

CRYSTALLOGRAPHIC COMMUNICATIONS

Crystal structure of azimsulfuron

Youngeun Jeon, Jineun Kim,* Eunjin Kwon and Tae Ho Kim*

Department of Chemistry and Research Institute of Natural Sciences. Gyeongsang National University, Jinju 660-701, Republic of Korea. *Correspondence e-mail: thkim@gnu.ac.kr, jekim@gnu.ac.kr

Received 3 June 2015; accepted 6 June 2015

Edited by P. C. Healy, Griffith University, Australia

The title compound {systematic name: 1-(4,6-dimethoxypyrimidin-2-yl)-3-[1-methyl-4-(2-methyl-2H-tetrazol-5-yl)pyrazol-5-ylsulfonyl]urea}, $C_{13}H_{16}N_{10}O_5S$, is a sulfonylurea herbicide. In this compound, the dihedral angles between the planes of the central pyrazole and the terminal dimethoxypyrimidine and tetrazole rings are 79.10 (8) and 17.21 (16)°, respectively. In the crystal, $N-H \cdots O$ hydrogen bonds link adjacent molecules, forming $R_2^2(8)$ inversion dimers. In addition, weak $C-H \cdots O$ and $C-H \cdots N$ hydrogen bonds and weak $\pi - \pi$ interactions [ring centroid separation = 3.8255 (12) A] are present, resulting in a three-dimensional architecture.

Keywords: crystal structure; azimsulfuron; hydrogen bonding; herbicide.

CCDC reference: 1405357

1. Related literature

For information on the herbicidal properties of the title compound, see: Valle et al. (2006); Boschin et al. (2007). For a related crystal structure, see: Chopra et al. (2004).

2. Experimental

OPEN d ACCESS

2.1. Crystal data

$C_{13}H_{16}N_{10}O_5S$	$\gamma = 66.374 \ (3)^{\circ}$
$M_r = 424.42$	$V = 907.16 (14) \text{ Å}^3$
Triclinic, $P\overline{1}$	Z = 2
a = 8.5884 (7) Å	Mo $K\alpha$ radiation
b = 9.9165 (7) Å	$\mu = 0.23 \text{ mm}^{-1}$
c = 12.2788 (13) Å	$T = 173 { m K}$
$\alpha = 73.190 \ (5)^{\circ}$	$0.42 \times 0.10 \times 0.09 \text{ mm}$
$\beta = 75.819 \ (4)^{\circ}$	

2.2. Data collection

Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
$T_{\rm min} = 0.909, \ T_{\rm max} = 0.979$

2.3. Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.118$ S = 1.044123 reflections

16122 measured reflections 4123 independent reflections 3357 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.036$

266 parameters
H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.56 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.49 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N3-H3N\cdots O3^{i}$	0.88	2.09	2.877 (2)	149
$C1 - H1A \cdots O3^{ii}$	0.98	2.55	3.381 (3)	143
$C1 - H1C \cdots O4^{iii}$	0.98	2.44	3.225 (3)	137
$C11 - H11A \cdots N9^{iv}$	0.98	2.57	3.357 (3)	137
$C13 - H13B \cdots N6^{v}$	0.98	2.62	3.533 (3)	155
Symmetry codes: (i)	-x + 1, -y	+1, -z + 2;	(ii) $x + 1, y -$	- 1, z; (iii)
-x+2, -y+1, -z+2; (iv	x = 1, y + 1, x = 1, y = 1,	$z; (v) - x + 1, \cdot$	-y + 1, -z + 1.	

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2014R1A1A4A01009105).

Supporting information for this paper is available from the IUCr electronic archives (Reference: HG5444).

References

- Boschin, G., D'Agostina, A., Antonioni, C., Locati, D. & Arnoldi, A. (2007). *Chemosphere*, **68**, 1312–1317. Bruker (2013). *APEX2, SAINT* and *SADABS*. Bruker AXS Inc., Madison,
- Wisconsin, USA.
- Chopra, D., Mohan, T. P., Rao, K. S. & Guru Row, T. N. (2004). Acta Cryst. E60, o2418–o2420.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2005). *Acta Cryst.* **C71**, 3–8. Valle, A., Boschin, G., Negri, M., Abbruscato, P., Sorlini, C., D'Agostina, A. & Zanardini, E. (2006). J. Appl. Microbiol. 101, 443-452.

