

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 14 May 2015
Accepted 4 June 2015

Edited by A. J. Lough, University of Toronto, Canada

Keywords: crystal structure; gold; metronidazole; flagyl; tetrachloridoaurate(III); $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonding

CCDC reference: 1404845
Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \odot ACCESS

Crystal structure of metronidazolium tetrachloridoaurate(III)

Patrick J. Quinlivan, ${ }^{\mathbf{a}}$ Ja-Shin $\mathbf{W u}{ }^{\mathbf{b}}$ and Rita K. Upmacis ${ }^{\text {b }}$ *
${ }^{\text {a }}$ Department of Chemistry, Columbia University, New York, NY 10027, USA, and ${ }^{\mathbf{b}}$ Haskins Laboratories, Dept. of Chemistry, Pace University, New York, NY 10038, USA. *Correspondence e-mail: rupmacis@pace.edu

Metronidazole (MET) [systematic names: 1-(2-hydroxyethyl)-2-methyl-5-nitro1 H -imidazole and 2-(2-methyl-5-nitro- 1 H -imidazol-1-yl)ethanol] is a medication that is used to treat infections from a variety of anaerobic organisms. As with other imidazole derivatives, metronidazole is also susceptible to protonation. However, there are few reports of the structures of metronidazolium derivatives. In the title compound, $\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{3}\right)\left[\mathrm{AuCl}_{4}\right.$] [systematic name: 1-(2-hydroxyethyl)-2-methyl-5-nitro-1 H -imidazol-3-ium tetrachloridoaurate(III)], the asymmetric unit consists of a metronidazolium cation, $[\mathrm{H}(\mathrm{MET})]^{+}$, and a tetrachloridoaurate(III) anion, $\left[\mathrm{AuCl}_{4}\right]^{-}$, in which the $\mathrm{Au}^{\mathrm{III}}$ ion is in a slightly distorted square-planar coordination environment. In the cation, the nitro group is essentially coplanar with the imidazole ring, as indicated by an $\mathrm{O} \cdots \mathrm{N}-\mathrm{C}=\mathrm{C}$ torsion angle of $-0.2(4)^{\circ}$, while the hydroxyethyl group is in a coiled conformation, with an $\mathrm{O}(\mathrm{H})-\mathrm{C}-\mathrm{C}-\mathrm{N}$ torsion angle of $62.3(3)^{\circ}$. In the crystal, the anion and cation are linked by an intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bond. In addition, the $\mathrm{N}-\mathrm{H}$ group of the metronidazolium ion serves as a hydrogen-bond donor to the O atom of the hydroxyethyl group of a symmetry-related molecule, leading to the formation of chains along [010].

1. Chemical context

Metronidazole (MET), marketed as flagyl, and also known by the systematic names 1-(2-hydroxyethyl)-2-methyl-5-nitro1 H -imidazole and 2-(2-methyl-5-nitro- 1 H -imidazol-1-yl)ethanol, is a medication that has been used for the treatment of parasitic infections, such as trichomoniasis, amoebiasis and giardiasis, and is also effective against anaerobic bacteria (Freeman et al., 1997; Miljkovic et al., 2014; Soares et al., 2012; Samuelson, 1999; Lofmark et al., 2010; Contreras et al., 2009). Metronidazole possesses a variety of functional groups, and the two-coordinate nitrogen atom of the imidazole ring has been shown to be an effective ligand for a variety of metals (Contreras et al., 2009). This nitrogen atom is also susceptible to protonation, but there are few structures of metronidazolium derivatives reported in the literature (Yang, 2008; Wang et al., 2010). We describe herein the structure of metronidazolium tetrachloridoaurate(III), which is obtained by the addition of MET to HAuCl_{4}.

