

T = 123 K

 $0.45 \times 0.40 \times 0.16 \text{ mm}$

Crystal structure of 2-methyl-3-nitrobenzoic anhydride

Rodolfo Moreno-Fuguen,^a* Alexis Azcárate^a and Alan R. Kennedv^b

^aDepartamento de Química - Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, and ^bWestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland. *Correspondence e-mail: rodimo26@yahoo.es

Received 21 May 2015; accepted 1 June 2015

Edited by A. J. Lough, University of Toronto, Canada

The title molecule, C₁₆H₁₂N₂O₇, lies on a twofold rotation axis which bisects the central O atom. The dihedral angle between two symmetry-related benzene rings is $48.54 (9)^{\circ}$. In the crystal, molecules are linked by weak C-H···O hydrogen bonds which generate C(13) chains running parallel to $[31\overline{1}]$.

Keywords: crystal structure; benzoic acid derivative; anhydrous compound; hydrogen bonding.

CCDC reference: 1404417

1. Related literature

For related structures, see: Schmitt et al. (2011); Liu et al. (2009); Huelgas et al. (2006); Glówka et al. (1990). For hydrogen-bond details, see: Nardelli (1995).

.475.95 (12) Å³

2. Experimental

2.1. Crystal data

$C_{16}H_{12}N_2O_7$	b = 11.6961 (4) Å
$M_r = 344.28$	c = 12.7934 (6) Å
Monoclinic, $C2/c$	$\beta = 111.930 \ (6)^{\circ}$
a = 10.6332 (5) Å	V = 1475.95 (12)

Z = 4OPEN access Cu Ka radiation $\mu = 1.06 \text{ mm}^{-1}$

2.2. Data collection

5209 measured reflections
1466 independent reflections
1384 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.101$

2.3. Refinement $R[F^2 > 2\sigma(F^2)] = 0.059$ $wR(F^2) = 0.163$ S = 1.08

1466 reflections

115 parameters H-atom parameters constrained $\Delta \rho_{\text{max}} = 0.40 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.33 \text{ e } \text{\AA}^{-3}$

Table 1			
Hydrogen-bond	geometry	(Å,	°).

 $D - H \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$ $D \cdot \cdot \cdot A$ $D - H \cdot \cdot \cdot A$ $C3-H3 \cdot \cdot \cdot O1^{i}$ 0.95 2.52 3.204 (2) 129 Symmetry code: (i) $-x - \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Acknowledgements

RMF is grateful to the Universidad del Valle, Colombia, for partial financial support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: LH5768).

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

- Główka, M. L., Iwanicka, I. & Król, I. J. (1990). J. Crystallogr. Spectrosc. Res. 20. 519-523.
- Huelgas, G., Quintero, L., Anaya de Parrodi, C. & Bernès, S. (2006). Acta Crvst. E62, 03191-03192.
- Liu, G.-F., Luo, Y.-W. & Qin, D.-B. (2009). Acta Cryst. E65, o1043.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
- Schmitt, B., Gerber, T., Hosten, E. & Betz, R. (2011). Acta Cryst. E67, o1662. Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

supporting information

Acta Cryst. (2015). E71, o451 [doi:10.1107/S2056989015010531]

