# data reports





OPEN access

# Crystal structure of 1,4-diethoxy-9,10anthraquinone

## Chitoshi Kitamura,<sup>a</sup>\* Sining Li,<sup>a</sup> Munenori Takehara,<sup>a</sup> Yoshinori Inoue,<sup>a</sup> Katsuhiko Ono<sup>b</sup> and Takeshi Kawase<sup>c</sup>

<sup>a</sup>Department of Materials Science, School of Engineering, The University of Shiga Prefecture, 2500 Hassaka-cho, Hikone, Shiga 522-8533, Japan, <sup>b</sup>Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, Aichi 466-8555, Japan, and <sup>c</sup>Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan. \*Correspondence e-mail: kitamura.c@mat.usp.ac.jp

Received 16 June 2015; accepted 22 June 2015

Edited by H. Ishida, Okayama University, Japan

The asymmetric unit of the title compound,  $C_{18}H_{16}O_4$ , contains two crystallographically independent molecules. The anthraquinone ring systems are slightly bent with dihedral angles of 2.33 (8) and  $13.31 (9)^{\circ}$  between the two terminal benzene rings. In the crystal, the two independent molecules adopt slipped-parallel  $\pi$ -overlap with an average interplanar distance of 3.45 Å, forming a dimer; the centroid-centroid distances of the  $\pi$ - $\pi$  interactions are 3.6659 (15)-3.8987 (15) Å. The molecules are also linked by  $C-H \cdots O$ interactions, forming a tape structure along the a-axis direction. The crystal packing is characterized by a dimerherringbone pattern.

**Keywords:** crystal structure; 9,10-anthraquinone; crystallographically independent molecules;  $\pi - \pi$  interactions; C—H···O interactions.

CCDC reference: 1008606

#### 1. Related literature

For synthesis of alkoxy-substituted 9,10-anthraquinones, see: Kitamura et al. (2004). For background information on substitution effects of alkoxy-substituted 9,10-anthraquinones, see; Ohta et al. (2012). For related structures of 1,4-dipropoxy-9,10-anthraquinone polymorphs, see: Kitamura et al. (2015).



V = 2910.4 (4) Å<sup>3</sup>

Mo  $K\alpha$  radiation

 $0.56 \times 0.40 \times 0.36$  mm

6645 independent reflections

3129 reflections with  $I > 2\sigma(I)$ 

 $\mu = 0.10 \text{ mm}^-$ 

T = 223 K

 $R_{\rm int} = 0.045$ 

Z = 8

## 2. Experimental

#### 2.1. Crystal data

 $C_{18}H_{16}O_4$  $M_r = 296.31$ Monoclinic,  $P2_1/c$ a = 13.5514 (11) Åb = 14.7204 (11) Åc = 14.5905 (10) Å  $\beta = 90.604 \ (3)^{\circ}$ 

#### 2.2. Data collection

Rigaku R-AXIS RAPID diffractometer 27699 measured reflections

2.3. Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.076$ | 397 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.273$               | H-atom parameters constrained                              |
| S = 0.93                        | $\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 6645 reflections                | $\Delta \rho_{\rm min} = -0.48 \ {\rm e} \ {\rm \AA}^{-3}$ |

Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$              | $D-\mathrm{H}$ | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots \mathbf{A}$ |
|-------------------------------|----------------|-------------------------|--------------|------------------------------------|
| $C8A - H8A \cdots O3B$        | 0.94           | 2.48                    | 3.234 (3)    | 137                                |
| $C8B - H8B \cdots O3A$        | 0.94           | 2.55                    | 3.304 (4)    | 137                                |
| $C11A - H11A \cdots O4B^{i}$  | 0.94           | 2.60                    | 3.325 (3)    | 135                                |
| $C11B - H11B \cdots O4A^{ii}$ | 0.94           | 2.46                    | 3.199 (4)    | 135                                |
|                               |                |                         |              |                                    |

Symmetry codes: (i) x + 1, y, z; (ii) x - 1, y, z.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).

## Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (C) (No. 15 K05482) from the JSPS.

Supporting information for this paper is available from the IUCr electronic archives (Reference: IS5404).

#### References

Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

- Kitamura, C., Hasegawa, M., Ishikawa, H., Fujimoto, J., Ouchi, M. & Yoneda, A. (2004). Bull. Chem. Soc. Jpn, 77, 1385–1393.
- Kitamura, C., Li, S., Takehara, M., Inoue, Y., Ono, K., Kawase, T. & Fujimoto, K. J. (2015). Bull. Chem. Soc. Jpn, 88, 713–715.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Ohta, A., Hattori, K., Kusumoto, Y., Kawase, T., Kobayashi, T., Naito, H. & Kitamura, C. (2012). *Chem. Lett.* **41**, 674–676.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

# supporting information

Acta Cryst. (2015). E71, o504–o505 [doi:10.1107/S2056989015011901]

## Crystal structure of 1,4-diethoxy-9,10-anthraquinone

# Chitoshi Kitamura, Sining Li, Munenori Takehara, Yoshinori Inoue, Katsuhiko Ono and Takeshi Kawase

## S1. Comment

9,10-Anthraquinone is an important framework as a dye. Various kinds of hydroxy-substituted anthraquinone dyes have been manufactured. However, there were little reports on alkoxy-substituted anthraquinone. In recent years, we presented the effects of the alkoxy substitution on the optical properties of 2,6-dialkoxy and 2,3,6,7-tetraalkoxy derivatives in solution as well as in the solid state (Ohta *et al.*, 2012). Very recently, we have reported crystal structures of two polymorphs of 1,4-dipropoxy-9,10-anthraquinone, which contained red and yellow solids (Kitamura *et al.*, 2015). The red crystal exhibited an anti-parallel arrangement along the stacking direction. On the other hand, the yellow crystal showed a slipped-parallel arrangement. To search the effect of alkyl chain length on molecular packing, we prepared the title compound, 1,4-diethoxy-9,10-anthraquinone, (I). In this paper, we present the crystal structure of (I).