supporting information

Acta Cryst. (2015). E71, o470-o471 [doi:10.1107/S2056989015010968]

Crystal structure of azimsulfuron

Youngeun Jeon, Jineun Kim, Eunjin Kwon and Tae Ho Kim

S1. Comment

Azimsulfuron [systematic name: 1-(4,6-dimethoxypyrimidin-2-yl)-3-[1-methyl-4-(2-methyl-2*H*-tetrazol-5-yl)pyrazol-5ylsulfonyl]urea] is a sulfonylurea herbicide, a group of pesticides widely used all over the world for controlling weeds in several crops, rice, wheat, maize, barley, sugar beet, and tomato (Valle *et al.*, 2006). However, until now its crystal structure has not been reported. In the title compound (Fig. 1), the dihedral angles between the planes of the central pyrazol and the terminal dimethoxypyrimidinyl and tetrazol rings are 79.10 (8) and 17.21 (16)°, respectively. All bond lengths and bond angles are normal and comparable to those observed in similar crystal structures (Chopra *et al.*, 2004).

In the crystal structure (Fig. 2), molecules are linked by a pairs of N–H…O hydrogen bonds(Table 1), forming inversion dimmers with an $R_2^2(8)$ ring motif. In addition, weak C–H…O and C–H…N hydrogen bonding and weak intermolecular π – π interactions between the terminal tetrazol ring systems [Cg2…Cg2ⁱ = 3.8255 (12) Å] are present (Cg2 is the centroid of the N7–N8–N9–N10–C12 ring) [for symmetry codes: (i), -*x*, -*y* + 1, -*z* + 1].

S2. Experimental

The title compound was purchased from the Dr. Ehrenstorfer GmbH Company. Slow evaporation of a solution in CH_2Cl_2 gave single crystals suitable for X-ray analysis.

S3. Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(N-H) = 0.88 Å, $U_{iso} = 1.2U_{eq}(C)$ for urea N-H, d(C-H) = 0.98 Å, $U_{iso} = 1.5U_{eq}(C)$ for methyl group, d(C-H) = 0.95 Å, $U_{iso} = 1.2U_{eq}(C)$ for aromatic C-H.

Figure 1

The asymmetric unit of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.

Figure 2

Crystal packing viewed along the b axis. The hydrogen bonds are shown as dashed lines.

1-(4,6-Dimethoxypyrimidin-2-yl)-3-[1-methyl-4-(2-methyl-2H-tetrazol-5-yl)pyrazol-5-ylsulfonyl]urea

Crystal data	
$C_{13}H_{16}N_{10}O_5S$	Z = 2
$M_r = 424.42$	F(000) = 440
Triclinic, P1	$D_{\rm x} = 1.554 {\rm ~Mg} {\rm ~m}^{-3}$
a = 8.5884 (7) Å	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
b = 9.9165 (7) Å	Cell parameters from 4687 reflections
c = 12.2788 (13) Å	$\theta = 2.3 - 26.9^{\circ}$
$\alpha = 73.190 \ (5)^{\circ}$	$\mu = 0.23 \text{ mm}^{-1}$
$\beta = 75.819 \ (4)^{\circ}$	T = 173 K
$\gamma = 66.374 \ (3)^{\circ}$	Block, colourless
$V = 907.16 (14) \text{ Å}^3$	$0.42\times0.10\times0.09~mm$
Data collection	
Bruker APEXII CCD	Absorption correction: multi-scan
diffractometer	(SADABS; Bruker, 2013)
φ and ω scans	$T_{\rm min} = 0.909, \ T_{\rm max} = 0.979$

