data reports

open 👌 access

Crystal structure of 2-{[2-methoxy-5-(trifluoromethyl)phenyl]iminomethyl}-4nitrophenol

Nevzat Karadayı,^a* Songül Şahin,^b Yavuz Köysal,^a Emine Coşkun^b and Orhan Büyükgüngör^c

^aYeşilyurt Demir Celik Higher Vocational School, Ondokuz Mayıs University, TR-55330 Tekkeköy-Samsun, Turkey, ^bDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, and ^cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Samsun, Turkey. *Correspondence e-mail: nevzatk@omu.edu.tr

Received 16 April 2015; accepted 25 May 2015

Edited by H. Ishida, Okayama University, Japan

In the title compound, $C_{15}H_{11}F_3N_2O_4$, the N=C bond of the central imine group adopts an *E* conformation. The dihedral angle between two benzene rings is 6.2 (2)°. There is an intramolecular bifurcated O-H···(N,O) hydrogen bond with *S*(6) and *S*(9) ring motifs. In the crystal, molecules are linked by C-H···O hydrogen bonds into a helical chain along the 3₁ screw axis parallel to *c*. The -CF₃ group shows rotational disorder over two sites, with occupancies of 0.39 (2) and 0.61 (2).

Keywords: crystal structure; Schiff base; hydrogen bonding.

CCDC reference: 1402674

1. Related literature

For photochromic, thermochromic and biological applications of related Schiff base compounds, see: Hadjoudis *et al.* (1987); Santos *et al.* (2001); Tarafder *et al.* (2002). For related structures, see: Faridbod *et al.* (2008); Karadayı *et al.* (2003, 2006, 2013); Raja *et al.* (2008).

Z = 18

Mo $K\alpha$ radiation

 $0.67 \times 0.25 \times 0.04~\text{mm}$

16356 measured reflections

2958 independent reflections

1380 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 0.13 \text{ mm}^-$

T = 296 K

 $R_{\rm int} = 0.140$

246 parameters

 $\Delta \rho_{\rm max} = 0.15 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min}$ = -0.19 e Å⁻³

2. Experimental

2.1. Crystal data

 $\begin{array}{l} C_{15}H_{11}F_{3}N_{2}O_{4}\\ M_{r}=340.26\\ Trigonal, R\overline{3}\\ a=33.0327 \ (16) \ \text{\AA}\\ c=7.1523 \ (3) \ \text{\AA}\\ V=6758.7 \ (5) \ \text{\AA}^{3} \end{array}$

2.2. Data collection

Stoe IPDS 2 diffractometer

Absorption correction: integration (X-RED32; Stoe & Cie, 2002) $T_{min} = 0.951, T_{max} = 0.994$

2.3. Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.084$ $wR(F^2) = 0.126$ S = 1.072958 reflections

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
O1−H1···N1	0.82	1.84	2.571 (4)	148
O1−H1···O4	0.82	2.76	3.468 (4)	146
$C7 - H7 \cdot \cdot \cdot O2^{i}$	0.93	2.55	3.476 (7)	176
$C9 - H9 \cdot \cdot \cdot O2^i$	0.93	2.46	3.378 (6)	169

Symmetry code: (i) $-y + \frac{4}{3}$, $x - y - \frac{1}{3}$, $z - \frac{1}{3}$.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Acknowledgements

The authors wish to acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant F.279 of the University Research Fund).

Supporting information for this paper is available from the IUCr electronic archives (Reference: IS5398).

References

- Faridbod, F., Ganjali, M. R., Dinarvand, R., Norouzi, P. & Riahi, S. (2008). Sensors, 8, 1645–1703.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, I. (1987). *Tetrahedron*, **43**, 1345–1360.
- Karadayı, N., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, 01699–01701.

