

CRYSTALLOGRAPHIC

OPEN a ACCESS

ISSN 2056-9890

Crystal structure of 3,9,9-trimethyl-2,3,3a,4,9,9a-hexahydro-1H-cyclopenta-[b]quinolin-4-ium chloride

G. Sridhar,^a* I. Mohammed Bilal,^a D. Easwaramoorthy,^a S. Kutti Rani^a and K. Anand Solomon^b

^aDepartment of Chemistry, B.S. Abdur Rahman University, Chennai 600 048, India, and ^bDepartment of Chemistry, Sri Sathya Sai Center for Human Excellence, Karnataka 562 101, India. *Correspondence e-mail: sridhargopalrao@yahoo.com

Received 17 June 2015; accepted 21 June 2015

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

The title molecular salt, $C_{15}H_{22}N^+ \cdot Cl^-$, arose as an unexpected product of the reaction between aniline and melanol in the presence of HCl. The central heterocyclic ring has a half-chair conformation and the five-membered ring has an envelope conformation, with the C atom linked to the N atom as the flap. In the crystal, the ions are linked by N-H···Cl hydrogen bonds, generating chains propagating in the [100] direction. The crystal studied was a merohedral twin with a 0.64 (3):0.36 (3) domain ratio.

Keywords: crystal structure; quinoline; N—H···Cl hydrogen bonds.

CCDC reference: 1407884

1. Related literature

For biological background, see: Szymański et al. (2012). For further synthetic details, see: Alaghaz et al. (2014).

2. Experimental

2.1. Crystal data

$C_{15}H_{22}N^+ \cdot Cl^-$
$M_r = 251.78$
Orthorhombic, $P2_12_12_1$
a = 7.0291 (5) Å
b = 10.3313 (8) Å
c = 18.9425 (14) Å

2.2. Data collection

2.3. Refinement

S = 0.953334 reflections 165 parameters

refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.123$

Oxford Diffraction Xcalibur Sapphire3 diffractometer 7372 measured reflections 3334 independent reflections $V = 1375.60 (18) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 0.26 \text{ mm}^{-1}$ T = 298 K $0.35 \times 0.30 \times 0.30$ mm

3013 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.028$ Standard reflections: 0

$\Delta \rho_{\rm max} = 0.26 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$
Absolute structure: Flack x
determined using 1165 quotients
$[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons
et al., 2013)
Absolute structure parameter:
0.36 (3)

Table 1 Hydrogen-bond geometry (Å, °).

H atoms treated by a mixture of independent and constrained

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1A \cdots Cl1$ $N1 - H1B \cdots Cl1^{i}$	1.05 (4) 0.93 (3)	2.07 (4) 2.17 (3)	3.1201 (19) 3.0943 (19)	173 (3) 174 (3)
Sermene et an et al et (i) et	1 1 3	1.1		

Symmetry code: (i) $x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1$.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrvsAlis PRO; data reduction: CrvsAlis PRO; program(s) used to solve structure: SHELXS7 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Acknowledgements

SG acknowledges Dr Sriman Narayanan, Professor & Head, Department of Analytical Chemistry, University of Madras, for fruitful discussions.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7450).

References

Alaghaz, A. M. A., Ammar, Y. A., Bayoumi, H. A. & Aldhlmani, S. A. (2014). J. Mol. Struct. 1074, 359-375.

- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.

Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

Szymański, P., Lázničková, A., Lázniček, M., Bajda, M., Malawska, B., Markowicz, M. & Mikiciuk-Olasik, E. (2012). Int. J. Mol. Sci. 13, 10067– 10090.

supporting information

Acta Cryst. (2015). E71, o525-o526 [doi:10.1107/S2056989015011858]

Crystal structure of 3,9,9-trimethyl-2,3,3a,4,9,9a-hexahydro-1*H*-cyclopenta[*b*]quinolin-4-ium chloride

G. Sridhar, I. Mohammed Bilal, D. Easwaramoorthy, S. Kutti Rani and K. Anand Solomon

S1. Introduction

Tacrine was the drug approved by the United States Food and Drug Administration in 1993 for the palliative treatment of Alzheimer's Disease. The derivatives of the title compound, which is a congener of tacrine, has also been reported to be effective anti-alzheimeric agents (Szymanski *et al.*, 2012). In this salt the N atom is protonated with sp3 hybridization and with a tetrahedral geometry. In the crystal, the molecules are linked via N—H···Cl bonds forming chains propagating along the a axis direction. The five membered ring adopts an envelope conformation, while the six-membered non aromatic ring adopts a twist-chair conformation as evinced from Puckering amplitude θ =46.50 (0.15), Ψ = -91.77(0.26), QT=0.5104 (1).