16122 measured reflections	$\theta_{\rm max} = 27.5^{\circ}, \theta_{\rm min} = 1.8^{\circ}$
4123 independent reflections	$h = -11 \rightarrow 11$
3357 reflections with $I > 2\sigma(I)$	$k = -12 \rightarrow 12$
$R_{\rm int} = 0.036$	$l = -15 \rightarrow 15$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.045$	H-atom parameters constrained
$wR(F^2) = 0.118$	$w = 1/[\sigma^2(F_o^2) + (0.0543P)^2 + 0.5222P]$
S = 1.04	where $P = (F_o^2 + 2F_c^2)/3$
4123 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
266 parameters	$\Delta \rho_{\rm max} = 0.56 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.49 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.74797 (6)	0.79478 (5)	0.73248 (4)	0.02370 (14)	
01	1.10371 (18)	-0.02315 (15)	1.11503 (12)	0.0280 (3)	
02	1.32890 (18)	0.30498 (17)	0.81805 (13)	0.0356 (4)	
03	0.53148 (17)	0.65412 (16)	0.91451 (13)	0.0326 (4)	
04	0.6527 (2)	0.91670 (16)	0.78851 (14)	0.0379 (4)	
05	0.90400 (19)	0.79382 (17)	0.65785 (14)	0.0361 (4)	
N1	0.9372 (2)	0.21202 (18)	1.04786 (14)	0.0236 (4)	
N2	1.0436 (2)	0.38255 (18)	0.89699 (14)	0.0238 (4)	
N3	0.7525 (2)	0.44579 (18)	0.97760 (14)	0.0254 (4)	
H3N	0.6779	0.4182	1.0336	0.031*	
N4	0.8032 (2)	0.63736 (17)	0.82771 (13)	0.0214 (3)	
H4N	0.9133	0.5838	0.8284	0.026*	
N5	0.4566 (2)	0.88624 (18)	0.63630 (16)	0.0303 (4)	
N6	0.3789 (2)	0.8477 (2)	0.57414 (18)	0.0394 (5)	
N7	0.7377 (2)	0.40229 (17)	0.58472 (14)	0.0247 (4)	
N8	0.8855 (2)	0.28937 (17)	0.59920 (14)	0.0243 (4)	
N9	0.9977 (2)	0.32420 (18)	0.63093 (16)	0.0298 (4)	
N10	0.9232 (2)	0.46781 (18)	0.63767 (15)	0.0280 (4)	
C1	1.2673 (3)	-0.1457 (2)	1.11176 (19)	0.0308 (5)	
H1A	1.3074	-0.1629	1.0333	0.046*	
H1B	1.2544	-0.2373	1.1643	0.046*	
H1C	1.3512	-0.1201	1.1355	0.046*	
C2	1.0957 (2)	0.1075 (2)	1.04081 (16)	0.0228 (4)	
C3	1.2338 (2)	0.1330 (2)	0.96351 (17)	0.0262 (4)	
H3	1.3452	0.0575	0.9589	0.031*	
C4	1.1988 (2)	0.2757 (2)	0.89353 (17)	0.0244 (4)	

