CRYSTALLOGRAPHIC COMMUNICATIONS

Received 8 May 2015
Accepted 27 May 2015

Edited by H. Ishida, Okayama University, Japan

Keywords: crystal structures; sulfone; collageninduced arthritis; non-classical hydrogen bonding

CCDC reference: 1403422
Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of N, N-dimethyl-2-[(4-methylbenzyl)sulfonyl]ethanamine

Alan R. Kennedy, Abedawn I. Khalaf, Fraser J. Scott* and Colin J. Suckling

Westchem, Department of Pure \& Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland. *Correspondence e-mail: fraser.j.scott@strath.ac.uk

In the crystal, the title compound, $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~S}$, has a disordered structure with two equally populated conformations of the amine fragment. A pair of weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular interactions between the CH_{2} and SO_{2} groups gives a one-dimensional supramolecular structure that propagates through translation along the a-axis direction.

1. Chemical context

Parasitic helminths possess a number of evolutionary strategies that facilitate their co-existence with their host and, as such, up to one third of the global population may suffer from helminthetic infections (de Silva et al., 2003). These parasites can secrete immunomodulatory molecules that prevent the parasites' clearance from the host without leaving the host vulnerable to opportunistic infections (Hewitson et al., 2009). ES-62 is one such immunomodulatory molecule, a protein, which was discovered in the secretions of the rodent filarial nematode Acanthocheilonema and demonstrated to induce an anti-inflammatory immunological phenotype (Harnett et al., 1989). ES-62 has been studied for its potential to treat human diseases relating to inflammation, for example collageninduced arthritis or rheumatoid arthritis, and many positive outcomes have been demonstrated.

A number of the significant anti-inflammatory activities of ES-62 are associated with post-translational glycosylation and subsequent esterification by phosphorylcholine. However, ES62 is an immunogenic protein and is thus unsuitable as a drug itself (Harnett \& Harnett, 2009). We have sought to capitalize on the immunomodulatory effects of ES-62 whilst avoiding its inherent undrugability through synthesizing a library of druglike small molecules based upon phosphorylcholine, the active moiety of ES-62. A series of sulfone analogues (Fig. 1) have proven to be of great significance in our investigations into

Figure 1
General structure of sulfone analogues. R represents alkyl chains and X represents halogen substituents.
collagen-induced arthritis. Despite the apparent simplicity of these molecules, we are aware of no relevant crystallographic study. As such, and as the title compound is of particular interest to our ongoing work (Al-Riyami et al., 2013), we report herein on the solid-state structure of the title compound.

2. Structural commentary

The molecular structure of the title compound is shown in Fig. 2. The amine group is disordered over two equally occupied sites such that the lone pair of the pyramidal N atom is anti to O 1 with respect to the plane defined by $\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 9$ for the conformer containing N 1 but syn for the $\mathrm{N} 1 A$ conformer.

3. Supramolecular features

Neighbouring molecules related by translation along the a axis direction are connected by two weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving O 1 and C 1 and $\mathrm{C} 9 / \mathrm{C} 9 A$ (Table 1 and Fig. 3). This gives one-dimensional supramolecular chains of mol-

Figure 2
The molecular structure of the title compound with non-H atoms shown as 50% probability displacement ellipsoids. For the disordered fragment, the atoms labelled with the suffix 'a' have been shown with hollow bonds whilst all other bonds are shown as solid lines.

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 A \cdots$ O1 $^{\mathrm{i}}$	0.99	2.60	$3.493(2)$	150
C9-H9A $^{\mathrm{i}}$	0.99	2.49	$3.415(2)$	155
C9 $^{\mathrm{H}}-\mathrm{H} 9 C \cdots$ O1 $^{\mathrm{i}}$	0.99	2.61	$3.415(2)$	138

Symmetry code: (i) $x-1, y, z$.
ecules that propagate parallel to the crystallographic a-axis direction.