- Karadayı, N., Gözüyeşil, S., Güzel, B., Kazak, C. & Büyükgüngör, O. (2003). Acta Cryst. E**59**, 0851–0853.
- Karadayı, N., Köysal, Y., Şahin, S., Coşkun, E. & Büyükgüngör, O. (2013). Acta Cryst. E69, 0889.
- Raja, K. K., Bilal, I. M., Thambidurai, S., Rajagopal, G. & SubbiahPandi, A. (2008). Acta Cryst. E64, 02265.
- Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.
- Tarafder, M. T. H., Chew, K., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2683–2690.

supporting information

Acta Cryst. (2015). E71, o466-o467 [doi:10.1107/S2056989015010129]

Crystal structure of 2-{[2-methoxy-5-(trifluoromethyl)phenyl]iminomethyl}-4nitrophenol

Nevzat Karadayı, Songül Şahin, Yavuz Köysal, Emine Coşkun and Orhan Büyükgüngör

S1. Comment

Schiff base compounds can be classified by their photochromic and thermochromic characteristics (Hadjoudis *et al.*, 1987). Schiff bases are potentially biologically active compounds and the antifungal, anticancer, anticonvulsant, diuretic and cytotoxic activities have been reported. For the development of bacteriostatic activity, it is believed that the presence of a nitro group in the *p*-position is an important condition (Tarafder *et al.*, 2002; Santos *et al.*, 2001). In this study we report the structure of the title compound (I).

The N1=C7 bond length is 1.295 (5) Å, approximately equal to previously reported C=N bond lengths (Karadayı *et al.*, 2003; Faridbod *et al.*, 2008; Karadayı *et al.*, 2013). The geometric parameters in (I) are comparable with the similar reported structures (Raja *et al.*, 2008; Karadayı *et al.*, 2006). The dihedral angle between the aromatic rings (C1–C6) and (C8–C13) is 6.2 (2)°. The CF₃ group showed rotational disorder. The site occupancy factors are 0.39 (2) and 0.61 (2) for F1A–F3A and F1B–F3B, respectively. An intramolecular bifurcated O—H···(N, O) hydrogen bond is observed (Table 1 and Fig. 1).

S2. Experimental

The title compound was prepared by refluxing a mixture of a solution containing 2-hydroxy-5-nitrobenzaldehyde (0.014 g, 0.082 mmol) and a solution containing 2-methoxy-5-(trifluoromethyl)aniline (0,016 g, 0.082 mmol) in 20 ml ethanol. The reaction mixture was stirred for 1 h under reflux. Single crystals suitable for X-ray analysis were obtained from an ethanol solution by slow evaporation (yield 54%, *m.p.* 475–477 K).

S3. Refinement

All H atoms were placed in calculated positions and refined using a riding model, with C—H = 0.93 or 0.96 Å and O—H = 0.82 Å. The isotropic displacement parameters of the H atoms were fixed at $1.2U_{eq}(C)$ or $1.5U_{eq}(O, C_{methyl})$. The CF₃ group showed rotational disorder. The site occupancy factors are 0.39 (2) and 0.61 (2) for F1A–F3A and F1B–F3B, respectively.

Figure 1

An *ORTEP* drawing of the title compound showing the atomic numbering scheme. Displacement ellipsoids of non-H atoms are shown at the 20% probability level. Hydrogen bonds are indicated by dashed lines.

2-{[2-Methoxy-5-(trifluoromethyl)phenyl]iminomethyl}-4-nitrophenol

Crystal data

C₁₅H₁₁F₃N₂O₄ $M_r = 340.26$ Trigonal, $R\overline{3}$ Hall symbol: -R 3 a = 33.0327 (16) Å c = 7.1523 (3) Å V = 6758.7 (5) Å³ Z = 18F(000) = 3132