The molecular structure of (I) is shown in Fig. 1. Two crystallographically independent molecules were found in the asymmetric unit, although the two molecules had almost the same molecular structure. There was a difference in planarity between the two molecules. Thus, the anthraquinone framework was slightly bent at the central quinone ring. For example, the dihedral angle between the two terminal benzene rings in the anthraquinone was 2.33 (8)° for one molecule and 13.31 (9)° for the other. The packing structure displays a dimer-herringbone pattern (Fig. 2), which is completely different from those of 1,4-dipropoxy-9,10-anthraquinone polymorphs (Kitamura *et al.*, 2015). In the dimer part, the two molecules adopt slipped-parallel  $\pi$ -stack with an average interplanar distance of 3.45 Å, which would result in a yellow color in the solid state. The crystal structure is also stabilized by C—H…O interactions along the lateral direction of molecules (Fig. 3).

## **S2. Experimental**

The title compound was prepared according to our previously reported method (Kitamura *et al.*, 2004). A mixture of 1,4hydrooxy-9,10-anthraquinone (2.20 g, 9.16 mmol), K<sub>2</sub>CO<sub>3</sub> (2.51 g, 18.1 mmol), ethyl *p*-toluenesulfonate (5.02 g, 25.1 mmol) in *o*-dichlorobenzene (15 ml) was heated at reflux for 3 h under N<sub>2</sub> gas. After cooling to room temperature, water (65 ml) was added to the reaction mixture. Then, the resulting solid was filtered off and washed with hexane to give the title compound (2.37 g, 87% yield) as a yellow solid. Single crystals suitable for X-ray analysis were obtained by slow evaporation from a CH<sub>2</sub>Cl<sub>2</sub> solution (*m.p.* 172–175 °C). Elemental analysis for C<sub>18</sub>H<sub>16</sub>O<sub>4</sub>: C 72.96, H 5.44. Found: C 72.75, H 5.51. TOF-MS(EI): *m/z* Calcd C<sub>18</sub>H<sub>16</sub>O<sub>4</sub>: 296.1049. Found: 296.1074.

## **S3. Refinement**

All the H atoms were positioned geometrically and refined using a riding model with C—H bonds of 0.94 Å, 0.98 Å, and 0.97 Å for aromatic, methylene and methyl groups, respectively, and  $U_{iso}(H) = 1.2U_{eq}(C)$  [ $U_{iso}(H) = 1.5U_{eq}(C)$  for methyl H atoms].



## Figure 1

The asymmetric unit of the title compound, showing the atomic numbering and 40% probability displacement ellipsoids.



## Figure 2

A packing diagram of the title compound viewed down the *a* axis, showing a dimer-herringbone pattern. Hydrogen atoms are omitted for clarity.



## Figure 3

A packing diagram of the title compound, showing C—H…O interactions (blue lines).

## 1,4-Diethoxy-9,10-anthraquinone

| Crystal data                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C <sub>18</sub> H <sub>16</sub> O <sub>4</sub><br>$M_r = 296.31$<br>Monoclinic, $P2_1/c$<br>Hall symbol: -P 2ybc<br>a = 13.5514 (11)  Å<br>b = 14.7204 (11)  Å<br>c = 14.5905 (10)  Å<br>$\beta = 90.604 (3)^{\circ}$<br>$V = 2910.4 (4) \text{ Å}^3$<br>Z = 8 | F(000) = 1248<br>$D_x = 1.352 \text{ Mg m}^{-3}$<br>Mo K $\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$<br>Cell parameters from 11158 reflections<br>$\theta = 3-27.5^{\circ}$<br>$\mu = 0.10 \text{ mm}^{-1}$<br>T = 223  K<br>Prism, orange<br>$0.56 \times 0.40 \times 0.36 \text{ mm}$ |
| Data collection<br>Rigaku R-AXIS RAPID<br>diffractometer<br>Radiation source: fine-focus sealed x-ray tube<br>Graphite monochromator<br>Detector resolution: 10 pixels mm <sup>-1</sup><br>ω scans<br>27699 measured reflections                               | 6645 independent reflections<br>3129 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.045$<br>$\theta_{max} = 27.5^{\circ}, \theta_{min} = 3.0^{\circ}$<br>$h = -17 \rightarrow 17$<br>$k = -19 \rightarrow 19$<br>$l = -16 \rightarrow 18$                                                  |

Refinement

| Refinement on $F^2$             | 0 constraints                                     |
|---------------------------------|---------------------------------------------------|
| Least-squares matrix: full      | H-atom parameters constrained                     |
| $R[F^2 > 2\sigma(F^2)] = 0.076$ | $w = 1/[\sigma^2(F_o^2) + (0.1824P)^2]$           |
| $wR(F^2) = 0.273$               | where $P = (F_o^2 + 2F_c^2)/3$                    |
| S = 0.93                        | $(\Delta/\sigma)_{\rm max} < 0.001$               |
| 6645 reflections                | $\Delta  ho_{ m max} = 0.27 \  m e \  m \AA^{-3}$ |
| 397 parameters                  | $\Delta \rho_{\rm min} = -0.48$ e Å <sup>-3</sup> |
| 0 restraints                    |                                                   |
| 0 restraints                    |                                                   |

## Special details

**Experimental**. <sup>1</sup>H-NMR: δ 1.56 (t, *J* = 7.0 Hz, 6H), 4.20 (q, *J* = 7.0 Hz, 4H), 7.32 (s, 2H), 7.69–7.72 (m, 2H), 8.17–8.19 (m, 2H); <sup>13</sup>C-NMR: δ 14.9, 66.0, 122.1, 123.4, 126.4, 133.2, 134.2, 153.6, 183.3.