C5	0.9207 (2)	0.3420 (2)	0.97398 (16)	0.0215 (4)
C6	1.2928 (3)	0.4514 (3)	0.7412 (2)	0.0393 (6)
H6A	1.2067	0.4667	0.6948	0.059*
H6B	1.3985	0.4573	0.6904	0.059*
H6C	1.2486	0.5297	0.7861	0.059*
C7	0.6855 (2)	0.5842 (2)	0.90723 (16)	0.0231 (4)
C8	0.6097 (2)	0.7766 (2)	0.65845 (16)	0.0215 (4)
C9	0.4833 (3)	0.7125 (2)	0.5569 (2)	0.0316 (5)
H9	0.4601	0.6571	0.5153	0.038*
C10	0.6314 (2)	0.6612 (2)	0.60716 (16)	0.0212 (4)
C11	0.3620 (3)	1.0278 (3)	0.6757 (3)	0.0496 (7)
H11A	0.2815	1.0973	0.6224	0.074*
H11B	0.4431	1.0732	0.6783	0.074*
H11C	0.2981	1.0074	0.7527	0.074*
C12	0.7652 (2)	0.5127 (2)	0.60905 (16)	0.0204 (4)
C13	0.9157 (3)	0.1370 (2)	0.5897 (2)	0.0326 (5)
H13A	1.0396	0.0807	0.5778	0.049*
H13B	0.8653	0.1424	0.5244	0.049*
H13C	0.8625	0.0857	0.6606	0.049*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
S1	0.0261 (3)	0.0177 (2)	0.0299 (3)	-0.00848 (19)	-0.0094 (2)	-0.00349 (18)
O1	0.0263 (7)	0.0221 (7)	0.0311 (8)	-0.0045 (6)	-0.0073 (6)	-0.0024 (6)
O2	0.0173 (7)	0.0365 (8)	0.0414 (9)	-0.0065 (6)	-0.0006 (6)	0.0009 (7)
O3	0.0177 (7)	0.0287 (7)	0.0380 (8)	-0.0007 (6)	0.0005 (6)	-0.0025 (6)
O4	0.0478 (10)	0.0220 (7)	0.0494 (9)	-0.0038 (7)	-0.0234 (8)	-0.0146 (7)
O5	0.0301 (8)	0.0364 (8)	0.0425 (9)	-0.0205 (7)	-0.0075 (7)	0.0047 (7)
N1	0.0213 (8)	0.0249 (8)	0.0240 (8)	-0.0068 (7)	-0.0050 (7)	-0.0050 (6)
N2	0.0176 (8)	0.0255 (8)	0.0253 (8)	-0.0046 (7)	-0.0039 (7)	-0.0049 (7)
N3	0.0174 (8)	0.0254 (8)	0.0260 (8)	-0.0041 (7)	0.0002 (7)	-0.0024 (7)
N4	0.0162 (7)	0.0200 (7)	0.0251 (8)	-0.0028 (6)	-0.0050 (6)	-0.0042 (6)
N5	0.0265 (9)	0.0225 (8)	0.0423 (10)	0.0018 (7)	-0.0164 (8)	-0.0132 (7)
N6	0.0336 (10)	0.0331 (10)	0.0538 (12)	0.0015 (8)	-0.0243 (9)	-0.0174 (9)
N7	0.0234 (8)	0.0194 (7)	0.0312 (9)	-0.0041 (7)	-0.0068 (7)	-0.0078 (7)
N8	0.0260 (8)	0.0182 (7)	0.0293 (9)	-0.0047 (7)	-0.0063 (7)	-0.0087 (6)
N9	0.0252 (9)	0.0236 (8)	0.0411 (10)	-0.0021 (7)	-0.0102 (8)	-0.0131 (7)
N10	0.0233 (8)	0.0212 (8)	0.0409 (10)	-0.0024 (7)	-0.0103 (8)	-0.0121 (7)
C1	0.0283 (11)	0.0193 (9)	0.0403 (12)	-0.0001 (8)	-0.0127 (9)	-0.0055 (8)
C2	0.0234 (10)	0.0227 (9)	0.0236 (9)	-0.0058 (8)	-0.0094 (8)	-0.0056 (7)
C3	0.0180 (9)	0.0271 (10)	0.0298 (10)	-0.0027 (8)	-0.0066 (8)	-0.0060 (8)
C4	0.0165 (9)	0.0297 (10)	0.0262 (10)	-0.0071 (8)	-0.0042 (8)	-0.0056 (8)
C5	0.0173 (9)	0.0246 (9)	0.0228 (9)	-0.0049 (8)	-0.0044 (7)	-0.0076 (7)
C6	0.0283 (11)	0.0411 (13)	0.0386 (13)	-0.0145 (10)	0.0007 (10)	0.0043 (10)
C7	0.0200 (9)	0.0242 (9)	0.0230 (9)	-0.0051 (8)	-0.0010 (8)	-0.0075 (7)
C8	0.0213 (9)	0.0172 (8)	0.0249 (9)	-0.0028 (7)	-0.0079 (8)	-0.0050 (7)
C9	0.0297 (11)	0.0264 (10)	0.0419 (12)	-0.0028 (9)	-0.0170 (10)	-0.0124 (9)

supporting information

C10	0.0209 (9)	0.0187 (9)	0.0237 (9)	-0.0057 (7)	-0.0056 (8)	-0.0040 (7)
C11	0.0405 (14)	0.0317 (12)	0.0737 (18)	0.0128 (11)	-0.0255 (13)	-0.0302 (12)
C12	0.0206 (9)	0.0198 (8)	0.0219 (9)	-0.0056 (7)	-0.0053 (7)	-0.0066 (7)
C13	0.0393 (12)	0.0181 (9)	0.0415 (12)	-0.0063 (9)	-0.0074 (10)	-0.0125 (8)

Geometric parameters (Å, °)