Data collection

Stoe IPDS 2 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: integration (*X-RED32*; Stoe & Cie, 2002) $T_{\min} = 0.951, T_{\max} = 0.994$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.084$ $wR(F^2) = 0.126$ S = 1.072958 reflections 246 parameters 0 restraints $D_x = 1.505 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 10608 reflections $\theta = 2.1-28.0^{\circ}$ $\mu = 0.13 \text{ mm}^{-1}$ T = 296 KNeedle, light brown $0.67 \times 0.25 \times 0.04 \text{ mm}$

16356 measured reflections 2958 independent reflections 1380 reflections with $I > 2\sigma(I)$ $R_{int} = 0.140$ $\theta_{max} = 26.0^\circ, \theta_{min} = 2.1^\circ$ $h = -40 \rightarrow 40$ $k = -39 \rightarrow 40$ $l = -8 \rightarrow 8$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained

$w = 1/[\sigma^2(F_o^2) + (0.0292P)^2]$	$\Delta ho_{ m max} = 0.15 \ m e \ m \AA^{-3}$
where $P = (F_0^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$
$(\Delta/\sigma)_{\rm max} = 0.001$	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates	and isotropic o	r equivalent i	sotropic d	lisplacement	parameters	$(Å^2)$
	1	1	1	1 .	1	\ /

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
O4	0.76299 (10)	0.04667 (9)	0.2585 (4)	0.0569 (8)	
O1	0.76808 (9)	0.14868 (10)	0.4121 (5)	0.0647 (9)	
H1	0.7798	0.1330	0.3798	0.097*	
N1	0.83251 (11)	0.12822 (11)	0.3519 (4)	0.0443 (8)	
N2	0.90475 (14)	0.32508 (12)	0.6373 (5)	0.0538 (9)	
C7	0.86313 (14)	0.17045 (14)	0.4002 (5)	0.0473 (10)	
H7	0.8947	0.1797	0.3969	0.057*	
C1	0.84911 (13)	0.20297 (13)	0.4583 (5)	0.0417 (10)	
O3	0.94606 (11)	0.33571 (11)	0.6341 (5)	0.0724 (10)	
C6	0.80087 (14)	0.18987 (14)	0.4640 (6)	0.0488 (11)	
C4	0.82253 (15)	0.26645 (15)	0.5825 (6)	0.0529 (11)	
H4	0.8141	0.2879	0.6241	0.063*	
C2	0.88280 (14)	0.24797 (13)	0.5163 (6)	0.0452 (10)	
H2	0.9143	0.2568	0.5131	0.054*	
C3	0.86965 (13)	0.27894 (13)	0.5775 (6)	0.0429 (10)	
C13	0.80545 (15)	0.04950 (14)	0.2514 (6)	0.0463 (10)	
C10	0.89519 (15)	0.06269 (15)	0.2580 (6)	0.0549 (12)	
O2	0.89212 (12)	0.35192 (11)	0.6969 (5)	0.0788 (10)	
C11	0.85770 (17)	0.01995 (16)	0.2083 (6)	0.0614 (13)	
H11	0.8627	-0.0045	0.1772	0.074*	
C5	0.78900 (15)	0.22311 (14)	0.5269 (6)	0.0544 (11)	
Н5	0.7578	0.2152	0.5303	0.065*	
C9	0.88791 (15)	0.09902 (15)	0.3038 (6)	0.0532 (11)	
H9	0.9132	0.1278	0.3373	0.064*	
C8	0.84359 (13)	0.09318 (13)	0.3005 (5)	0.0424 (10)	
C12	0.81262 (16)	0.01297 (14)	0.2039 (6)	0.0568 (12)	
H12	0.7876	-0.0159	0.1695	0.068*	
C15	0.72262 (15)	0.00229 (14)	0.2147 (6)	0.0630 (13)	
H15A	0.6950	0.0048	0.2240	0.094*	
H15B	0.7205	-0.0209	0.3011	0.094*	
H15C	0.7254	-0.0066	0.0897	0.094*	
C14	0.9427 (2)	0.0689 (2)	0.2677 (12)	0.0853 (18)	