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|      | x            | У            | Ζ            | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|------|--------------|--------------|--------------|-------------------------------|
| C1A  | 0.3813 (2)   | 0.68438 (17) | 0.35528 (16) | 0.0548 (6)                    |
| C2A  | 0.3271 (2)   | 0.71337 (18) | 0.27977 (17) | 0.0611 (7)                    |
| H2A  | 0.3605       | 0.7327       | 0.2271       | 0.073*                        |
| C3A  | 0.2261 (2)   | 0.71464 (18) | 0.27990 (16) | 0.0596 (7)                    |
| H3A  | 0.1918       | 0.7347       | 0.2274       | 0.072*                        |
| C4A  | 0.1731 (2)   | 0.68680 (17) | 0.35617 (16) | 0.0546 (6)                    |
| C5A  | 0.22559 (19) | 0.65664 (16) | 0.43427 (16) | 0.0518 (6)                    |
| C6A  | 0.1713 (2)   | 0.63214 (19) | 0.51927 (18) | 0.0611 (7)                    |
| C7A  | 0.22803 (19) | 0.59444 (17) | 0.59796 (15) | 0.0527 (6)                    |
| C8A  | 0.1770 (2)   | 0.56507 (18) | 0.67540 (17) | 0.0632 (7)                    |
| H8A  | 0.1078       | 0.5678       | 0.6766       | 0.076*                        |
| C9A  | 0.2293 (2)   | 0.5320 (2)   | 0.75003 (17) | 0.0707 (8)                    |
| H9A  | 0.1952       | 0.5121       | 0.8021       | 0.085*                        |
| C10A | 0.3301 (2)   | 0.5279 (2)   | 0.74903 (18) | 0.0726 (8)                    |
| H10A | 0.3647       | 0.5057       | 0.8005       | 0.087*                        |
| C11A | 0.3814 (2)   | 0.5564 (2)   | 0.67253 (18) | 0.0681 (8)                    |
| H11A | 0.4507       | 0.553        | 0.6717       | 0.082*                        |
| C12A | 0.3296 (2)   | 0.59013 (18) | 0.59665 (17) | 0.0572 (6)                    |
| C13A | 0.3855 (2)   | 0.6237 (2)   | 0.5163 (2)   | 0.0734 (9)                    |
| C14A | 0.32994 (19) | 0.65421 (16) | 0.43355 (16) | 0.0530 (6)                    |
| C15A | 0.5325 (2)   | 0.7171 (2)   | 0.2792 (2)   | 0.0782 (9)                    |
| H15A | 0.5119       | 0.7793       | 0.265        | 0.094*                        |
| H15B | 0.5174       | 0.6787       | 0.226        | 0.094*                        |
| C16A | 0.6399 (2)   | 0.7146 (2)   | 0.2998 (2)   | 0.0814 (9)                    |
| H16A | 0.676        | 0.7365       | 0.2471       | 0.122*                        |
| H16B | 0.6542       | 0.7531       | 0.3523       | 0.122*                        |
| H16C | 0.6598       | 0.6527       | 0.3134       | 0.122*                        |
| C17A | 0.0200 (2)   | 0.7234 (2)   | 0.28108 (18) | 0.0672 (7)                    |

| H17A | 0.0363              | 0.6897                     | 0.2253                     | 0.081*                 |
|------|---------------------|----------------------------|----------------------------|------------------------|
| H17B | 0.0373              | 0.7874                     | 0.2719                     | 0.081*                 |
| C18A | -0.0867 (2)         | 0.7146 (2)                 | 0.3010(2)                  | 0.0787 (9)             |
| H18A | -0.1251             | 0.7386                     | 0.25                       | 0.118*                 |
| H18B | -0.1029             | 0.651                      | 0.3099                     | 0.118*                 |
| H18C | -0.1019             | 0.7483                     | 0.3562                     | 0.118*                 |
| O1A  | 0.48108 (14)        | 0.68464 (14)               | 0.35759 (12)               | 0.0673 (5)             |
| O2A  | 0.07320 (14)        | 0.68735 (14)               | 0.35765 (12)               | 0.0670 (5)             |
| O3A  | 0.08375 (17)        | 0.6462 (2)                 | 0.52801 (15)               | 0.1020 (9)             |
| O4A  | 0.47401 (18)        | 0.6270 (3)                 | 0.5216 (2)                 | 0.1549 (16)            |
| C1B  | -0.31908(18)        | 0.42295(17)                | 0.93060(15)                | 0.0515 (6)             |
| C2B  | -0.2634(2)          | 0.3807(2)                  | 0.99876 (16)               | 0.0600(7)              |
| H2B  | -0.296              | 0.3526                     | 1 0478                     | 0.072*                 |
| C3B  | -0.1627(2)          | 0.37894(19)                | 0.99648 (16)               | 0.0582(7)              |
| H3B  | -0.1276             | 0.3486                     | 1 0432                     | 0.07*                  |
| C4B  | -0.11091(18)        | 0.42118 (16)               | 0.92621(15)                | 0.0507 (6)             |
| C5B  | -0.16423(18)        | 0.46877(16)                | 0.85830(14)                | 0.0207(0)<br>0.0477(6) |
| C6B  | -0.11215(18)        | 0.10077(10)<br>0.51742(17) | 0.03030(11)<br>0.78342(15) | 0.0517(6)              |
| C7B  | -0.17213(18)        | 0.54479(16)                | 0.70312(15)<br>0.70136(15) | 0.0317(0)<br>0.0495(6) |
| C8B  | -0.1216(2)          | 0.57178(19)                | 0.62221(17)                | 0.0195(0)              |
| H8B  | -0.0523             | 0.5707                     | 0.6203                     | 0.0050(7)              |
| C9B  | -0.1754(2)          | 0.5707                     | 0.54668(17)                | 0.0683 (8)             |
| H9B  | -0.1426             | 0.6169                     | 0.4928                     | 0.082*                 |
| C10B | -0.2760(2)          | 0.6109                     | 0.54962 (17)               | 0.062                  |
| H10B | -0.312              | 0.6241                     | 0.498                      | 0.082*                 |
| C11B | -0.3252(2)          | 0.57867 (18)               | 0.62810(17)                | 0.002<br>0.0634(7)     |
| H11B | -0.3944             | 0.5823                     | 0.63                       | 0.0051(7)              |
| C12B | -0.27238(18)        | 0.54778 (16)               | 0.05                       | 0.0499 (6)             |
| C13B | -0.32523(18)        | 0.52046 (17)               | 0.78847(15)                | 0.0520(6)              |
| C14B | -0.26902(17)        | 0.32010(17)<br>0.47017(16) | 0.86019 (14)               | 0.0520(0)<br>0.0474(5) |
| C15B | -0.4706(2)          | 0.17017(10)<br>0.3711(2)   | 0.00019(11)<br>0.99707(18) | 0.0672(8)              |
| H15C | -0.462              | 0.4013                     | 1.0565                     | 0.081*                 |
| H15D | -0.4444             | 0.3092                     | 1.0022                     | 0.081*                 |
| C16B | -0.5768(2)          | 0.3682(2)                  | 0.97143(19)                | 0.001<br>0.0714(8)     |
| H16D | -0.6129             | 0.3351                     | 1 0178                     | 0.107*                 |
| H16E | -0.6022             | 0.4296                     | 0.9669                     | 0.107*                 |
| H16F | -0.5847             | 0.3378                     | 0.9128                     | 0.107*                 |
| C17B | 0.04137(19)         | 0.36059 (19)               | 0.98395(17)                | 0.0605 (7)             |
| H17C | 0.0159              | 0.2983                     | 0.9816                     | 0.0005 (7)             |
| H17D | 0.0335              | 0.3839                     | 1 0464                     | 0.073*                 |
| C18B | 0.0355<br>0.1478(2) | 0.3621(2)                  | 0.95790(19)                | 0.075<br>0.0681 (7)    |
| H18D | 0.1855              | 0.3244                     | 1 0001                     | 0.102*                 |
| H18E | 0.1546              | 0.3388                     | 0.8961                     | 0.102*                 |
| H18F | 0.1722              | 0.424                      | 0.9606                     | 0.102*                 |
| O1B  | -0.41883(13)        | 0.42021(13)                | 0.92745(11)                | 0.0609 (5)             |
| 02B  | -0.01133(12)        | 0.41697(12)                | 0.92743(11)<br>0.91984(11) | 0.0009(5)              |
| 03B  | -0.02445(14)        | 0 53591 (16)               | 0.78861(12)                | 0.0763 (6)             |
| 04B  | -0.41212(14)        | 0.53571(10)<br>0.54036(16) | 0 79662 (13)               | 0.0702 (6)             |
|      | 0.71212(17)         | 0.27020(10)                | 0.19002 (19)               | 0.0772(0)              |