Other close interactions involve the disordered fragment. Thus the methyl group of $\mathrm{C} 11 A$ approaches the aromatic ring, giving a $\mathrm{C}-\dot{\mathrm{c}} \pi$ interaction [closest contact $\mathrm{C} 6 \cdots \mathrm{C} 11 A=$ 3.345 (5) A] whilst C11 forms unfeasibly short intermolecular interactions with its centrosymmetrically related self - an interaction that is relieved by the observed disorder.

4. Synthesis and crystallization

A mixture of 2-[(4-methylbenzyl)sulfonyl]ethyl methanesulfonate and 1-methyl-4-[(vinylsulfonyl)methyl]benzene $(4.880 \mathrm{~g})$ was dissolved in dichloromethane (50 ml , dry) to which dimethylamine ($4 \mathrm{ml}, 2 M$ in THF) was added at room temperature with stirring. The stirring was continued at room temperature overnight. The reaction mixture was extracted with a saturated solution of sodium carbonate. The organic layer was collected, dried over MgSO_{4}, filtered and the solvents were removed under reduced pressure and the crude product was applied to a silica gel column chromatography using first ethyl acetate $/ n$-hexane $(1 / 1, \mathrm{RF}=0.1)$ and then ethyl acetate/methanol (9/1). The product was obtained as a white solid which was recrystallized from ethyl acetate $/ n$ hexane (2.200 g) (m.p. 341-343 K). HRESIMS: calculated for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~S}, 241.1136$; found: 241.1139.

Figure 3
Part of the molecular chain formed by translation along a highlighting the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts. Only one of the two disordered conformations is shown.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Models where the site occupancy factors of the disordered groups were allowed to refine gave occupancies equal to 50%. So in the final model, occupancies of all the disordered atoms were set to this value. The C9C 10 and $\mathrm{C} 9 A-\mathrm{C} 10 A$ distances were restrained to be 1.53 (1) Å. All H atoms were placed in idealized positions and were refined in riding modes with $\mathrm{C}-\mathrm{H}$ equal to $0.95,0.98$ and $0.99 \AA$ for $\mathrm{CH}, \mathrm{CH}_{2}$ and CH_{3} groups, respectively, and $U_{\text {iso }}(\mathrm{H})$ $=1.5 U_{\mathrm{eq}}(\mathrm{C})$ for methyl groups and $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for all other groups.

References

Al-Riyami, L., Pineda, M. A., Rzepecka, J., Huggan, J. K., Khalaf, A. I., Suckling, C. J., Scott, F. J., Rodgers, D. T., Harnett, M. M. \& Harnett, W. (2013). J. Med. Chem. 56, 9982-10002.
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Harnett, W., Grainger, M., Kapil, A., Worms, M. J. \& Parkhouse, R. M. E. (1989). Parasitol. Today, 99, 229-239.

Harnett, W. \& Harnett, M. M. (2009). Adv. Exp. Med. Biol. 666, $88-$ 94.

Hewitson, J. P., Grainger, J. R. \& Maizels, R. M. (2009). Mol. Biochem. Parasitol. 167, 1-11.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Table 2
Experimental details.
Crystal data Chemical formula M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
No. of parameters
No. of restraints
H -atom treatment
$\Delta \rho_{\max }, \Delta \rho_{\min }\left(\mathrm{e} \AA^{-3}\right)$

```
\(0.043,0.121,1.08\)
2491
186
2
C
241.34
Triclinic, P\overline{1}
123
5.3642 (3), 10.3773 (6), 12.1784 (7)
99.572 (5), 95.498 (5), 104.645 (5)
639.98 (6)
2
Cu K\alpha
2.14
0.30\times0.10 }\times0.0
Oxford Diffraction Gemini S
Multi-scan (CrysAlis PRO; Oxford
    Diffraction, 2009)
0.459, 0.938
5846, 2491, 2360
0.023
0.620
```

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008).

Silva, N. R. de, Brooker, S., Hotez, P. J., Montresor, A., Engels, D. \& Savioli, L. (2003). Trends Parasitol. 19, 547-551.

supporting information

Crystal structure of \mathbf{N}, \mathbf{N}-dimethyl-2-[(4-methylbenzyl)sulfonyl]ethanamine

Alan R. Kennedy, Abedawn I. Khalaf, Fraser J. Scott and Colin J. Suckling

Computing details

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97
(Sheldrick, 2008).