supporting information

F1A	0.9456 (8)	0.0369 (9)	0.340 (5)	0.142 (14)	0.39 (2)
F2A	0.9748 (7)	0.1072 (7)	0.317 (7)	0.158 (16)	0.39 (2)
F3A	0.9570 (6)	0.0665 (12)	0.074 (2)	0.152 (9)	0.39 (2)
F1B	0.9474 (5)	0.0345 (4)	0.221 (3)	0.136 (9)	0.61 (2)
F2B	0.9590 (5)	0.0783 (9)	0.4489 (18)	0.156 (7)	0.61 (2)
F3B	0.9727 (4)	0.1064 (6)	0.181 (2)	0.128 (7)	0.61 (2)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
04	0.0435 (17)	0.0424 (17)	0.077 (2)	0.0155 (15)	0.0007 (15)	-0.0058 (15)
01	0.0437 (17)	0.048 (2)	0.097 (3)	0.0190 (16)	0.0001 (17)	-0.0140 (17)
N1	0.045 (2)	0.0307 (18)	0.050(2)	0.0140 (17)	-0.0002 (17)	-0.0023 (15)
N2	0.057 (3)	0.040(2)	0.059 (2)	0.021 (2)	-0.0016 (19)	-0.0045 (18)
C7	0.040 (2)	0.051 (3)	0.051 (3)	0.024 (2)	0.005 (2)	0.006 (2)
C1	0.036 (2)	0.040 (2)	0.046 (2)	0.017 (2)	0.0036 (18)	0.0010 (19)
O3	0.047 (2)	0.058 (2)	0.100 (3)	0.0173 (17)	-0.0097 (18)	-0.0190 (18)
C6	0.046 (3)	0.035 (2)	0.058 (3)	0.014 (2)	0.005 (2)	-0.002(2)
C4	0.058 (3)	0.049 (3)	0.061 (3)	0.034 (2)	0.004 (2)	0.001 (2)
C2	0.039 (2)	0.044 (3)	0.051 (3)	0.019 (2)	-0.0017 (19)	-0.0007 (19)
C3	0.043 (3)	0.035 (2)	0.051 (3)	0.020 (2)	-0.0026 (19)	0.0000 (19)
C13	0.047 (3)	0.043 (3)	0.048 (3)	0.021 (2)	0.008 (2)	0.008 (2)
C10	0.051 (3)	0.048 (3)	0.069 (3)	0.027 (2)	0.006 (2)	0.001 (2)
O2	0.081 (2)	0.0451 (19)	0.111 (3)	0.032 (2)	0.003 (2)	-0.0172 (19)
C11	0.065 (3)	0.047 (3)	0.079 (4)	0.033 (3)	0.006 (3)	0.000(2)
C5	0.041 (3)	0.051 (3)	0.070 (3)	0.022 (2)	0.005 (2)	0.000(2)
C9	0.049 (3)	0.044 (3)	0.062 (3)	0.020(2)	0.002 (2)	0.002 (2)
C8	0.044 (3)	0.031 (2)	0.046 (2)	0.014 (2)	0.0038 (19)	0.0014 (18)
C12	0.058 (3)	0.035 (2)	0.071 (3)	0.019 (2)	0.001 (2)	-0.003(2)
C15	0.046 (3)	0.045 (3)	0.081 (3)	0.010 (2)	-0.008(2)	-0.009(2)
C14	0.060 (4)	0.059 (4)	0.135 (7)	0.028 (3)	0.014 (4)	0.006 (4)
F1A	0.095 (10)	0.15 (2)	0.23 (3)	0.094 (15)	0.062 (17)	0.12 (2)
F2A	0.069 (11)	0.075 (12)	0.33 (5)	0.041 (9)	-0.09 (2)	-0.032 (18)
F3A	0.137 (12)	0.20 (2)	0.152 (13)	0.107 (15)	0.075 (9)	0.028 (14)
F1B	0.078 (6)	0.094 (10)	0.26 (2)	0.058 (7)	-0.002 (10)	-0.056 (12)
F2B	0.132 (9)	0.257 (19)	0.150 (9)	0.149 (12)	-0.068 (7)	-0.062 (10)
F3B	0.060 (7)	0.130 (11)	0.194 (15)	0.047 (7)	0.047 (8)	0.054 (12)