S1—O4	1.4201 (15)	N8—N9	1.314 (2)
S1—O5	1.4243 (16)	N8—C13	1.462 (2)
S1—N4	1.6284 (16)	N9—N10	1.325 (2)
S1—C8	1.751 (2)	N10-C12	1.350 (2)
O1—C2	1.338 (2)	C1—H1A	0.9800
01—C1	1.444 (2)	C1—H1B	0.9800
O2—C4	1.337 (2)	C1—H1C	0.9800
O2—C6	1.444 (3)	C2—C3	1.387 (3)
O3—C7	1.217 (2)	C3—C4	1.383 (3)
N1-C5	1.321 (2)	С3—Н3	0.9500
N1-C2	1.341 (2)	C6—H6A	0.9800
N2-C4	1.330 (2)	C6—H6B	0.9800
N2C5	1.342 (2)	С6—Н6С	0.9800
N3—C7	1.373 (2)	C8—C10	1.389 (3)
N3—C5	1.397 (2)	C9—C10	1.393 (3)
N3—H3N	0.8800	С9—Н9	0.9500
N4—C7	1.378 (2)	C10—C12	1.459 (2)
N4—H4N	0.8800	C11—H11A	0.9800
N5—N6	1.340 (3)	C11—H11B	0.9800
N5—C8	1.358 (2)	C11—H11C	0.9800
N5-C11	1.466 (3)	C13—H13A	0.9800
N6—C9	1.325 (3)	C13—H13B	0.9800
N7—N8	1.324 (2)	C13—H13C	0.9800
N7—C12	1.332 (2)		
04 81 05	110 58 (10)	N2 C4 C3	123 37 (18)
04—51—05 04 \$1 N4	119.36 (10)	$\Omega_2 = C_4 = C_3$	125.57(18) 117.42(17)
04-31-14	109.80(9) 104.30(9)	N1 C5 N2	117.43(17) 127.80(17)
03 - 31 - 104	104.30(9) 107.79(9)	N1 = C5 = N2	127.89(17) 114.04(17)
04-31-08	107.79(9) 109.46(10)	N2_C5_N3	118.05 (16)
N4 S1 C8	107.40 (10)	$\Omega_2 = C_5 = N_5$	109 5
$C_{2} = 01 = C_{1}$	117.09 (16)	$O_2 - C_6 - H_{6B}$	109.5
$C_{2} = 01 = C_{1}$	118.04 (16)	H6A-C6-H6B	109.5
$C_{1} = 02 = C_{0}$ $C_{2} = 02 = 0$	114 99 (17)	Ω^2 —C6—H6C	109.5
C_{4} N2 C_{5}	114.96 (16)	Н6А—С6—Н6С	109.5
$C_{7} = N_{2} = C_{5}$	129 98 (17)	H6R—C6—H6C	109.5
C7 - N3 - H3N	115.0	03-C7-N3	121 66 (18)
$C_5 - N_3 - H_3N$	115.0	03 - C7 - N4	122,49 (17)
C7-N4-S1	123 00 (13)	N3-C7-N4	115.85 (16)
C7-N4-H4N	118 5	N5-C8-C10	107.00 (17)
S1—N4—H4N	118.5	N5-C8-S1	122.90 (14)