Atomic displacement parameters  $(Å^2)$ 

|      | $U^{11}$    | U <sup>22</sup> | U <sup>33</sup> | $U^{12}$     | U <sup>13</sup> | U <sup>23</sup> |
|------|-------------|-----------------|-----------------|--------------|-----------------|-----------------|
| C1A  | 0.0605 (17) | 0.0546 (14)     | 0.0495 (13)     | -0.0036 (11) | 0.0078 (11)     | -0.0019 (11)    |
| C2A  | 0.0725 (19) | 0.0649 (16)     | 0.0460 (13)     | -0.0059 (13) | 0.0096 (12)     | 0.0024 (11)     |
| C3A  | 0.0730 (19) | 0.0623 (15)     | 0.0436 (13)     | -0.0014 (13) | -0.0008 (12)    | 0.0022 (11)     |
| C4A  | 0.0588 (17) | 0.0563 (14)     | 0.0488 (13)     | -0.0021 (11) | -0.0015 (11)    | 0.0009 (11)     |
| C5A  | 0.0555 (15) | 0.0521 (13)     | 0.0478 (13)     | 0.0009 (10)  | 0.0027 (11)     | 0.0039 (10)     |
| C6A  | 0.0500 (16) | 0.0738 (18)     | 0.0595 (15)     | 0.0006 (12)  | 0.0044 (12)     | 0.0125 (13)     |
| C7A  | 0.0571 (16) | 0.0554 (14)     | 0.0456 (13)     | -0.0020 (11) | 0.0035 (11)     | 0.0040 (10)     |
| C8A  | 0.0642 (18) | 0.0737 (17)     | 0.0519 (14)     | -0.0018 (13) | 0.0090 (12)     | 0.0057 (12)     |
| C9A  | 0.085 (2)   | 0.0814 (19)     | 0.0452 (14)     | -0.0047 (16) | 0.0060 (13)     | 0.0117 (13)     |
| C10A | 0.080 (2)   | 0.087 (2)       | 0.0507 (15)     | -0.0024 (16) | -0.0112 (13)    | 0.0135 (14)     |
| C11A | 0.0623 (18) | 0.0812 (19)     | 0.0605 (16)     | -0.0011 (13) | -0.0049 (13)    | 0.0164 (14)     |
| C12A | 0.0600 (17) | 0.0620 (15)     | 0.0497 (13)     | -0.0015 (12) | -0.0007 (11)    | 0.0084 (11)     |
| C13A | 0.0499 (17) | 0.102 (2)       | 0.0680 (17)     | -0.0035 (15) | 0.0006 (13)     | 0.0333 (16)     |
| C14A | 0.0550 (15) | 0.0549 (14)     | 0.0490 (13)     | -0.0013 (11) | 0.0026 (11)     | 0.0048 (10)     |
| C15A | 0.072 (2)   | 0.100 (2)       | 0.0625 (17)     | -0.0060 (17) | 0.0221 (15)     | 0.0049 (16)     |
| C16A | 0.068 (2)   | 0.099 (2)       | 0.078 (2)       | -0.0059 (17) | 0.0214 (16)     | 0.0005 (17)     |
| C17A | 0.0692 (19) | 0.0800 (19)     | 0.0522 (14)     | 0.0096 (14)  | -0.0100 (12)    | 0.0001 (13)     |
| C18A | 0.068 (2)   | 0.102 (2)       | 0.0660 (17)     | 0.0023 (16)  | -0.0154 (14)    | -0.0043 (16)    |
| O1A  | 0.0570 (12) | 0.0860 (13)     | 0.0593 (11)     | -0.0029 (9)  | 0.0144 (9)      | 0.0075 (9)      |
| O2A  | 0.0574 (12) | 0.0872 (13)     | 0.0563 (10)     | -0.0004 (9)  | -0.0067 (8)     | 0.0116 (9)      |
| O3A  | 0.0555 (14) | 0.165 (3)       | 0.0855 (15)     | 0.0170 (14)  | 0.0145 (11)     | 0.0563 (15)     |
| O4A  | 0.0496 (16) | 0.289 (4)       | 0.126 (2)       | -0.0097 (19) | -0.0050 (14)    | 0.127 (3)       |
| C1B  | 0.0491 (14) | 0.0616 (14)     | 0.0440 (12)     | -0.0026 (11) | 0.0030 (10)     | 0.0047 (10)     |
| C2B  | 0.0609 (17) | 0.0720 (17)     | 0.0473 (13)     | -0.0048 (13) | 0.0066 (12)     | 0.0168 (12)     |
| C3B  | 0.0557 (16) | 0.0688 (16)     | 0.0500 (13)     | 0.0000 (12)  | -0.0007 (11)    | 0.0154 (12)     |
| C4B  | 0.0514 (15) | 0.0590 (14)     | 0.0416 (12)     | 0.0001 (11)  | -0.0002 (10)    | 0.0020 (10)     |
| C5B  | 0.0534 (14) | 0.0556 (13)     | 0.0342 (11)     | -0.0005 (10) | 0.0029 (9)      | 0.0021 (9)      |
| C6B  | 0.0455 (14) | 0.0653 (15)     | 0.0442 (12)     | -0.0025 (11) | 0.0026 (10)     | 0.0057 (11)     |
| C7B  | 0.0543 (15) | 0.0537 (13)     | 0.0407 (11)     | -0.0022 (10) | 0.0020 (10)     | 0.0059 (10)     |
| C8B  | 0.0624 (17) | 0.0802 (18)     | 0.0483 (13)     | -0.0060 (14) | 0.0066 (12)     | 0.0134 (12)     |
| C9B  | 0.075 (2)   | 0.085 (2)       | 0.0451 (13)     | -0.0091 (15) | 0.0059 (13)     | 0.0173 (13)     |
| C10B | 0.074 (2)   | 0.0826 (19)     | 0.0474 (14)     | -0.0010 (15) | -0.0059 (13)    | 0.0200 (13)     |
| C11B | 0.0597 (17) | 0.0770 (18)     | 0.0534 (14)     | 0.0034 (13)  | -0.0030 (12)    | 0.0164 (13)     |
| C12B | 0.0546 (15) | 0.0539 (13)     | 0.0413 (12)     | 0.0013 (10)  | 0.0028 (10)     | 0.0056 (10)     |
| C13B | 0.0475 (14) | 0.0630 (15)     | 0.0455 (12)     | 0.0023 (11)  | 0.0027 (10)     | 0.0063 (11)     |
| C14B | 0.0511 (14) | 0.0551 (13)     | 0.0359 (11)     | 0.0002 (10)  | 0.0036 (9)      | 0.0007 (9)      |
| C15B | 0.0576 (18) | 0.0847 (19)     | 0.0596 (16)     | -0.0086 (14) | 0.0113 (13)     | 0.0203 (14)     |
| C16B | 0.0570 (18) | 0.095 (2)       | 0.0620 (16)     | -0.0103 (15) | 0.0097 (13)     | 0.0086 (15)     |
| C17B | 0.0567 (17) | 0.0672 (16)     | 0.0572 (14)     | -0.0002 (12) | -0.0105 (12)    | 0.0086 (12)     |
| C18B | 0.0550 (17) | 0.0804 (19)     | 0.0688 (17)     | 0.0069 (14)  | -0.0070 (13)    | 0.0045 (14)     |
| O1B  | 0.0471 (11) | 0.0822 (13)     | 0.0535 (10)     | -0.0018 (8)  | 0.0076 (8)      | 0.0159 (8)      |
| O2B  | 0.0478 (11) | 0.0773 (12)     | 0.0508 (9)      | 0.0029 (8)   | -0.0036 (7)     | 0.0139 (8)      |
| O3B  | 0.0512 (12) | 0.1171 (17)     | 0.0605 (11)     | -0.0142 (11) | -0.0020 (8)     | 0.0288 (11)     |
| O4B  | 0.0525 (12) | 0.1193 (17)     | 0.0659 (12)     | 0.0183 (11)  | 0.0086 (9)      | 0.0321 (11)     |