2. Structural commentary

The asymmetric unit of $[\mathrm{H}(\mathrm{MET})]\left[\mathrm{AuCl}_{4}\right]$ consists of a metronidazolium cation, $[\mathrm{H}(\mathrm{MET})]^{+}$, hydrogen-bonded to a square-planar tetrachloridoaurate(III) anion, $\left[\mathrm{AuCl}_{4}\right]^{-}$, by an $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bond as illustrated in Fig. 1. The O3 $\cdots \mathrm{Cl} 3$ distance of 3.169 (2) \AA is comparable to the values
in other tetrachloridoaurate(III) derivatives that exhibit $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds. As an illustration, bis\{2-[(2-hydroxyethyl)iminomethyl]phenolato\}gold(III) tetrachloridoaurate(III) possesses an $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bond between a hydroxyethyl group and $\left[\mathrm{AuCl}_{4}\right]^{-}$, with an $\mathrm{O}(\mathrm{H}) \cdots \mathrm{Cl}$ distance of $3.365 \AA$ (Nockemann et al., 2007). For further reference, the average $\mathrm{O} \cdots \mathrm{Cl}$ distance in compounds that have $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ interactions is 3.196 (3) \AA (Steiner, 2002). The nitro group is almost coplanar with the imidazole ring, as indicated by an $\mathrm{O} 1-\mathrm{N} 3-\mathrm{C} 2-\mathrm{C} 1$ torsion angle of $-0.2(4)^{\circ}$, while the hydroxyethyl group exhibits an $\mathrm{O} 3-\mathrm{C} 6-\mathrm{C} 5-\mathrm{N} 2$ torsion angle of $62.3(3)^{\circ}$, describing a coiled conformation.

3. Supramolecular features

In the crystal, the $\mathrm{N}-\mathrm{H}$ group of the metronidazolium ion serves as a hydrogen-bond donor to the oxygen atom of the hydroxyethyl group of a symmetry-related molecule, forming a chain along [010] in which each $\mathrm{O}-\mathrm{H}$ group is $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonded to a $\left[\mathrm{AuCl}_{4}\right]^{-}$ion (Table 1 and Fig. 2). The N . . O distance of 2.729 (3) \AA associated with the hydrogen bond is comparable to that observed for metronidazole [2.816 (2) Å] (Blaton et al., 1979; Galván-Tejada et al., 2002). However, an important difference between the hydrogen

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H01 $\cdots \mathrm{O}^{\mathrm{i}}$	$0.94(4)$	$1.81(4)$	$2.729(3)$	$166(3)$
O3-H3 $\cdots \mathrm{Cl} 3$	$0.67(4)$	$2.54(4)$	$3.169(2)$	$158(4)$

[^0]

Figure 1
The asymmetric unit of the title compound, shown with 20% probability displacement ellipsoids. The $\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{Cl} 3$ hydrogen bond is shown as an open bond.
bonds in metronidazole and metronidazolium is that the alcohol $\mathrm{O}-\mathrm{H}$ group is the hydrogen-bond donor for metronidazole (i.e. $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$), while the $\mathrm{N}-\mathrm{H}$ group is the hydrogen-bond donor for metronidazolium (i.e. $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$).

4. Database survey

Metronidazolium derivatives that feature other counter-ions, e.g. 3-carboxy-4-hydroxybenzenesulfonate and perchlorate have been reported (Yang, 2008; Wang et al., 2010), as have a variety of tetrachloridoaurate(III) complexes (Johnson \& Steed, 1998; Pluzhnik-Gladyr et al., 2014; Fazaeli et al., 2010).

5. Synthesis and crystallization

Crystals of composition $[\mathrm{H}(\mathrm{MET})]\left[\mathrm{AuCl}_{4}\right]$ were obtained by combining $\mathrm{HAuCl}_{4} \cdot \mathrm{H}_{2} \mathrm{O}(0.12 \mathrm{mmol})$ with MET $(0.20 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{ml})$, followed by evaporation of MeOH , and crystallization from $\mathrm{Et}_{2} \mathrm{O}$.

Figure 2
Part of the crystal structure showing a hydrogen-bonded chain (open bonds) along [010].

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms bonded to C atoms were refined with a riding model, with $\mathrm{C}-\mathrm{H}=0.95-0.99 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}\left(\mathrm{C}_{\text {methyl }}\right) . \mathrm{H}$ atoms bonded to N and O atoms were refined independently with isotropic displacement parameters.

Acknowledgements

RKU would like to thank Pace University for research support. Gerard Parkin (Columbia University) is thanked for helpful discussions.

References

Blaton, N. M., Peeters, O. M. \& De Ranter, C. J. (1979). Acta Cryst. B35, 2465-2467.
Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Contreras, R., Flores-Parra, A., Mijangos, E., Téllez, F., LópezSandoval, H. \& Barba-Behrens, N. (2009). Coord. Chem. Rev. 253, 1979-1999.
Fazaeli, Y., Amani, V., Amini, M. M. \& Khavasi, H. R. (2010). Acta Cryst. E66, m212.
Freeman, C. D., Klutman, N. E. \& Lamp, K. C. (1997). Drugs, 54, 679708.