S2. Experimental

S2.1. Synthesis and crystallization

The quinoline derivative was prepared by the condensation 2,6-dimethyl-5- heptenaldehyde and aniline in 1:1 molar ratio by refluxing in propan-2-ol using HCl as a catalyst. The mixture was left under reflux for 3 h.

The solution was then left at room temperature. The solid product formed was separated by filtration, purified by crystallized with ethanol and washed with acetone and then dried in a vacuum over anhydrous calcium chloride (Alaghaz *et al.*, 2014). The beige coloured product was formed in 80% yield.

S2.2. Refinement

The C-bound H atoms were included in calculated positions and treated as riding atoms: C-H = 0.93 Å with Uiso(H) = 1.2Ueq(C).

Figure 1 *ORTEP* diagram of the title compound drawn at 30% probability

Figure 2

Packing diagram of the molecule viewed down 'b' axis

3,9,9-Trimethyl-2,3,3a,4,9,9a-hexahydro-1*H*-cyclopenta[*b*]quinolin-4-ium chloride

Crystal data	
$C_{15}H_{22}N^{+} \cdot Cl^{-}$ $M_{r} = 251.78$ Orthorhombic, $P2_{1}2_{1}2_{1}$ $a = 7.0291 (5) Å$ $b = 10.3313 (8) Å$ $c = 18.9425 (14) Å$ $V = 1375.60 (18) Å^{3}$ $Z = 4$ $F(000) = 544$	$D_x = 1.216 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 2.0-25^{\circ}$ $\mu = 0.26 \text{ mm}^{-1}$ T = 298 K Block, colourless $0.35 \times 0.30 \times 0.30 \text{ mm}$
Data collection	
 Oxford Diffraction Xcalibur Sapphire3 diffractometer ω scans 7372 measured reflections 3334 independent reflections 3013 reflections with I > 2σ(I) 	$R_{int} = 0.028$ $\theta_{max} = 28.5^{\circ}, \ \theta_{min} = 2.2^{\circ}$ $h = -9 \rightarrow 9$ $k = -13 \rightarrow 9$ $l = -10 \rightarrow 24$

Refinement

Refinement on F^2	H atoms treated by a mixture of independent
Least-squares matrix: full	and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.039$	$w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$
$wR(F^2) = 0.123$	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 0.95	$(\Delta/\sigma)_{ m max} < 0.001$
3334 reflections	$\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$
165 parameters	$\Delta \rho_{\rm min} = -0.23$ e Å ⁻³
0 restraints	Absolute structure: Flack x determined using
Hydrogen site location: mixed	1165 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et</i>
	al., 2013)
	Absolute structure parameter: 0.36 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.15461 (9)	0.64944 (6)	0.56931 (3)	0.0429 (2)	
N1	0.4133 (3)	0.60045 (17)	0.43815 (9)	0.0287 (4)	
C2	0.5014 (3)	0.4292 (2)	0.31431 (12)	0.0311 (5)	
C3	0.6364 (3)	0.4629 (2)	0.37502 (12)	0.0306 (4)	
H3	0.6958	0.5458	0.3630	0.037*	
C4	0.3378 (3)	0.5258 (2)	0.31593 (10)	0.0282 (4)	
C5	0.2938 (3)	0.6012 (2)	0.37467 (11)	0.0272 (4)	
C6	0.5333 (3)	0.4825 (2)	0.44441 (11)	0.0284 (4)	
H6	0.4519	0.4074	0.4539	0.034*	
C7	0.1374 (3)	0.6827 (2)	0.37588 (13)	0.0360 (5)	
H7	0.1104	0.7308	0.4162	0.043*	
C8	0.0217 (3)	0.6927 (3)	0.31749 (14)	0.0409 (6)	
H8	-0.0835	0.7473	0.3181	0.049*	
C9	0.6887 (4)	0.4896 (2)	0.49987 (12)	0.0377 (5)	
H9	0.7489	0.5750	0.4975	0.045*	
C10	0.7987 (4)	0.3694 (3)	0.39459 (15)	0.0497 (7)	
H10A	0.7630	0.2806	0.3844	0.060*	
H10B	0.9133	0.3901	0.3684	0.060*	
C11	0.2179 (3)	0.5383 (3)	0.25764 (12)	0.0375 (5)	
H11	0.2427	0.4897	0.2173	0.045*	
C12	0.0635 (3)	0.6210 (3)	0.25812 (14)	0.0420 (6)	
H12	-0.0127	0.6283	0.2182	0.050*	
C13	0.6117 (4)	0.4384 (3)	0.24472 (13)	0.0463 (6)	
H13A	0.6450	0.5271	0.2359	0.070*	
H13B	0.5338	0.4068	0.2068	0.070*	
H13C	0.7254	0.3873	0.2479	0.070*	
C14	0.6223 (4)	0.4657 (3)	0.57507 (13)	0.0518 (7)	
H14A	0.5301	0.5300	0.5879	0.078*	