Crystal structure of 2-methyl-3-nitrobenzoic anhydride

Rodolfo Moreno-Fuquen, Alexis Azcárate and Alan R. Kennedy

S1. Comment

In the synthesis of phenyl-benzamides performed in our research group for quite some time, the untimely production of 2-methyl-3-nitrobenzoic anhydride (I) as a product of the reaction system was given. A small excess in moles of 2methyl-3-nitrobenzoic acid in the presence of thionyl chloride in the reaction and the subsequent addition of the o-nitroaniline in dry acetonitrile, allowed the formation of two different types of crystals: the corresponding amide and the 2methyl-3-nitrobenzoic anhydride. The excess addition of 2-methyl-3-nitrobenzoic acid possibly yield the benzyl halide formation which subsequently reacts with another molecule of acid, forming the anhydride system in dry condition. A number of anhydrous compounds, from benzoic acid derivatives are reported in the literature. Some with halogen substituents on the rings, encounter a widespread use as chelate ligands in coordination chemistry (Schmitt et al., 2011). Similar compounds to (I) have been reported in the literature: N-phenylanthranilic anhydride (II) (Liu et al., 2009), onitrobenzoic acid anhydride (III) (Huelgas et al., 2006) and m-nitrobenzoic acid anhydride (IV) (Glówka et al., 1990). The molecular structure of (I) is shown in Fig. 1. The central anhydride moiety C6-C8(=O3)-O4 shows a C8ⁱ-O4-C8-O3 torsion angle (symmetry code: (i) -x, y, -z+3/2) of 25.06 (14)°. The twofold rotation axis passes through atom O4. Bond lengths and bond angles in the molecule are in a good agreement with those found in the related compounds (II), (III) and (IV), with the exception of the C6—C8 bond length. The title structure exhibits strong elongation in the C6—C8 bond length [1.494 (2) Å] if compared to the similar bond length presented in (III) [1.402 (2) Å]. In the crystal structure (Fig. 2), molecules are linked by weak C—H···O hydrogen bonds (see Table 1, Nardelli, 1995). The C3—H3 group in the molecule at (x,y,z) acts as hydrogen bond donor to O1 atom of the nitro group in the molecule at (-x-1/2,+y-1/2,-z+1/2). These interactions generate C(13) chains of molecules parallel to [3 11].

S2. Experimental

A mass of 0.380 g (1.104 mmol) of 2-methyl-3-nitrobenzoic acid was refluxed with 2 ml of thionyl chloride for one hour. Then 0.125 g (0.906 mmol) of 2-nitroaniline was added and dissolved in 10 ml of dry acetonitrile and it was placed under reflux and constant stirring for 3 hours. Subsequently, the final solvent was slowly evaporated to obtain colorless blocks of the title compound [m.p. 428 (1)K], and other yellow crystals of the amide show a melting point of 399 (1)K.

S3. Refinement

All H-atoms were located in difference Fourier maps and were positioned geometrically [C—H = 0.95 Å for aromatic, C —H= 0.98 Å for methyl] and were refined using a riding-model approximation with U_{iso} (H) constrained to 1.2 times U_{eq} of the respective parent atom or 1.2 times U_{eq} (C_{methyl}).

Figure 1

The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius (symmetry code: (i) -*x*, *y*, -*z* + 3/2).

Figure 2

Part of the crystal structure of (I), showing the formation of a hydrogen-bonded C(13) chain parallel to $[31\overline{1}]$ (symmetry code: (i) -*x* - 1/2, +*y* - 1/2, -*z* + 1/2).

2-Methyl-3-nitrobenzoic anhydride

 $D_x = 1.549 \text{ Mg m}^{-3}$ Melting point: 428(1) K Cu *Ka* radiation, $\lambda = 1.54180 \text{ Å}$ Cell parameters from 5209 reflections $\theta = 5.9-73.2^{\circ}$ $\mu = 1.06 \text{ mm}^{-1}$ T = 123 KBlock, colourless $0.45 \times 0.40 \times 0.16 \text{ mm}$ Data collection