Geometric parameters (Å, °)

O4—C13	1.359 (5)	C13—C8	1.405 (5)	
O4—C15	1.439 (4)	C10—C9	1.376 (5)	
O1—C6	1.299 (4)	C10—C11	1.380 (6)	
O1—H1	0.8200	C10—C14	1.478 (7)	
N1—C7	1.295 (5)	C11—C12	1.389 (6)	
N1-C8	1.426 (5)	C11—H11	0.9300	
N2—O3	1.227 (4)	С5—Н5	0.9300	
N2—O2	1.230 (4)	C9—C8	1.378 (5)	

N2—C3	1.443 (5)	С9—Н9	0.9300
C7—C1	1.428 (5)	С12—Н12	0.9300
С7—Н7	0.9300	С15—Н15А	0.9600
C1—C2	1.402 (5)	C15—H15B	0.9600
C1—C6	1.428 (5)	С15—Н15С	0.9600
C6—C5	1.411 (5)	C14—F1A	1.225 (17)
C4—C5	1 360 (6)	C14—F2A	1.228(19)
C4-C3	1 397 (5)	C14—F3A	1.220(17) 1 481 (17)
C4—H4	0.9300	C14—F1B	1.101(17) 1.267(12)
$C^2 - C^3$	1 368 (5)	C14—F3B	1.207(12) 1 295(13)
C2H2	0.9300	C14—F2B	1.299(19) 1.379(12)
C_{13} C_{12}	1 383 (5)		1.577 (12)
015 012	1.505 (5)		
C13—O4—C15	117.4 (3)	C12—C11—H11	119.5
C6—O1—H1	109.5	C4—C5—C6	121.0 (4)
C7—N1—C8	124.3 (4)	С4—С5—Н5	119.5
O3—N2—O2	122.0 (4)	С6—С5—Н5	119.5
O3—N2—C3	119.2 (4)	С10—С9—С8	120.7 (4)
O2—N2—C3	118.8 (4)	С10—С9—Н9	119.6
N1—C7—C1	121.0 (4)	С8—С9—Н9	119.6
N1—C7—H7	119.5	C9—C8—C13	119.5 (4)
С1—С7—Н7	119.5	C9—C8—N1	124.6 (4)
C2-C1-C6	119.1 (4)	C13—C8—N1	115.8 (4)
C2-C1-C7	120.0 (4)	C13—C12—C11	119.1 (4)
C6-C1-C7	120.9 (4)	C13—C12—H12	120.4
01-C6-C5	119.7 (4)	C11—C12—H12	120.4
01	121 9 (4)	04-C15-H15A	109 5
C5-C6-C1	1184(4)	04-C15-H15B	109.5
$C_{5}-C_{4}-C_{3}$	120 3 (4)	H15A—C15—H15B	109.5
C5—C4—H4	119.9	04-C15-H15C	109.5
C3—C4—H4	119.9	H15A-C15-H15C	109.5
$C_{3}-C_{2}-C_{1}$	120 5 (4)	H15B-C15-H15C	109.5
C3—C2—H2	119.8	F1A—C14—F2A	111.5 (16)
C1 - C2 - H2	119.8	F1A— $C14$ — $F3A$	100.7(13)
C2—C3—C4	120.7 (4)	F2A-C14-F3A	100.8 (18)
C2—C3—N2	119.8 (4)	F1B-C14-F3B	110.7 (11)
C4—C3—N2	119.5 (4)	F1B-C14-F2B	103.7 (10)
04-013-012	124.8 (4)	F3B-C14-F2B	102.1 (10)
04-C13-C8	115.2 (4)	F1A— $C14$ — $C10$	115.9 (11)
C12—C13—C8	120.0 (4)	F2A— $C14$ — $C10$	117.9 (11)
C9-C10-C11	119.6 (4)	C10-C14-F3A	107.1 (8)
C9-C10-C14	120 3 (5)	F1B— $C14$ — $C10$	117 5 (8)
$C_{11} - C_{10} - C_{14}$	120.1(5)	F3B— $C14$ — $C10$	111 3 (8)
C10-C11-C12	121.0 (4)	F2B— $C14$ — $C10$	110.2 (6)
C10-C11-H11	119 5		
C8—N1—C7—C1	-177.0 (3)	C14—C10—C9—C8	-178.1 (5)
N1—C7—C1—C2	177.7 (4)	C10-C9-C8-C13	0.6 (6)