Galván-Tejada, N., Bernès, S., Castillo-Blum, S. E., Nöth, H., Vicente, R. \& Barba-Behrens, N. (2002). J. Inorg. Biochem. 91, 339-348.

Johnson, K. \& Steed, J. W. (1998). Chem. Commun. pp. 1479-1480.
Lofmark, S., Edlund, C. \& Nord, C. E. (2010). Clin. Infect. Dis. 50 (Suppl 1), S16-S23.
Miljkovic, V., Arsic, B., Bojanic, Z., Nikolic, G., Nikolic, L. J., Lj, , Kalicanin, B. \& Savic, V. (2014). Pharmazie, 69, 571-577.
Nockemann, P., Van Hecke, K., Van Meervelt, L. \& Binnemans, K. (2007). Acta Cryst. E63, m402-m404.

Pluzhnik-Gladyr, S. M., Kravtsov, V. C., Fonari, M. S. \& Kamalov, G. L. (2014). Dalton Trans. 43, 7087-7095.

Samuelson, J. (1999). Antimicrob. Agents Chemother. 43, 1533-1541.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Table 2
Experimental details.
Crystal data Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\beta\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$\begin{array}{ll}(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right) & 0.041 \\ \end{array}$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
$0.021,0.045,1.16$
4214
163
H atoms treated by a mixture of independent and constrained refinement
refinement
$1.30,-1.22$

Computer programs: APEX2 and, SAINT (Bruker, 2013), SHELXS97 and SHELXTL (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015).

Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Soares, G. M. S., Figueiredo, L. C., Faveri, M., Cortelli, S. C., Duarte, P. M. \& Feres, M. (2012). J. Appl. Oral Sci. 20, 295-309.

Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 49-76.
Wang, Y.-T., Chu, X.-L., Yan, S.-C. \& Tang, G.-M. (2010). Acta Cryst. E66, 02647.
Yang, B. (2008). Acta Cryst. E64, o1338-o1339.

supporting information

Crystal structure of metronidazolium tetrachloridoaurate(III)

Patrick J. Quinlivan, Ja-Shin Wu and Rita K. Upmacis

Computing details

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

1-(2-Hydroxyethyl)-2-methyl-5-nitro-1H-imidazol-3-ium tetrachloridoaurate(III)]

Crystal data

$\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{3}\right)\left[\mathrm{AuCl}_{4}\right]$
$M_{r}=510.94$
Monoclinic, $P 2_{1} / n$
$a=7.324$ (2) \AA
$b=11.972$ (4) \AA
$c=15.667$ (5) \AA
$\beta=94.384(4)^{\circ}$
$V=1369.6(8) \AA^{3}$
$Z=4$

Data collection

Bruker APEXII CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
$T_{\min }=0.426, T_{\max }=0.746$
22024 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
$w R\left(F^{2}\right)=0.045$
$S=1.16$
4214 reflections
163 parameters
0 restraints

$$
F(000)=952
$$

$D_{\mathrm{x}}=2.478 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9874 reflections
$\theta=2.6-30.6^{\circ}$
$\mu=11.52 \mathrm{~mm}^{-1}$
$T=130 \mathrm{~K}$
Plate, yellow
$0.23 \times 0.04 \times 0.02 \mathrm{~mm}$

4214 independent reflections
3673 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.041$
$\theta_{\text {max }}=30.7^{\circ}, \theta_{\text {min }}=2.1^{\circ}$
$h=-10 \rightarrow 10$
$k=-17 \rightarrow 17$
$l=-22 \rightarrow 22$

Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0129 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=1.30 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-1.22 \mathrm{e} \AA^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Au	$0.36629(2)$	$0.79983(2)$	$0.58625(2)$	$0.01868(4)$
C 11	$0.26070(11)$	$0.84595(7)$	$0.45047(5)$	$0.03247(17)$
C 2	$0.44092(10)$	$0.62541(6)$	$0.54111(5)$	$0.03012(16)$
$\mathrm{Cl3}$	$0.46029(10)$	$0.75210(6)$	$0.72389(5)$	$0.02610(15)$
C 4	$0.29498(10)$	$0.97418(6)$	$0.63205(5)$	$0.02831(15)$
O 1	$0.8047(3)$	$0.7553(2)$	$0.41611(14)$	$0.0367(5)$
O 2	$0.9242(3)$	$0.60835(18)$	$0.47815(14)$	$0.0331(5)$
O 3	$0.7450(3)$	$0.55236(18)$	$0.73360(15)$	$0.0265(5)$
H 3	$0.684(5)$	$0.591(3)$	$0.719(2)$	$0.042(13)^{*}$
N 1	$0.8446(3)$	$0.89061(19)$	$0.65413(15)$	$0.0175(4)$
H 01	$0.810(5)$	$0.953(3)$	$0.685(2)$	$0.042(10)^{*}$
N2	$0.9387(3)$	$0.72022(17)$	$0.63739(14)$	$0.0159(4)$
N3	$0.8670(3)$	$0.70319(19)$	$0.47846(15)$	$0.0223(5)$
C1	$0.8127(4)$	$0.8685(2)$	$0.56913(17)$	$0.0191(5)$
H1A	0.7604	0.9173	0.5261	0.023^{*}
C2	$0.8708(3)$	$0.7626(2)$	$0.55853(17)$	$0.0158(5)$
C3	$0.9200(4)$	$0.8016(2)$	$0.69521(17)$	$0.0170(5)$
C4	$0.9783(4)$	$0.7982(3)$	$0.78720(19)$	$0.0272(6)$
H4A	0.9318	0.8643	0.8154	0.041^{*}
H4B	1.1123	0.7972	0.7949	0.041^{*}
H4C	0.9295	0.7307	0.8126	0.041^{*}
C5	$1.0107(4)$	$0.6070(2)$	$0.65912(18)$	$0.0198(5)$
H5A	1.0863	0.6102	0.7142	0.024^{*}
H5B	1.0904	0.5822	0.6145	0.024^{*}
C6	$0.8579(4)$	$0.5230(2)$	$0.66604(18)$	$0.0227(6)$
H6A	0.7818	0.5199	0.6111	0.027^{*}
H6B	0.9111	0.4479	0.6773	

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Au	$0.01490(5)$	$0.01746(6)$	$0.02409(6)$	$-0.00147(4)$	$0.00416(4)$	$-0.00253(4)$
$\mathrm{Cl1}$	$0.0438(4)$	$0.0304(4)$	$0.0234(4)$	$0.0042(3)$	$0.0037(3)$	$-0.0009(3)$
C 2	$0.0286(4)$	$0.0222(3)$	$0.0400(4)$	$0.0024(3)$	$0.0057(3)$	$-0.0092(3)$
Cl 3	$0.0255(3)$	$0.0251(3)$	$0.0272(4)$	$0.0036(3)$	$-0.0008(3)$	$-0.0012(3)$
Cl 4	$0.0360(4)$	$0.0193(3)$	$0.0292(4)$	$0.0033(3)$	$0.0002(3)$	$-0.0038(3)$
O 1	$0.0516(15)$	$0.0375(13)$	$0.0193(11)$	$0.0047(11)$	$-0.0090(10)$	$-0.0008(10)$
O 2	$0.0468(14)$	$0.0221(11)$	$0.0309(12)$	$0.0056(10)$	$0.0058(10)$	$-0.0077(9)$
O 3	$0.0250(11)$	$0.0233(11)$	$0.0327(13)$	$0.0053(9)$	$0.0109(9)$	$0.0075(9)$