H14B	0.7291	0.4707	0.6065	0.078*	
H14C	0.5659	0.3813	0.5783	0.078*	
C15	0.4183 (5)	0.2923 (2)	0.32124 (16)	0.0508 (7)	
H15A	0.5201	0.2305	0.3240	0.076*	
H15B	0.3407	0.2736	0.2808	0.076*	
H15C	0.3423	0.2871	0.3632	0.076*	
C16	0.8301 (5)	0.3879 (3)	0.47281 (15)	0.0598 (8)	
H16A	0.9594	0.4165	0.4815	0.072*	
H16B	0.8107	0.3066	0.4974	0.072*	
H1A	0.334 (6)	0.613 (4)	0.4846 (18)	0.079 (11)*	
H1B	0.490 (4)	0.673 (3)	0.4388 (16)	0.047 (8)*	

Atomic displacement parameters $(Å^2)$

	I 711	I /22	I 733	I 712	1713	<i>L</i> /23
	U	U	0	0	0	U
Cl1	0.0449 (3)	0.0503 (3)	0.0335 (3)	0.0088 (3)	0.0067 (2)	0.0008 (3)
N1	0.0305 (8)	0.0319 (8)	0.0238 (9)	0.0006 (7)	-0.0019 (7)	-0.0030(7)
C2	0.0361 (10)	0.0296 (10)	0.0275 (11)	0.0002 (8)	0.0007 (8)	-0.0042 (8)
C3	0.0310 (10)	0.0334 (10)	0.0275 (11)	0.0030 (8)	0.0009 (8)	-0.0018 (8)
C4	0.0277 (9)	0.0315 (9)	0.0255 (10)	-0.0056 (9)	0.0017 (8)	-0.0010 (8)
C5	0.0273 (9)	0.0319 (9)	0.0223 (10)	-0.0029 (7)	-0.0007 (7)	0.0001 (8)
C6	0.0324 (10)	0.0280 (9)	0.0247 (10)	0.0000 (8)	-0.0022 (7)	0.0014 (8)
C7	0.0354 (11)	0.0402 (11)	0.0324 (11)	0.0052 (9)	0.0016 (9)	-0.0012 (9)
C8	0.0300 (10)	0.0514 (14)	0.0412 (14)	0.0054 (10)	-0.0023 (9)	0.0065 (11)
C9	0.0411 (12)	0.0390 (11)	0.0330 (11)	0.0053 (10)	-0.0102 (9)	-0.0005 (10)
C10	0.0461 (13)	0.0571 (16)	0.0460 (15)	0.0197 (12)	-0.0060 (11)	-0.0060 (13)
C11	0.0375 (11)	0.0471 (13)	0.0278 (11)	-0.0064 (10)	-0.0034 (9)	-0.0041 (10)
C12	0.0338 (10)	0.0564 (15)	0.0358 (12)	-0.0054 (11)	-0.0087 (9)	0.0064 (11)
C13	0.0475 (14)	0.0614 (16)	0.0301 (12)	0.0111 (12)	0.0061 (10)	-0.0058 (12)
C14	0.0647 (17)	0.0607 (16)	0.0299 (13)	0.0123 (14)	-0.0096 (12)	0.0050 (12)
C15	0.0624 (16)	0.0310 (11)	0.0591 (19)	-0.0069 (12)	-0.0096 (14)	-0.0063 (12)
C16	0.0581 (16)	0.078 (2)	0.0430 (15)	0.0322 (17)	-0.0127 (13)	-0.0071 (15)