Geometric parameters (Å, °)

| C1A—O1A      | 1.352 (3) | C1B—01B      | 1.353 (3) |
|--------------|-----------|--------------|-----------|
| C1A—C2A      | 1.385 (4) | C1B—C2B      | 1.388 (3) |
| C1A—C14A     | 1.415 (3) | C1B—C14B     | 1.419 (3) |
| C2A—C3A      | 1.368 (4) | C2B—C3B      | 1.366 (3) |
| C2A—H2A      | 0.94      | C2B—H2B      | 0.94      |
| C3A—C4A      | 1.392 (3) | C3B—C4B      | 1.395 (3) |
| СЗА—НЗА      | 0.94      | C3B—H3B      | 0.94      |
| C4A—O2A      | 1.354 (3) | C4B—O2B      | 1.355 (3) |
| C4A—C5A      | 1.409 (3) | C4B—C5B      | 1.407 (3) |
| C5A—C14A     | 1.415 (3) | C5B—C14B     | 1.421 (3) |
| C5A—C6A      | 1.493 (3) | C5B—C6B      | 1.490 (3) |
| C6A—O3A      | 1.212 (3) | C6B—O3B      | 1.221 (3) |
| C6A—C7A      | 1.483 (3) | C6B—C7B      | 1.481 (3) |
| C7A—C12A     | 1.378 (4) | C7B—C12B     | 1.387 (3) |
| C7A—C8A      | 1.399 (3) | C7B—C8B      | 1.393 (3) |
| C8A—C9A      | 1.381 (4) | C8B—C9B      | 1.379 (4) |
| C8A—H8A      | 0.94      | C8B—H8B      | 0.94      |
| C9A-C10A     | 1.367 (4) | C9B—C10B     | 1.366 (4) |
| С9А—Н9А      | 0.94      | C9B—H9B      | 0.94      |
| C10A—C11A    | 1.386 (4) | C10B—C11B    | 1.383 (4) |
| C10A—H10A    | 0.94      | C10B—H10B    | 0.94      |
| C11A—C12A    | 1.396 (4) | C11B—C12B    | 1.392 (3) |
| C11A—H11A    | 0.94      | C11B—H11B    | 0.94      |
| C12A—C13A    | 1.488 (4) | C12B—C13B    | 1.484 (3) |
| C13A—O4A     | 1.202 (3) | C13B—O4B     | 1.220 (3) |
| C13A—C14A    | 1.485 (4) | C13B—C14B    | 1.485 (3) |
| C15A—O1A     | 1.428 (3) | C15B—O1B     | 1.436 (3) |
| C15A—C16A    | 1.484 (4) | C15B—C16B    | 1.484 (4) |
| C15A—H15A    | 0.98      | C15B—H15C    | 0.98      |
| C15A—H15B    | 0.98      | C15B—H15D    | 0.98      |
| C16A—H16A    | 0.97      | C16B—H16D    | 0.97      |
| C16A—H16B    | 0.97      | C16B—H16E    | 0.97      |
| C16A—H16C    | 0.97      | C16B—H16F    | 0.97      |
| C17A—O2A     | 1.425 (3) | C17B—O2B     | 1.435 (3) |
| C17A—C18A    | 1.485 (4) | C17B—C18B    | 1.495 (4) |
| C17A—H17A    | 0.98      | C17B—H17C    | 0.98      |
| C17A—H17B    | 0.98      | C17B—H17D    | 0.98      |
| C18A—H18A    | 0.97      | C18B—H18D    | 0.97      |
| C18A—H18B    | 0.97      | C18B—H18E    | 0.97      |
| C18A—H18C    | 0.97      | C18B—H18F    | 0.97      |
| O1A—C1A—C2A  | 122.8 (2) | O1B—C1B—C2B  | 123.1 (2) |
| 01A—C1A—C14A | 118.8 (2) | O1B—C1B—C14B | 118.4 (2) |
| C2A—C1A—C14A | 118.5 (3) | C2B—C1B—C14B | 118.5 (2) |
| C3A—C2A—C1A  | 121.7 (2) | C3B—C2B—C1B  | 121.8 (2) |
| C3A—C2A—H2A  | 119.2     | C3B—C2B—H2B  | 119.1     |