N1	$0.0172(10)$	$0.0152(10)$	$0.0203(11)$	$-0.0003(9)$	$0.0023(9)$	$-0.0003(9)$
N2	$0.0146(10)$	$0.0157(10)$	$0.0175(11)$	$0.0000(8)$	$0.0021(8)$	$0.0014(8)$
N3	$0.0253(12)$	$0.0233(12)$	$0.0181(12)$	$-0.0032(10)$	$0.0010(9)$	$-0.0019(9)$
C1	$0.0217(13)$	$0.0198(13)$	$0.0157(12)$	$0.0003(10)$	$-0.0001(10)$	$0.0012(10)$
C2	$0.0184(12)$	$0.0152(11)$	$0.0138(12)$	$-0.0023(10)$	$0.0008(9)$	$-0.0006(9)$
C3	$0.0146(12)$	$0.0188(12)$	$0.0180(13)$	$-0.0012(10)$	$0.0038(10)$	$0.0002(10)$
C4	$0.0292(16)$	$0.0355(17)$	$0.0167(14)$	$0.0031(13)$	$0.0011(12)$	$-0.0009(12)$
C5	$0.0181(12)$	$0.0170(12)$	$0.0245(14)$	$0.0051(10)$	$0.0026(10)$	$0.0064(10)$
C6	$0.0254(14)$	$0.0164(13)$	$0.0271(15)$	$0.0029(11)$	$0.0072(12)$	$0.0046(11)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Au}-\mathrm{Cl1}$	2.2752 (10)	N2-C5	1.485 (3)
$\mathrm{Au}-\mathrm{Cl} 4$	2.2807 (9)	N3-C2	1.441 (3)
$\mathrm{Au}-\mathrm{Cl} 2$	2.2844 (9)	$\mathrm{C} 1-\mathrm{C} 2$	1.351 (4)
$\mathrm{Au}-\mathrm{Cl} 3$	2.2855 (10)	C1-H1A	0.9500
$\mathrm{O} 1-\mathrm{N} 3$	1.218 (3)	C3-C4	1.472 (4)
$\mathrm{O} 2-\mathrm{N} 3$	1.210 (3)	C4—H4A	0.9800
O3-C6	1.436 (3)	C4-H4B	0.9800
O3-H3	0.67 (4)	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	0.9800
N1-C3	1.341 (3)	C5-C6	1.515 (4)
N1-C1	1.360 (3)	C5-H5A	0.9900
N1-H01	0.94 (4)	C5-H5B	0.9900
N2-C3	1.345 (3)	C6-H6A	0.9900
N2-C2	1.392 (3)	C6-H6B	0.9900
$\mathrm{Cl} 1-\mathrm{Au}-\mathrm{Cl} 4$	90.14 (3)	N1-C3-N2	108.2 (2)
$\mathrm{Cl} 1-\mathrm{Au}-\mathrm{Cl} 2$	90.27 (3)	N1-C3-C4	124.7 (2)
$\mathrm{Cl} 4-\mathrm{Au}-\mathrm{Cl} 2$	179.36 (3)	N2-C3-C4	127.0 (2)
$\mathrm{Cl1}-\mathrm{Au}-\mathrm{Cl} 3$	177.66 (3)	C3-C4-H4A	109.5
$\mathrm{Cl} 4-\mathrm{Au}-\mathrm{Cl} 3$	89.52 (3)	C3-C4-H4B	109.5
$\mathrm{Cl2}-\mathrm{Au}-\mathrm{Cl} 3$	90.09 (3)	H4A-C4-H4B	109.5
C6-O3-H3	108 (3)	C3-C4-H4C	109.5
C3-N1-C1	110.4 (2)	H4A-C4-H4C	109.5
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{H} 01$	120 (2)	$\mathrm{H} 4 \mathrm{~B}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.5
C1-N1-H01	129 (2)	N2-C5-C6	111.8 (2)
C3-N2-C2	106.6 (2)	N2-C5-H5A	109.3
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 5$	124.1 (2)	C6-C5-H5A	109.3
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 5$	129.3 (2)	N2-C5-H5B	109.3
$\mathrm{O} 2-\mathrm{N} 3-\mathrm{O} 1$	125.9 (3)	C6-C5-H5B	109.3
$\mathrm{O} 2-\mathrm{N} 3-\mathrm{C} 2$	118.9 (2)	H5A-C5-H5B	107.9
$\mathrm{O} 1-\mathrm{N} 3-\mathrm{C} 2$	115.2 (2)	O3-C6-C5	111.1 (2)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	105.7 (2)	O3-C6-H6A	109.4
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	127.1	C5-C6-H6A	109.4
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	127.1	O3-C6-H6B	109.4
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$	109.1 (2)	C5-C6-H6B	109.4
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 3$	125.8 (2)	H6A-C6-H6B	108.0
N2-C2-N3	125.1 (2)		

supporting information

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D — \mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 01 \cdots \mathrm{O}^{\mathrm{i}}$	$0.94(4)$	$1.81(4)$	$2.729(3)$	$166(3)$
$\mathrm{O} 3 — \mathrm{H} 3 \cdots \mathrm{Cl3}$	$0.67(4)$	$2.54(4)$	$3.169(2)$	$158(4)$

Symmetry code: (i) $-x+3 / 2, y+1 / 2,-z+3 / 2$.

[^0]: Symmetry code: (i) $-x+\frac{3}{2}, y+\frac{1}{2},-z+\frac{3}{2}$.