Geometric parameters (Å, °)

N1—C5	1.467 (3)	C9—C14	1.519 (3)
N1—C6	1.487 (3)	C9—C16	1.534 (4)
N1—H1A	1.05 (4)	С9—Н9	0.9800
N1—H1B	0.93 (3)	C10—C16	1.510 (4)
C2—C4	1.523 (3)	C10—H10A	0.9700
C2—C3	1.531 (3)	C10—H10B	0.9700
C2—C13	1.532 (3)	C11—C12	1.381 (3)
C2—C15	1.536 (3)	C11—H11	0.9300
С3—С6	1.515 (3)	C12—H12	0.9300
C3—C10	1.540 (3)	C13—H13A	0.9600
С3—Н3	0.9800	C13—H13B	0.9600
C4—C5	1.393 (3)	C13—H13C	0.9600
C4—C11	1.395 (3)	C14—H14A	0.9600

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C7	1.386 (3)	C14—H14B	0.9600
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С6—С9	1.518 (3)	C14—H14C	0.9600
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С6—Н6	0.9800	C15—H15A	0.9600
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—C8	1.376 (3)	C15—H15B	0.9600
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С7—Н7	0.9300	C15—H15C	0.9600
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—C12	1.378 (4)	C16—H16A	0.9700
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С8—Н8	0.9300	C16—H16B	0.9700
$\begin{array}{llllllllllllllllllllllllllllllllllll$				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C5—N1—C6	113.23 (16)	С6—С9—Н9	108.8
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C5—N1—H1A	112 (2)	С14—С9—Н9	108.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—N1—H1A	110 (2)	С16—С9—Н9	108.8
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C5—N1—H1B	109.9 (18)	C16—C10—C3	105.4 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—N1—H1B	109.6 (18)	C16—C10—H10A	110.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H1A—N1—H1B	102 (3)	C3—C10—H10A	110.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C2—C3	107.70 (17)	C16—C10—H10B	110.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C2—C13	111.01 (19)	C3—C10—H10B	110.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C2—C13	108.59 (19)	H10A-C10-H10B	108.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C2—C15	108.32 (18)	C12—C11—C4	121.8 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C2—C15	112.4 (2)	C12—C11—H11	119.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13—C2—C15	108.9 (2)	C4—C11—H11	119.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—C3—C2	112.69 (18)	C8—C12—C11	120.3 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—C3—C10	103.27 (18)	C8—C12—H12	119.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C3—C10	119.81 (19)	C11—C12—H12	119.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С6—С3—Н3	106.8	C2—C13—H13A	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С2—С3—Н3	106.8	C2—C13—H13B	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С10—С3—Н3	106.8	H13A—C13—H13B	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C4—C11	116.5 (2)	C2—C13—H13C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C4—C2	123.37 (19)	H13A—C13—H13C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—C4—C2	120.08 (19)	H13B—C13—H13C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—C5—C4	122.0 (2)	C9—C14—H14A	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—C5—N1	116.36 (19)	C9—C14—H14B	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C5—N1	121.67 (18)	H14A—C14—H14B	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C6—C3	108.17 (16)	C9—C14—H14C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C6—C9	115.09 (18)	H14A—C14—H14C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C6—C9	105.22 (18)	H14B—C14—H14C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C6—H6	109.4	C2—C15—H15A	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С3—С6—Н6	109.4	C2—C15—H15B	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С9—С6—Н6	109.4	H15A—C15—H15B	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—C7—C5	120.1 (2)	C2—C15—H15C	109.5
C5—C7—H7 120.0 H15B—C15—H15C 109.5 C7—C8—C12 119.3 (2) C10—C16—C9 108.7 (2) C7—C8—H8 120.3 C10—C16—H16A 110.0 C12—C8—H8 120.3 C9—C16—H16A 110.0 C6—C9—C14 114.8 (2) C10—C16—H16B 110.0 C6—C9—C16 101.64 (19) C9—C16—H16B 110.0 C14—C9—C16 113.6 (2) H16A—C16—H16B 108.3	С8—С7—Н7	120.0	H15A—C15—H15C	109.5
C7—C8—C12 119.3 (2) C10—C16—C9 108.7 (2) C7—C8—H8 120.3 C10—C16—H16A 110.0 C12—C8—H8 120.3 C9—C16—H16A 110.0 C6—C9—C14 114.8 (2) C10—C16—H16B 110.0 C6—C9—C16 101.64 (19) C9—C16—H16B 110.0 C14—C9—C16 113.6 (2) H16A—C16—H16B 108.3	С5—С7—Н7	120.0	H15B—C15—H15C	109.5
C7—C8—H8120.3C10—C16—H16A110.0C12—C8—H8120.3C9—C16—H16A110.0C6—C9—C14114.8 (2)C10—C16—H16B110.0C6—C9—C16101.64 (19)C9—C16—H16B110.0C14—C9—C16113.6 (2)H16A—C16—H16B108.3	C7—C8—C12	119.3 (2)	C10—C16—C9	108.7 (2)
C12—C8—H8120.3C9—C16—H16A110.0C6—C9—C14114.8 (2)C10—C16—H16B110.0C6—C9—C16101.64 (19)C9—C16—H16B110.0C14—C9—C16113.6 (2)H16A—C16—H16B108.3	С7—С8—Н8	120.3	C10—C16—H16A	110.0
C6—C9—C14114.8 (2)C10—C16—H16B110.0C6—C9—C16101.64 (19)C9—C16—H16B110.0C14—C9—C16113.6 (2)H16A—C16—H16B108.3	С12—С8—Н8	120.3	C9—C16—H16A	110.0
C6—C9—C16101.64 (19)C9—C16—H16B110.0C14—C9—C16113.6 (2)H16A—C16—H16B108.3	C6—C9—C14	114.8 (2)	C10-C16-H16B	110.0
C14—C9—C16 113.6 (2) H16A—C16—H16B 108.3	C6—C9—C16	101.64 (19)	C9—C16—H16B	110.0
	C14—C9—C16	113.6 (2)	H16A—C16—H16B	108.3