N6—N5—C8	111.29 (16)	C10—C8—S1	130.02 (14)
N6—N5—C11	117.40 (17)	N6—C9—C10	111.85 (19)
C8—N5—C11	131.12 (18)	N6—C9—H9	124.1
C9—N6—N5	105.78 (17)	С10—С9—Н9	124.1
N8—N7—C12	101.76 (15)	C8—C10—C9	104.07 (16)
N9—N8—N7	113.84 (15)	C8—C10—C12	131.15 (18)
N9—N8—C13	123.11 (16)	C9—C10—C12	124.59 (18)
N7—N8—C13	122.87 (17)	N5—C11—H11A	109.5
N8—N9—N10	106.55 (15)	N5—C11—H11B	109.5
N9—N10—C12	105.48 (16)	H11A—C11—H11B	109.5
01—C1—H1A	109.5	N5—C11—H11C	109.5
O1—C1—H1B	109.5	H11A—C11—H11C	109.5
H1A—C1—H1B	109.5	H11B—C11—H11C	109.5
01—C1—H1C	109.5	N7—C12—N10	112.36 (16)
H1A—C1—H1C	109.5	N7—C12—C10	121.13 (17)
H1B—C1—H1C	109.5	N10-C12-C10	126.48 (17)
01—C2—N1	112.43 (17)	N8—C13—H13A	109.5
01-C2-C3	124 43 (17)	N8—C13—H13B	109.5
N1-C2-C3	123.14(18)	H13A—C13—H13B	109.5
C4-C3-C2	115.60(17)	N8—C13—H13C	109.5
C4-C3-H3	122.2	$H_{13}A - C_{13} - H_{13}C$	109.5
C_{2} C_{3} H_{3}	122.2	H_{13B} C_{13} H_{13C}	109.5
$N_{2}^{2} - C_{4}^{2} - O_{2}^{2}$	119 19 (17)		109.5
112 C4 02	119.19 (17)		
04 - 81 - N4 - C7	59 80 (18)	C5—N3—C7—N4	-7.5(3)
05-81-N4-C7	-170 87 (15)	S1—N4—C7—O3	-2.7(3)
C8 = S1 = N4 = C7	-55.81(17)	S1N4C7N3	17666(13)
C_{8} N5 N6 C_{9}	0.1(3)	N6-N5-C8-C10	0.1(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-175 A (2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	174.9(2)
$C12_N7_N8_N9$	0.4(2)	$N_{6} N_{5} C_{8} S_{1}$	177.18(16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(2)	C_{11} N5 C8 S1	-81(3)
N7 N8 N0 N10	-0.4(2)	$C_{11} = N_{3} = C_{6} = S_{1}$	0.1(3)
$\frac{11}{10} - \frac{10}{10} - 10$	-0.4(2) -17572(18)	04 - 31 - 06 - 103	13.0(2) -115 78 (18)
13 - 10 - 110 - 110	-1/3.73(10)	03-31-00	-113.76(16)
N8 - N9 - N10 - C12	0.2(2)	N4 S1 C8 C10	132.80(17)
C1 = 01 = C2 = K1	1/1.12(11)	04 - 51 - 68 - 610	-16/.94(18)
$C_1 = 0_1 = 0_2 = 0_3$	-1.3(3)	05-51-08-010	60.5 (2)
$C_{2} = 0$	-1/8.0/(16)	N4 - S1 - C8 - C10	-50.9 (2)
C_{3}	1.0 (3)	N5—N6—C9—C10	-0.4(3)
01-02-03-04	179.64 (18)	N5-C8-C10-C9	-0.3 (2)
N1-C2-C3-C4	0.7 (3)	S1—C8—C10—C9	-177.09 (17)
C5—N2—C4—O2	178.90 (17)	N5—C8—C10—C12	-175.5(2)
C5—N2—C4—C3	-0.2 (3)	S1—C8—C10—C12	7.8 (3)
C6—O2—C4—N2	-1.7 (3)	N6-C9-C10-C8	0.4 (3)
C6—O2—C4—C3	177.50 (19)	N6-C9-C10-C12	176.0 (2)
C2—C3—C4—N2	-1.1 (3)	N8—N7—C12—N10	-0.3 (2)
C2—C3—C4—O2	179.76 (18)	N8—N7—C12—C10	-178.32 (17)
C2—N1—C5—N2	-2.7 (3)	N9—N10—C12—N7	0.1 (2)
C2—N1—C5—N3	175.99 (17)	N9—N10—C12—C10	177.97 (18)

supporting information

C4—N2—C5—N1	2.3 (3)	C8—C10—C12—N7	159.2 (2)
C4—N2—C5—N3	-176.29 (17)	C9—C10—C12—N7	-15.0 (3)
C7—N3—C5—N1	-173.08 (19)	C8-C10-C12-N10	-18.5 (3)
C7—N3—C5—N2	5.7 (3)	C9-C10-C12-N10	167.3 (2)
C5—N3—C7—O3	171.9 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N3—H3N····O3 ⁱ	0.88	2.09	2.877 (2)	149
C1—H1A···O3 ⁱⁱ	0.98	2.55	3.381 (3)	143
C1—H1C···O4 ⁱⁱⁱ	0.98	2.44	3.225 (3)	137
C11—H11A····N9 ^{iv}	0.98	2.57	3.357 (3)	137
C13—H13 <i>B</i> ····N6 ^v	0.98	2.62	3.533 (3)	155

Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x+1, y-1, z; (iii) -x+2, -y+1, -z+2; (iv) x-1, y+1, z; (v) -x+1, -y+1, -z+1.