N, N-Dimethyl-2-[(4-methylbenzyl)sulfonyl]ethanamine

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~S}$
$M_{r}=241.34$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=5.3642$ (3) \AA
$b=10.3773$ (6) \AA
$c=12.1784$ (7) \AA
$\alpha=99.572(5)^{\circ}$
$\beta=95.498(5)^{\circ}$
$\gamma=104.645(5)^{\circ}$
$V=639.98(6) \AA^{3}$

Data collection

Oxford Diffraction Gemini S
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
$T_{\text {min }}=0.459, T_{\text {max }}=0.938$

$$
Z=2
$$

$F(000)=260$
$D_{\mathrm{x}}=1.252 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54180 \AA$
Cell parameters from 3570 reflections
$\theta=5.2-72.9^{\circ}$
$\mu=2.14 \mathrm{~mm}^{-1}$
$T=123 \mathrm{~K}$
Plate, colourless
$0.30 \times 0.10 \times 0.03 \mathrm{~mm}$

5846 measured reflections
2491 independent reflections
2360 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=72.9^{\circ}, \theta_{\text {min }}=3.7^{\circ}$
$h=-4 \rightarrow 6$
$k=-12 \rightarrow 11$
$l=-15 \rightarrow 14$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.121$
$S=1.08$
2491 reflections
186 parameters
2 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

```
w=1/[ [ }\mp@subsup{}{}{2}(\mp@subsup{F}{\textrm{o}}{2})+(0.0758P\mp@subsup{)}{}{2}+0.2621P
    where }P=(\mp@subsup{F}{\textrm{o}}{2}+2\mp@subsup{F}{\textrm{c}}{2})/
(\Delta/\sigma) max < 0.001
```

$$
\begin{aligned}
& \Delta \rho_{\max }=0.48 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.35 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Experimental. ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta 7.28(2 H, \mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}), 7.21(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 4.44(2 \mathrm{H}, \mathrm{s}), 3.17(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $14.3 \mathrm{~Hz}), 2.65(2 H, \mathrm{t}, \mathrm{J}=14.3 \mathrm{~Hz}), 2.31(3 H, \mathrm{~s}), 2.16(6 H, \mathrm{~s}) .{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.\mathrm{d}_{6}\right): \delta 137.7,130.8,129.0,125.4,58.4$, 51.6, 49.0, 44.9, 20.7. IR (KBr): 1511, 1463, 1399, 1380, 1314, 1258, 1156, 1119, 1050, 892, 853, 822, $749 \mathrm{~cm}^{-1}$.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
S1	0.89090 (7)	0.52015 (4)	0.66118 (3)	0.02154 (16)	
O1	1.1289 (2)	0.48170 (12)	0.68167 (11)	0.0307 (3)	
O2	0.9042 (2)	0.63679 (12)	0.60940 (10)	0.0295 (3)	
C1	0.6462 (3)	0.38079 (16)	0.57471 (13)	0.0223 (3)	
H1A	0.4763	0.4021	0.5740	0.027*	
H1B	0.6866	0.3706	0.4966	0.027*	
C2	0.6217 (3)	0.24813 (16)	0.61229 (13)	0.0211 (3)	
C3	0.7832 (3)	0.16706 (17)	0.57982 (14)	0.0252 (4)	
H3	0.9114	0.1961	0.5338	0.030*	
C4	0.7579 (3)	0.04422 (17)	0.61421 (14)	0.0259 (4)	
H4	0.8692	-0.0101	0.5912	0.031*	
C5	0.5729 (3)	-0.00109 (17)	0.68174 (14)	0.0262 (4)	
C6	0.4119 (4)	0.08042 (18)	0.71320 (16)	0.0300 (4)	
H6	0.2838	0.0513	0.7592	0.036*	
C7	0.4342 (3)	0.20319 (17)	0.67902 (14)	0.0253 (4)	
H7	0.3211	0.2568	0.7012	0.030*	
C8	0.5437 (4)	-0.13542 (19)	0.71811 (18)	0.0377 (5)	
H8A	0.5787	-0.1201	0.8004	0.057*	
H8B	0.6676	-0.1802	0.6856	0.057*	
H8C	0.3659	-0.1933	0.6920	0.057*	
C9	0.7696 (3)	0.55043 (17)	0.79112 (14)	0.0248 (4)	0.50
H9A	0.5883	0.5562	0.7768	0.030*	0.50
H9B	0.7692	0.4741	0.8304	0.030*	0.50
N1	0.8311 (7)	0.7301 (3)	0.9652 (3)	0.0333 (7)	0.50
C10	0.9410 (19)	0.6837 (8)	0.8655 (9)	0.0264 (18)	0.50
H10A	1.1132	0.6711	0.8900	0.032*	0.50
H10B	0.9689	0.7554	0.8200	0.032*	0.50
C11	0.9697 (14)	0.8715 (5)	1.0135 (4)	0.0648 (15)	0.50
H11A	0.8822	0.9060	1.0743	0.097*	0.50