| C1A—C2A—H2A                            | 119.2                 | C1B—C2B—H2B                                               | 1191                 |
|----------------------------------------|-----------------------|-----------------------------------------------------------|----------------------|
| $C^2A - C^3A - C^4A$                   | 121 4 (2)             | $C^{2B}$ $C^{3B}$ $C^{4B}$                                | 1214(2)              |
| $C_2 \Delta - C_3 \Delta - H_3 \Delta$ | 110.3                 | $C^{2B}$ $C^{3B}$ $H^{3B}$                                | 110.3                |
| $C_{4A}$ $C_{3A}$ $H_{3A}$             | 110.3                 | CAB C3B H3B                                               | 110.3                |
| $O_{A} C_{A} C_{A} C_{A}$              | 122 3 (2)             | $O^{2}B C^{4}B C^{3}B$                                    | 117.5<br>122.6(2)    |
| $O_{2A} = C_{4A} = C_{5A}$             | 122.3(2)<br>1100(2)   | $O_{2B} = C_{4B} = C_{5B}$                                | 122.0(2)             |
| $C_{2A} = C_{4A} = C_{5A}$             | 119.0(2)<br>118.6(2)  | $C_{2D}$ $C_{4D}$ $C_{5D}$                                | 118.0(2)             |
| $C_{AA} = C_{AA} = C_{AA} = C_{AA}$    | 110.0(3)              | $C_{3B}$ $C_{4B}$ $C_{5B}$ $C_{14B}$                      | 110.7(2)             |
| C4A = C5A = C14A                       | 119.9 (2)             | C4D = C5D = C14D                                          | 120.0(2)             |
| $C_{4A} = C_{5A} = C_{6A}$             | 119.9 (2)             | $C_{4B} = C_{3B} = C_{0B}$                                | 120.8(2)             |
| C14A - C5A - C6A                       | 120.1 (2)             |                                                           | 119.24 (19)          |
| 03A—C6A—C/A                            | 118.9 (2)             | 03B—C6B—C7B                                               | 119.8 (2)            |
| 03A—C6A—C5A                            | 122.5 (2)             | O3B—C6B—C5B                                               | 122.0 (2)            |
| C7A—C6A—C5A                            | 118.5 (2)             | C7B—C6B—C5B                                               | 118.2 (2)            |
| C12A—C7A—C8A                           | 119.9 (2)             | C12B—C7B—C8B                                              | 119.8 (2)            |
| C12A—C7A—C6A                           | 121.1 (2)             | C12B—C7B—C6B                                              | 120.4 (2)            |
| C8A—C7A—C6A                            | 119.0 (2)             | C8B—C7B—C6B                                               | 119.8 (2)            |
| C9A—C8A—C7A                            | 119.5 (3)             | C9B—C8B—C7B                                               | 119.9 (3)            |
| C9A—C8A—H8A                            | 120.3                 | C9B—C8B—H8B                                               | 120                  |
| C7A—C8A—H8A                            | 120.3                 | C7B—C8B—H8B                                               | 120                  |
| C10A—C9A—C8A                           | 120.7 (3)             | C10B—C9B—C8B                                              | 120.4 (2)            |
| С10А—С9А—Н9А                           | 119.6                 | C10B—C9B—H9B                                              | 119.8                |
| С8А—С9А—Н9А                            | 119.6                 | C8B—C9B—H9B                                               | 119.8                |
| C9A—C10A—C11A                          | 120.3 (3)             | C9B-C10B-C11B                                             | 120.3 (2)            |
| C9A—C10A—H10A                          | 119.8                 | C9B—C10B—H10B                                             | 119.8                |
| C11A—C10A—H10A                         | 119.8                 | C11B—C10B—H10B                                            | 119.8                |
| C10A—C11A—C12A                         | 119.6 (3)             | C10B—C11B—C12B                                            | 120.0 (3)            |
| C10A—C11A—H11A                         | 120.2                 | C10B—C11B—H11B                                            | 120                  |
| C12A—C11A—H11A                         | 120.2                 | C12B—C11B—H11B                                            | 120                  |
| C7A-C12A-C11A                          | 120.0 (2)             | C7B-C12B-C11B                                             | 119.4 (2)            |
| C7A-C12A-C13A                          | 120.8 (2)             | C7B-C12B-C13B                                             | 120.5(2)             |
| $C_{11A} = C_{12A} = C_{13A}$          | 119 2 (3)             | C11B - C12B - C13B                                        | 120.0(2)             |
| 04A - C13A - C14A                      | 119.2(3)<br>122 5 (3) | 04B-C13B-C12B                                             | 120.0(2)<br>1193(2)  |
| 04A $-C13A$ $-C12A$                    | 122.5(3)<br>1186(3)   | O4B $C13B$ $C12B$ $O4B$ $C13B$ $C14B$                     | 117.5(2)             |
| $C_{14A}$ $C_{13A}$ $C_{12A}$          | 118.0(3)              | $C_{12B}$ $C_{13B}$ $C_{14B}$                             | 122.0(2)<br>118.0(2) |
| $C_{14A} = C_{13A} = C_{12A}$          | 110.9(2)<br>110.9(2)  | C1B $C1AB$ $C5B$                                          | 110.0(2)             |
| $C_{3A} = C_{14A} = C_{1A}$            | 119.9(2)<br>120.0(2)  | C1P C14P C12P                                             | 119.5(2)             |
| $C_{1A} = C_{14A} = C_{13A}$           | 120.0(2)              | $C_{1B}$ $C_{14B}$ $C_{13B}$ $C_{5B}$ $C_{14B}$ $C_{12B}$ | 120.0(2)             |
| CIA = CI4A = CI3A                      | 120.0(2)              | $C_{JB}$ $C_{I4B}$ $C_{IJB}$                              | 119.9 (2)            |
| OIA = CI5A = U15A                      | 108.4 (3)             | OIB-CISB-CI6B                                             | 108.4 (2)            |
| OIA—CISA—HISA                          | 110                   | OIB-CISB-HISC                                             | 110                  |
| CI6A—CI5A—HI5A                         | 110                   | CI6B—CI5B—HI5C                                            | 110                  |
| OIA—CI5A—HI5B                          | 110                   | OIB—CI5B—HI5D                                             | 110                  |
| С16А—С15А—Н15В                         | 110                   | C16B—C15B—H15D                                            | 110                  |
| H15A—C15A—H15B                         | 108.4                 | H15C—C15B—H15D                                            | 108.4                |
| C15A—C16A—H16A                         | 109.5                 | C15B—C16B—H16D                                            | 109.5                |
| C15A—C16A—H16B                         | 109.5                 | C15B—C16B—H16E                                            | 109.5                |
| H16A—C16A—H16B                         | 109.5                 | H16D—C16B—H16E                                            | 109.5                |
| C15A—C16A—H16C                         | 109.5                 | C15B—C16B—H16F                                            | 109.5                |
| H16A—C16A—H16C                         | 109.5                 | H16D—C16B—H16F                                            | 109.5                |