Oxford Diffraction Gemini S	5209 measured reflections
diffractometer	1466 independent reflections
Radiation source: fine-focus sealed tube	1384 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.101$
ω scans	$\theta_{max} = 73.2^{\circ}, \theta_{min} = 5.9^{\circ}$
Absorption correction: multi-scan	$h = -12 \rightarrow 13$
(<i>CrysAlis PRO</i> ; Oxford Diffraction, 2010)	$k = -14 \rightarrow 14$
$T_{\min} = 0.550, T_{\max} = 1.000$	$l = -14 \rightarrow 15$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.059$	Hydrogen site location: inferred from
$wR(F^2) = 0.163$	neighbouring sites
S = 1.08	H-atom parameters constrained
1466 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0933P)^2 + 1.5216P]$
115 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.40$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.33$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
-0.22053 (15)	0.30472 (11)	0.21092 (12)	0.0323 (4)	
-0.15352 (15)	0.13946 (12)	0.17543 (12)	0.0348 (4)	
0.03327 (14)	0.37124 (12)	0.65687 (11)	0.0303 (4)	
0.0000	0.21684 (16)	0.7500	0.0270 (5)	
-0.17462 (15)	0.20860 (13)	0.23928 (13)	0.0247 (4)	
-0.08126 (16)	0.24457 (15)	0.44518 (15)	0.0214 (4)	
-0.14895 (17)	0.17107 (15)	0.35513 (15)	0.0223 (4)	
-0.19730 (18)	0.06382 (15)	0.36540 (16)	0.0254 (4)	
-0.2393	0.0172	0.3009	0.031*	
-0.18356 (18)	0.02561 (16)	0.47094 (16)	0.0275 (4)	
-0.2150	-0.0482	0.4804	0.033*	
-0.12307 (18)	0.09647 (16)	0.56351 (15)	0.0252 (4)	
-0.1164	0.0716	0.6361	0.030*	
-0.07208 (17)	0.20339 (14)	0.55154 (15)	0.0219 (4)	
-0.0176 (2)	0.35437 (16)	0.42891 (16)	0.0284 (5)	
-0.0092	0.3536	0.3552	0.043*	
	x $-0.22053 (15)$ $-0.15352 (15)$ $0.03327 (14)$ 0.0000 $-0.17462 (15)$ $-0.08126 (16)$ $-0.14895 (17)$ $-0.19730 (18)$ -0.2393 $-0.18356 (18)$ -0.2150 -0.1164 $-0.07208 (17)$ $-0.0176 (2)$ -0.0092	xy $-0.22053 (15)$ $0.30472 (11)$ $-0.15352 (15)$ $0.13946 (12)$ $0.03327 (14)$ $0.37124 (12)$ 0.0000 $0.21684 (16)$ $-0.17462 (15)$ $0.20860 (13)$ $-0.08126 (16)$ $0.24457 (15)$ $-0.14895 (17)$ $0.17107 (15)$ $-0.19730 (18)$ $0.06382 (15)$ -0.2393 0.0172 $-0.18356 (18)$ $0.02561 (16)$ -0.2150 -0.0482 $-0.12307 (18)$ $0.09647 (16)$ $-0.07208 (17)$ $0.20339 (14)$ $-0.0176 (2)$ $0.35437 (16)$ -0.0092 0.3536	xyz $-0.22053 (15)$ $0.30472 (11)$ $0.21092 (12)$ $-0.15352 (15)$ $0.13946 (12)$ $0.17543 (12)$ $0.03327 (14)$ $0.37124 (12)$ $0.65687 (11)$ 0.0000 $0.21684 (16)$ 0.7500 $-0.17462 (15)$ $0.20860 (13)$ $0.23928 (13)$ $-0.08126 (16)$ $0.24457 (15)$ $0.44518 (15)$ $-0.14895 (17)$ $0.17107 (15)$ $0.35513 (15)$ $-0.19730 (18)$ $0.06382 (15)$ $0.36540 (16)$ -0.2393 0.0172 0.3009 $-0.18356 (18)$ $0.02561 (16)$ $0.47094 (16)$ $-0.12307 (18)$ $0.09647 (16)$ $0.56351 (15)$ -0.1164 0.0716 0.6361 $-0.07208 (17)$ $0.20339 (14)$ $0.55154 (15)$ $-0.0176 (2)$ 0.3536 0.3552	xyz U_{iso}^*/U_{eq} -0.22053 (15)0.30472 (11)0.21092 (12)0.0323 (4)-0.15352 (15)0.13946 (12)0.17543 (12)0.0348 (4)0.03327 (14)0.37124 (12)0.65687 (11)0.0303 (4)0.00000.21684 (16)0.75000.0270 (5)-0.17462 (15)0.20860 (13)0.23928 (13)0.0247 (4)-0.08126 (16)0.24457 (15)0.44518 (15)0.0214 (4)-0.14895 (17)0.17107 (15)0.35513 (15)0.0223 (4)-0.19730 (18)0.06382 (15)0.36540 (16)0.0254 (4)-0.23930.01720.30090.031*-0.18356 (18)0.02561 (16)0.47094 (16)0.0275 (4)-0.12307 (18)0.09647 (16)0.56351 (15)0.0252 (4)-0.11640.07160.63610.030*-0.07208 (17)0.20339 (14)0.55154 (15)0.0219 (4)-0.07208 (17)0.20339 (14)0.55154 (15)0.0284 (5)-0.00920.35360.35520.043*