H11B	0.9707	0.9261	0.9551	0.097^{*}	0.50
H11C	1.1492	0.8774	1.0435	0.097^{*}	0.50
C12	$0.8399(16)$	$0.6456(6)$	$1.0475(5)$	$0.0683(18)$	0.50
H12A	0.7464	0.5512	1.0134	0.102^{*}	0.50
H12B	0.7577	0.6770	1.1114	0.102^{*}	0.50
H12C	1.0216	0.6513	1.0737	0.102^{*}	0.50
N1A	$0.9175(6)$	$0.6553(3)$	$0.9889(3)$	$0.0297(7)$	0.50
C9A	$0.7696(3)$	$0.55043(17)$	$0.79112(14)$	$0.0248(4)$	0.50
H9C	0.6106	0.5813	0.7797	0.030^{*}	0.50
H9D	0.7240	0.4654	0.8207	0.030^{*}	0.50
C10A	$0.9780(18)$	$0.6589(8)$	$0.8749(8)$	$0.0231(17)$	0.50
H10C	1.1504	0.6423	0.8688	0.028^{*}	0.50
H10D	0.9848	0.7496	0.8578	0.028^{*}	0.50
C11A	$1.1294(9)$	$0.7511(4)$	$1.0688(3)$	$0.0394(9)$	0.50
H11D	1.2931	0.7284	1.0582	0.059^{*}	0.50
H11E	1.0940	0.7461	1.1457	0.059^{*}	0.50
H11F	1.1434	0.8434	1.0563	0.059^{*}	0.50
C12A	$0.6727(9)$	$0.6851(5)$	$1.0055(4)$	$0.0424(10)$	0.50
H12D	0.6451	0.6851	1.0839	0.064^{*}	0.50
H12E	0.5301	0.6158	0.9554	0.064^{*}	0.50
H12F	0.6772	0.7746	0.9884	0.064^{*}	0.50