N1—C7—C1—C6	-0.3 (6)	C10—C9—C8—N1	177.7 (4)
C2-C1-C6-O1	180.0 (4)	O4—C13—C8—C9	177.8 (4)
C7—C1—C6—O1	-1.9 (6)	C12—C13—C8—C9	-1.0 (6)
C2-C1-C6-C5	0.5 (6)	O4—C13—C8—N1	0.4 (5)
C7—C1—C6—C5	178.5 (4)	C12—C13—C8—N1	-178.4 (3)
C6—C1—C2—C3	0.0 (6)	C7—N1—C8—C9	3.1 (6)
C7—C1—C2—C3	-178.1 (4)	C7—N1—C8—C13	-179.6 (4)
C1—C2—C3—C4	-0.3 (6)	O4—C13—C12—C11	-177.7 (4)
C1—C2—C3—N2	179.8 (4)	C8—C13—C12—C11	0.9 (6)
C5—C4—C3—C2	0.2 (6)	C10-C11-C12-C13	-0.4 (7)
C5—C4—C3—N2	-179.9 (4)	C9-C10-C14-F1A	136 (2)
O3—N2—C3—C2	-0.7 (6)	C11—C10—C14—F1A	-42 (2)
O2—N2—C3—C2	-177.9 (4)	C9-C10-C14-F2A	0 (3)
O3—N2—C3—C4	179.4 (4)	C11—C10—C14—F2A	-178 (3)
O2—N2—C3—C4	2.2 (6)	C9-C10-C14-F1B	-179.0 (14)
C15—O4—C13—C12	0.5 (6)	C11—C10—C14—F1B	2.9 (16)
C15—O4—C13—C8	-178.3 (4)	C9-C10-C14-F3B	-49.9 (13)
C9—C10—C11—C12	-0.1 (7)	C11—C10—C14—F3B	132.0 (12)
C14—C10—C11—C12	178.0 (5)	C9-C10-C14-F2B	62.5 (13)
C3—C4—C5—C6	0.3 (6)	C11—C10—C14—F2B	-115.5 (12)
O1—C6—C5—C4	179.8 (4)	C9-C10-C14-F3A	-112.9 (16)
C1—C6—C5—C4	-0.6 (6)	C11—C10—C14—F3A	69.1 (16)
С11—С10—С9—С8	0.0 (7)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
0.82	1.84	2.571 (4)	148
0.82	2.76	3.468 (4)	146
0.93	2.55	3.476 (7)	176
0.93	2.46	3.378 (6)	169
	<i>D</i> —H 0.82 0.82 0.93 0.93	D—H H…A 0.82 1.84 0.82 2.76 0.93 2.55 0.93 2.46	DHH···AD···A0.821.842.571 (4)0.822.763.468 (4)0.932.553.476 (7)0.932.463.378 (6)

Symmetry code: (i) -y+4/3, x-y-1/3, z-1/3.