| H16B—C16A—H16C                         | 109.5                | H16E—C16B—H16F        | 109.5       |
|----------------------------------------|----------------------|-----------------------|-------------|
| O2A—C17A—C18A                          | 107.4 (2)            | O2B—C17B—C18B         | 107.5 (2)   |
| O2A—C17A—H17A                          | 110.2                | O2B—C17B—H17C         | 110.2       |
| C18A—C17A—H17A                         | 110.2                | C18B—C17B—H17C        | 110.2       |
| O2A—C17A—H17B                          | 110.2                | O2B— $C17B$ — $H17D$  | 110.2       |
| C18A—C17A—H17B                         | 110.2                | C18B—C17B—H17D        | 110.2       |
| H17A—C17A—H17B                         | 108.5                | H17C-C17B-H17D        | 108.5       |
| C17A—C18A—H18A                         | 109.5                | C17B-C18B-H18D        | 109.5       |
| C17A - C18A - H18B                     | 109.5                | C17B— $C18B$ — $H18E$ | 109.5       |
| H18A - C18A - H18B                     | 109.5                | H18D— $C18B$ — $H18E$ | 109.5       |
| C17A - C18A - H18C                     | 109.5                | C17B-C18B-H18F        | 109.5       |
| H18A - C18A - H18C                     | 109.5                | H18D— $C18B$ — $H18F$ | 109.5       |
| H18B-C18A-H18C                         | 109.5                | H18F— $C18B$ — $H18F$ | 109.5       |
| $C1A \rightarrow O1A \rightarrow C15A$ | 109.5<br>118 5 (2)   | C1B - O1B - C15B      | 119.11 (19) |
| $C_{44} = 0.024 = C_{174}$             | 110.3(2)<br>119.1(2) | C4B - O2B - C17B      | 118.09(19)  |
| C4A-02A-C1/A                           | 119.1 (2)            | C+D-02D-C17D          | 110.09 (19) |
| O1A—C1A—C2A—C3A                        | -178.3 (2)           | O1B—C1B—C2B—C3B       | 175.1 (2)   |
| C14A—C1A—C2A—C3A                       | 1.0 (4)              | C14B—C1B—C2B—C3B      | -4.0 (4)    |
| C1A—C2A—C3A—C4A                        | 0.0 (4)              | C1B—C2B—C3B—C4B       | 1.3 (4)     |
| C2A—C3A—C4A—O2A                        | -179.9 (2)           | C2B—C3B—C4B—O2B       | -176.9 (2)  |
| C2A—C3A—C4A—C5A                        | -0.2 (4)             | C2B—C3B—C4B—C5B       | 2.0 (4)     |
| O2A—C4A—C5A—C14A                       | 179.0 (2)            | O2B—C4B—C5B—C14B      | 176.5 (2)   |
| C3A—C4A—C5A—C14A                       | -0.7 (4)             | C3B—C4B—C5B—C14B      | -2.4 (3)    |
| O2A—C4A—C5A—C6A                        | -4.3 (4)             | O2B—C4B—C5B—C6B       | -3.0 (3)    |
| C3A—C4A—C5A—C6A                        | 176.0 (2)            | C3B—C4B—C5B—C6B       | 178.1 (2)   |
| C4A—C5A—C6A—O3A                        | -8.2 (4)             | C4B—C5B—C6B—O3B       | -17.1 (4)   |
| C14A—C5A—C6A—O3A                       | 168.5 (3)            | C14B—C5B—C6B—O3B      | 163.4 (2)   |
| C4A—C5A—C6A—C7A                        | 175.7 (2)            | C4B—C5B—C6B—C7B       | 163.8 (2)   |
| C14A—C5A—C6A—C7A                       | -7.6 (4)             | C14B—C5B—C6B—C7B      | -15.7 (3)   |
| O3A—C6A—C7A—C12A                       | -170.0 (3)           | O3B—C6B—C7B—C12B      | -161.9 (2)  |
| C5A—C6A—C7A—C12A                       | 6.3 (4)              | C5B—C6B—C7B—C12B      | 17.2 (3)    |
| O3A—C6A—C7A—C8A                        | 8.4 (4)              | O3B—C6B—C7B—C8B       | 15.1 (4)    |
| C5A—C6A—C7A—C8A                        | -175.4 (2)           | C5B—C6B—C7B—C8B       | -165.8(2)   |
| C12A—C7A—C8A—C9A                       | 0.1 (4)              | C12B—C7B—C8B—C9B      | -0.9 (4)    |
| C6A—C7A—C8A—C9A                        | -178.3 (2)           | C6B—C7B—C8B—C9B       | -177.9 (2)  |
| C7A—C8A—C9A—C10A                       | 0.1 (4)              | C7B-C8B-C9B-C10B      | 1.6 (4)     |
| C8A—C9A—C10A—C11A                      | -0.5 (5)             | C8B-C9B-C10B-C11B     | -0.7 (5)    |
| C9A—C10A—C11A—C12A                     | 0.6 (5)              | C9B—C10B—C11B—C12B    | -0.9 (4)    |
| C8A—C7A—C12A—C11A                      | 0.1 (4)              | C8B-C7B-C12B-C11B     | -0.6 (4)    |
| C6A—C7A—C12A—C11A                      | 178.4 (3)            | C6B-C7B-C12B-C11B     | 176.3 (2)   |
| C8A—C7A—C12A—C13A                      | -178.0 (3)           | C8B—C7B—C12B—C13B     | -179.2 (2)  |
| C6A—C7A—C12A—C13A                      | 0.3 (4)              | C6B-C7B-C12B-C13B     | -2.2 (3)    |
| C10A—C11A—C12A—C7A                     | -0.4 (4)             | C10B—C11B—C12B—C7B    | 1.5 (4)     |
| C10A—C11A—C12A—C13A                    | 177.7 (3)            | C10B—C11B—C12B—C13B   | -179.9 (3)  |
| C7A—C12A—C13A—O4A                      | 172.8 (4)            | C7B—C12B—C13B—O4B     | 165.4 (2)   |
| C11A—C12A—C13A—O4A                     | -5.4 (5)             | C11B—C12B—C13B—O4B    | -13.1 (4)   |
| C7A—C12A—C13A—C14A                     | -5.6 (4)             | C7B—C12B—C13B—C14B    | -14.1 (3)   |
| C11A—C12A—C13A—C14A                    | 176.2 (3)            | C11B—C12B—C13B—C14B   | 167.4 (2)   |