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0207(2)$	$0.0219(2)$	$0.0214(2)$	$0.00508(16)$	$0.00401(15)$	$0.00319(16)$
O1	$0.0228(6)$	$0.0307(7)$	$0.0357(7)$	$0.0074(5)$	$0.0033(5)$	$-0.0006(5)$
O2	$0.0357(7)$	$0.0258(6)$	$0.0264(6)$	$0.0050(5)$	$0.0073(5)$	$0.0071(5)$
C1	$0.0221(8)$	$0.0237(8)$	$0.0190(7)$	$0.0053(6)$	$0.0001(6)$	$0.0018(6)$
C2	$0.0199(7)$	$0.0219(8)$	$0.0182(7)$	$0.0031(6)$	$-0.0027(6)$	$0.0016(6)$
C3	$0.0220(8)$	$0.0285(9)$	$0.0240(8)$	$0.0066(7)$	$0.0043(6)$	$0.0018(7)$
C4	$0.0231(8)$	$0.0255(8)$	$0.0267(8)$	$0.0084(6)$	$-0.0005(6)$	$-0.0011(7)$
C5	$0.0261(8)$	$0.0231(8)$	$0.0258(8)$	$0.0039(6)$	$-0.0023(6)$	$0.0031(6)$
C6	$0.0275(9)$	$0.0309(9)$	$0.0327(9)$	$0.0060(7)$	$0.0102(7)$	$0.0094(7)$
C7	$0.0218(8)$	$0.0274(8)$	$0.0265(8)$	$0.0079(7)$	$0.0041(6)$	$0.0029(7)$
C8	$0.0437(11)$	$0.0273(9)$	$0.0433(11)$	$0.0098(8)$	$0.0056(9)$	$0.0110(8)$
C9	$0.0252(8)$	$0.0284(8)$	$0.0200(8)$	$0.0062(7)$	$0.0042(6)$	$0.0043(6)$
N1	$0.045(2)$	$0.0337(17)$	$0.0244(16)$	$0.0202(16)$	$0.0042(15)$	$0.0002(13)$
C10	$0.024(3)$	$0.034(3)$	$0.022(3)$	$0.013(2)$	$-0.0005(19)$	$0.001(2)$
C11	$0.106(5)$	$0.042(3)$	$0.037(2)$	$0.017(3)$	$0.006(3)$	$-0.011(2)$
C12	$0.121(6)$	$0.066(4)$	$0.033(3)$	$0.045(4)$	$0.025(3)$	$0.016(3)$
N1A	$0.0366(17)$	$0.0302(17)$	$0.0197(17)$	$0.0083(14)$	$-0.0003(13)$	$0.0013(13)$
C9A	$0.0252(8)$	$0.0284(8)$	$0.0200(8)$	$0.0062(7)$	$0.0042(6)$	$0.0043(6)$
C10A	$0.023(3)$	$0.027(3)$	$0.019(2)$	$0.009(2)$	$-0.0031(18)$	$0.003(2)$
C11A	$0.046(2)$	$0.040(2)$	$0.0253(18)$	$0.0098(18)$	$-0.0103(16)$	$-0.0028(16)$
C12A	$0.046(2)$	$0.053(3)$	$0.028(2)$	$0.020(2)$	$0.0083(19)$	$-0.0024(18)$

Geometric parameters (A, ${ }^{\circ}$)

S1-O1	$1.4426(13)$	C9-H9B	0.9900
S1-O2	$1.4446(12)$	N1-C12	$1.442(6)$
S1-C9	$1.7780(16)$	N1-C11	$1.460(6)$
S1-C1	$1.7867(16)$	N1-C10	$1.462(12)$
C1-C2	$1.501(2)$	C10-H10A	0.9900
C1-H1A	0.9900	C10-H10B	0.9900
C1-H1B	0.9900	C11-H11A	0.9800
C2-C7	$1.391(2)$	C11-H11B	0.9800
C2-C3	$1.392(2)$	C11-H11C	0.9800
C3-C4	$1.386(2)$	C12-H12A	0.9800
C3-H3	0.9500	C12-H12B	0.9800
C4-C5	$1.390(3)$	C12-H12C	0.9800
C4-H4	0.9500	N1A-C12A	$1.448(6)$
C5-C6	$1.390(2)$	N1A-C11A	$1.457(5)$
C5-C8	$1.507(2)$	N1A-C10A	$1.460(12)$
C6-C7	$1.385(2)$	C10A-H10C	0.9900
C6-H6	0.9500	C10A-H10D	0.9900
C7-H7	0.9500	C11A-H11D	0.9800
C8-H8A	0.9800	C11A-H11E	0.9800
C8-H8B	0.9800	C11A-H11F	0.9800
C8-H8C	0.9800	C12A-H12D	0.9800
C9-C10	$1.536(7)$	C12A-H12E	0.9800
C9-H9A	0.9900	C12A-H12F	0.9800
O1-S1-O2	$117.10(8)$	H8B-C8-H8C	109.5
O1-S1-C9	$108.51(8)$	C10-C9-S1	$109.9(5)$
O2-S1-C9	$108.29(8)$	C10-C9-H9A	109.7
O1-S1-C1	$109.89(7)$	S1-C9-H9A	109.7
O2-S1-C1	$107.22(7)$	C10-C9-H9B	109.7
C9-S1-C1	$105.17(8)$	S1-C9-H9B	109.7
C2-C1-S1	$113.98(11)$	H9A-C9-H9B	108.2
C2-C1-H1A	108.8	C12-N1-C11	$110.8(4)$
S1-C1-H1A	108.8	C12-N1-C10	$111.7(5)$
C2-C1-H1B	108.8	C11-N1-C10	$109.5(5)$
S1-C1-H1B	108.8	N1-C10-C9	$113.9(8)$
H1A-C1-H1B	107.7	N1-C10-H10A	108.8
C7-C2-C3	$118.87(15)$	C9-C10-H10A	108.8
C7-C2-C1	$120.38(14)$	N1-C10-H10B	108.8
C3-C2-C1	$120.74(14)$	C9-C10-H10B	108.8
C4-C3-C2	$120.35(15)$	H10A-C10-H10B	107.7
C4-C3-H3	119.8	C12A-N1A-C11A	$110.2(3)$
C2-C3-H3	119.8	C12A-N1A-C10A	$112.8(4)$
C3-C4-C5	$121.28(15)$	C11A-N1A-C10A	$109.0(4)$
C3-C4-H4	119.4	N1A-C10A-H10C	109.8
C5-C4-H4	N1A-C10A-H10D	109.8	
C4-C5-C6	H10C-C10A-H10D	108.2	