$C_{4} - C_{2} - C_{3} - C_{6}$	484(2)	$C_{2} - C_{3} - C_{6} - N_{1}$	-66.8(2)
C_{13} C_{2} C_{3} C_{6}	168 67 (19)	C_{10} C_{3} C_{6} N_{1}	162 49 (19)
$C_{15} C_{2} C_{3} C_{6}$	-70.8(2)	C_{10} C_{2} C_{3} C_{6} C_{9}	162.49(19)
013-02-03-00	70.8 (2)	02-03-00-09	109.71 (19)
C4—C2—C3—C10	170.1 (2)	C10—C3—C6—C9	39.0 (2)
C13—C2—C3—C10	-69.6 (3)	C4—C5—C7—C8	-1.1 (3)
C15—C2—C3—C10	50.9 (3)	N1—C5—C7—C8	177.7 (2)
C3—C2—C4—C5	-17.9 (3)	C5—C7—C8—C12	0.0 (4)
C13—C2—C4—C5	-136.7 (2)	N1-C6-C9-C14	79.9 (3)
C15—C2—C4—C5	103.8 (2)	C3—C6—C9—C14	-161.2 (2)
C3—C2—C4—C11	164.75 (19)	N1-C6-C9-C16	-157.0 (2)
C13—C2—C4—C11	46.0 (3)	C3—C6—C9—C16	-38.0 (2)
C15—C2—C4—C11	-73.5 (3)	C6-C3-C10-C16	-23.7 (3)
C11—C4—C5—C7	1.2 (3)	C2-C3-C10-C16	-150.0 (3)
C2—C4—C5—C7	-176.2 (2)	C5-C4-C11-C12	-0.1 (3)
C11—C4—C5—N1	-177.55 (19)	C2-C4-C11-C12	177.3 (2)
C2-C4-C5-N1	5.1 (3)	C7—C8—C12—C11	1.1 (4)
C6—N1—C5—C7	159.69 (19)	C4—C11—C12—C8	-1.0 (4)
C6—N1—C5—C4	-21.5 (3)	C3—C10—C16—C9	0.4 (3)
C5—N1—C6—C3	50.1 (2)	C6-C9-C16-C10	22.9 (3)
C5—N1—C6—C9	167.43 (18)	C14—C9—C16—C10	146.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
N1—H1A····Cl1	1.05 (4)	2.07 (4)	3.1201 (19)	173 (3)
N1—H1 <i>B</i> ···Cl1 ⁱ	0.93 (3)	2.17 (3)	3.0943 (19)	174 (3)

Symmetry code: (i) x+1/2, -y+3/2, -z+1.