| C4A—C5A—C14A—C1A<br>C6A—C5A—C14A—C1A<br>C4A—C5A—C14A—C13A<br>C6A—C5A—C14A—C13A<br>O1A—C1A—C14A—C5A<br>C2A—C1A—C14A—C5A<br>O1A—C1A—C14A—C5A<br>O1A—C1A—C14A—C13A<br>O4A—C13A—C14A—C13A<br>O4A—C13A—C14A—C5A<br>O4A—C13A—C14A—C5A<br>O4A—C13A—C14A—C1A<br>C12A—C13A—C14A—C1A<br>C12A—C13A—C14A—C1A<br>C12A—C13A—C14A—C1A<br>C12A—C13A—O1A—C15A<br>C14A—C1A—O1A—C15A<br>C16A—C15A—O1A—C15A<br>C16A—C15A—O1A—C17A<br>C5A—C4A—O2A—C17A | $\begin{array}{c} 1.7 \ (4) \\ -175.0 \ (2) \\ 179.1 \ (3) \\ 2.4 \ (4) \\ 177.5 \ (2) \\ -1.8 \ (4) \\ 0.1 \ (4) \\ -179.2 \ (3) \\ -174.2 \ (4) \\ 4.1 \ (4) \\ 3.2 \ (5) \\ -178.4 \ (2) \\ 0.7 \ (4) \\ -178.6 \ (2) \\ 177.4 \ (2) \\ -4.4 \ (4) \\ 175.9 \ (2) \end{array}$ | $\begin{array}{c} 01B-C1B-C14B-C5B\\ C2B-C1B-C14B-C5B\\ 01B-C1B-C14B-C13B\\ C2B-C1B-C14B-C13B\\ C2B-C1B-C14B-C13B\\ C4B-C5B-C14B-C1B\\ C6B-C5B-C14B-C13B\\ C4B-C5B-C14B-C13B\\ C6B-C5B-C14B-C13B\\ C6B-C5B-C14B-C13B\\ C12B-C13B-C14B-C1B\\ C12B-C13B-C14B-C5B\\ C12B-C13B-C14B-C15B\\ C14B-C1B-O1B-C15B\\ C16B-C15B-O1B-C1B\\ C3B-C4B-O2B-C17B\\ C5B-C4B-O2B-C17B\\ \end{array}$ | $\begin{array}{c} -175.6 (2) \\ 3.5 (3) \\ 4.0 (3) \\ -176.8 (2) \\ -0.3 (3) \\ 179.2 (2) \\ 180.0 (2) \\ -0.5 (3) \\ 16.2 (4) \\ -164.3 (2) \\ -164.1 (2) \\ 15.4 (3) \\ -0.4 (4) \\ 178.7 (2) \\ -172.6 (2) \\ 5.2 (3) \\ -173.7 (2) \end{array}$ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C5A—C4A—O2A—C17A                                                                                                                                                                                                                                                                                                                                                                                                                  | 175.9 (2)                                                                                                                                                                                                                                                                         | C5B—C4B—O2B—C17B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -173.7 (2)                                                                                                                                                                                                                                          |
| C18A—C17A—O2A—C4A                                                                                                                                                                                                                                                                                                                                                                                                                 | 179.5 (2)                                                                                                                                                                                                                                                                         | C18B—C17B—O2B—C4B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 175.7 (2)                                                                                                                                                                                                                                           |

Hydrogen-bond geometry (Å, °)

| <i>D</i> —Н | H···A                                       | $D \cdots A$                                                                                                                      | <i>D</i> —H… <i>A</i>                                                                                                                                                                                                   |
|-------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.94        | 2.48                                        | 3.234 (3)                                                                                                                         | 137                                                                                                                                                                                                                     |
| 0.94        | 2.55                                        | 3.304 (4)                                                                                                                         | 137                                                                                                                                                                                                                     |
| 0.94        | 2.60                                        | 3.325 (3)                                                                                                                         | 135                                                                                                                                                                                                                     |
| 0.94        | 2.46                                        | 3.199 (4)                                                                                                                         | 135                                                                                                                                                                                                                     |
|             | <i>D</i> —H<br>0.94<br>0.94<br>0.94<br>0.94 | D—H         H···A           0.94         2.48           0.94         2.55           0.94         2.60           0.94         2.46 | D—H         H···A         D···A           0.94         2.48         3.234 (3)           0.94         2.55         3.304 (4)           0.94         2.60         3.325 (3)           0.94         2.46         3.199 (4) |

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*-1, *y*, *z*.