supporting information

$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 8$	$121.24(16)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 8$	$120.90(16)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$121.50(16)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{H} 6$	119.3
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	120.3
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 2$	119.9
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7$	119.9
$\mathrm{C} 2-\mathrm{C} 7-\mathrm{H} 7$	109.5
$\mathrm{C} 5-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	109.5
$\mathrm{C} 5-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	109.5
$\mathrm{H} 8 \mathrm{~A}-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	109.5
$\mathrm{C} 5-\mathrm{C} 8-\mathrm{H} 8 \mathrm{C}$	109.5
$\mathrm{H} 8 \mathrm{~A}-\mathrm{C} 8-\mathrm{H} 8 \mathrm{C}$	
	$47.30(14)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	$175.57(11)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	$-69.31(13)$
$\mathrm{C} 9-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	$96.45(16)$
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	$-84.47(17)$
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-0.4(2)$
$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-179.51(14)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-0.2(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$0.5(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$179.36(16)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 8$	$-0.2(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	

N1A-C11A-H11D	109.5
N1A-C11A-H11E	109.5
H11D-C11A-H11E	109.5
N1A-C11A-H11F	109.5
H11D-C11A-H11F	109.5
H11E-C11A-H11F	109.5
N1A-C12A-H12D	109.5
N1A-C12A-H12E	109.5
H12D-C12A-H12E	109.5
N1A-C12A-H12F	109.5
H12D-C12A-H12F	109.5
H12E-C12A-H12F	109.5

$\mathrm{C} 8-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-179.06(16)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 2$	$-0.4(3)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6$	$0.7(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6$	$179.81(14)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 9-\mathrm{C} 10$	$72.2(3)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 9-\mathrm{C} 10$	$-55.9(3)$
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 9-\mathrm{C} 10$	$-170.2(3)$
$\mathrm{C} 12-\mathrm{N} 1-\mathrm{C} 10-\mathrm{C} 9$	$71.5(7)$
$\mathrm{C} 11-\mathrm{N} 1-\mathrm{C} 10-\mathrm{C} 9$	$-165.3(5)$
$\mathrm{S} 1-\mathrm{C} 9-\mathrm{C} 10-\mathrm{N} 1$	$169.5(4)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1 — \mathrm{H} 1 A \cdots \mathrm{O}^{\mathrm{i}}$	0.99	2.60	$3.493(2)$	150
$\mathrm{C} 9 — \mathrm{H} 9 A \cdots 1^{\mathrm{i}}$	0.99	2.49	$3.415(2)$	155
$\mathrm{C}^{\mathrm{i}} A-\mathrm{H} 9 C \cdots \mathrm{Ol}^{\mathrm{i}}$	0.99	2.61	$3.415(2)$	138

Symmetry code: (i) $x-1, y, z$.

