0	$C_{10} = C_{17} = H_{17}$	108.4
H17A C17 H17D	10.0	$H_{17} = C_{17} = H_{17}$	107.5
$\Pi / A = C I / = \Pi / B$	112.0 (0)	$n_1/C - C_1/ - n_1/D$	107.5
C13 - C18 - C17	112.9 (9)	C13 - C18 - C17	109 (2)
C13—C18—H18A	109.0	$C13^{}$ $C18^{}$ H18C	109.9
C17—C18—H18A	109.0	C1/'C18'H18C	109.9
C13—C18—H18B	109.0	C13'—C18'—H18D	109.9
C17—C18—H18B	109.0	C17'—C18'—H18D	109.9
H18A—C18—H18B	107.8	H18C—C18′—H18D	108.3
C12—N1—C11	124.0 (12)	C11'—N2'—C1'	114.4 (14)
C12—N1—H1A	117 (3)	C11'—N2'—H2A	110 (3)
C11—N1—H1A	107 (3)	C1'—N2'—H2A	96 (3)
C11—N2—C1	120.8 (9)	C11'—N1'—C12'	117 (2)
C11—N2—H2A	113 (3)	C11′—N1′—H1A	106 (3)

C1—N2—H2A	119 (3)	C12'—N1'—H1A	108 (3)
C10—C1—C2—C3	-2 (3)	C10'—C1'—C2'—C3'	1 (4)
N2-C1-C2-C3	178.3 (12)	N2'-C1'-C2'-C3'	179 (3)
C1—C2—C3—C4	1.6 (19)	C1'—C2'—C3'—C4'	-1 (4)
C2—C3—C4—C5	-0.9 (17)	C2'—C3'—C4'—C5'	2 (3)
C3—C4—C5—C6	180.0 (11)	C3'—C4'—C5'—C6'	177 (3)
C3—C4—C5—C10	0(2)	C3'—C4'—C5'—C10'	-3 (4)
C10—C5—C6—C7	0(2)	C10'—C5'—C6'—C7'	0 (4)
C4—C5—C6—C7	180.0 (14)	C4'—C5'—C6'—C7'	180 (3)
C5—C6—C7—C8	0(2)	C5'—C6'—C7'—C8'	-3 (5)
C6—C7—C8—C9	-3 (3)	C6'—C7'—C8'—C9'	11 (5)
C7—C8—C9—C10	6 (3)	C7'—C8'—C9'—C10'	-16 (4)
C2-C1-C10-C5	1 (3)	C6'—C5'—C10'—C1'	-177 (3)
N2-C1-C10-C5	-178.9 (14)	C4'—C5'—C10'—C1'	3 (4)
C2-C1-C10-C9	177.1 (18)	C6'—C5'—C10'—C9'	-5 (4)
N2-C1-C10-C9	-3 (3)	C4′—C5′—C10′—C9′	174 (3)
C6-C5-C10-C1	180.0 (16)	C2'—C1'—C10'—C5'	-2 (4)
C4—C5—C10—C1	0 (3)	N2'—C1'—C10'—C5'	180 (2)
C6—C5—C10—C9	4 (2)	C2'—C1'—C10'—C9'	-174 (3)
C4—C5—C10—C9	-176.5 (16)	N2'—C1'—C10'—C9'	7 (3)
C8—C9—C10—C1	178 (2)	C8′—C9′—C10′—C5′	13 (4)
C8—C9—C10—C5	-7 (3)	C8′—C9′—C10′—C1′	-175 (3)
O1—C12—C13—C18	24 (2)	O1'—C12'—C13'—C14'	-78 (3)
N1-C12-C13-C18	-170.9 (14)	N1'—C12'—C13'—C14'	123 (3)
O1—C12—C13—C14	-100.1 (15)	O1'—C12'—C13'—C18'	48 (4)
N1—C12—C13—C14	65.1 (18)	N1′—C12′—C13′—C18′	-111 (3)
C12—C13—C14—C15	179.2 (11)	C18'—C13'—C14'—C15'	53 (3)
C18—C13—C14—C15	54.0 (16)	C12'—C13'—C14'—C15'	179.9 (19)
C13—C14—C15—C16	-54.8 (15)	C13'—C14'—C15'—C16'	-57 (3)
C14—C15—C16—C17	57.3 (14)	C14'—C15'—C16'—C17'	57 (3)
C15—C16—C17—C18	-57.7 (13)	C15'—C16'—C17'—C18'	-59 (3)
C12—C13—C18—C17	-178.7 (11)	C14'—C13'—C18'—C17'	-51 (3)
C14—C13—C18—C17	-54.8 (16)	C12'—C13'—C18'—C17'	-175 (2)
C16—C17—C18—C13	56.1 (14)	C16'—C17'—C18'—C13'	56 (3)
O1—C12—N1—C11	-27 (2)	N1'—C11'—N2'—C1'	-120 (2)
C13—C12—N1—C11	167.2 (13)	S1'-C11'-N2'-C1'	43 (2)
N2-C11-N1-C12	23 (2)	C2'—C1'—N2'—C11'	66 (4)
S1—C11—N1—C12	-167.5 (12)	C10'—C1'—N2'—C11'	-116.0 (19)
N1—C11—N2—C1	159.0 (11)	N2'—C11'—N1'—C12'	-43 (3)
S1—C11—N2—C1	-9.9 (13)	S1'—C11'—N1'—C12'	153.6 (19)
C10—C1—N2—C11	-80 (2)	01′—C12′—N1′—C11′	46 (4)
C2—C1—N2—C11	99.7 (12)	C13'—C12'—N1'—C11'	-156 (2)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid	of the	C1-C5/C10	ring.
---------------------	--------	-----------	-------

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H…A
N2—H2A…O1	0.88 (4)	1.97 (4)	2.667 (15)	135 (4)
N2'—H2A…O1'	0.93 (4)	2.03 (4)	2.62 (3)	120 (4)
N1—H1A····S1 ⁱ	0.87 (3)	2.53 (3)	3.370 (19)	161 (4)
$N1' - H1A \cdots S1'^{i}$	0.90 (4)	2.59 (4)	3.44 (3)	159 (4)
C18—H18 B ···Cg1 ⁱⁱ	0.90	2.66	3.527 (2)	148

Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+2, -y+1, -z+1.