supporting information

H7B	0.0724	0.3623	0.4883	0.043*
H7C	-0.0747	0.4189	0.4326	0.043*
C8	-0.00896 (18)	0.27684 (16)	0.65334 (15)	0.0231 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0356 (8)	0.0225 (7)	0.0357 (8)	0.0027 (6)	0.0095 (6)	0.0041 (5)
O2	0.0382 (9)	0.0322 (8)	0.0336 (8)	0.0025 (6)	0.0130 (6)	-0.0055 (5)
O3	0.0288 (7)	0.0253 (7)	0.0315 (7)	-0.0084(5)	0.0051 (6)	-0.0010 (5)
O4	0.0288 (10)	0.0222 (9)	0.0279 (9)	0.000	0.0082 (8)	0.000
N1	0.0188 (8)	0.0233 (8)	0.0299 (8)	-0.0014 (6)	0.0067 (6)	-0.0012 (6)
C1	0.0126 (7)	0.0194 (8)	0.0307 (9)	0.0006 (6)	0.0062 (6)	-0.0009 (7)
C2	0.0150 (8)	0.0207 (9)	0.0293 (9)	0.0012 (6)	0.0061 (7)	0.0002 (7)
C3	0.0170 (8)	0.0218 (9)	0.0327 (9)	-0.0007 (7)	0.0038 (7)	-0.0026 (7)
C4	0.0216 (8)	0.0199 (8)	0.0362 (10)	-0.0046 (7)	0.0052 (7)	0.0012 (7)
C5	0.0178 (8)	0.0247 (9)	0.0301 (9)	-0.0017 (7)	0.0054 (7)	0.0023 (7)
C6	0.0121 (7)	0.0202 (8)	0.0310 (10)	0.0002 (6)	0.0054 (7)	-0.0008 (6)
C7	0.0292 (10)	0.0253 (9)	0.0312 (9)	-0.0093 (7)	0.0118 (8)	-0.0030(7)
C8	0.0146 (8)	0.0247 (9)	0.0272 (9)	0.0002 (7)	0.0047 (6)	0.0018 (7)

Geometric parameters (Å, °)

01—N1	1.225 (2)	C3—C4	1.377 (3)	
O2—N1	1.228 (2)	С3—Н3	0.9500	
O3—C8	1.186 (2)	C4—C5	1.391 (3)	
O4—C8	1.3939 (19)	C4—H4	0.9500	
O4—C8 ⁱ	1.3939 (19)	C5—C6	1.394 (2)	
N1—C2	1.470 (2)	С5—Н5	0.9500	
C1—C2	1.402 (2)	C6—C8	1.494 (2)	
C1—C6	1.412 (3)	С7—Н7А	0.9800	
C1—C7	1.502 (2)	С7—Н7В	0.9800	
C2—C3	1.380 (2)	С7—Н7С	0.9800	
C8-04-C8 ⁱ	119 5 (2)	C4—C5—C6	121.08 (17)	
01 - N1 - 02	123.96 (16)	C4	119.5	
01 - N1 - C2	118.41 (15)	C6—C5—H5	119.5	
02-N1-C2	117.56 (15)	C5-C6-C1	121.47 (16)	
C2—C1—C6	114.35 (16)	C5—C6—C8	119.12 (16)	
C2—C1—C7	122.01 (16)	C1—C6—C8	119.39 (15)	
C6—C1—C7	123.55 (15)	C1—C7—H7A	109.5	
C3—C2—C1	125.05 (17)	C1—C7—H7B	109.5	
C3—C2—N1	115.58 (15)	H7A—C7—H7B	109.5	
C1-C2-N1	119.37 (15)	C1—C7—H7C	109.5	
C4—C3—C2	118.77 (16)	H7A—C7—H7C	109.5	
С4—С3—Н3	120.6	H7B—C7—H7C	109.5	
С2—С3—Н3	120.6	O3—C8—O4	122.37 (16)	
C3—C4—C5	119.17 (17)	O3—C8—C6	127.50 (16)	

supporting information

C3—C4—H4 C5—C4—H4	120.4 120.4	O4—C8—C6	110.09 (15)
C6—C1—C2—C3 C7—C1—C2—C3 C6—C1—C2—N1 C7—C1—C2—N1 O1—N1—C2—C3 O2—N1—C2—C3 O1—N1—C2—C1 O2—N1—C2—C1 C1—C2—C3—C4 N1—C2—C3—C4 C2—C3—C4—C5	$\begin{array}{c} -3.8 (3) \\ 172.93 (16) \\ 175.09 (14) \\ -8.2 (2) \\ 132.42 (17) \\ -44.8 (2) \\ -46.6 (2) \\ 136.26 (17) \\ 2.4 (3) \\ -176.46 (16) \\ 0.8 (3) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.8 \ (3) \\ 179.52 \ (16) \\ 2.1 \ (2) \\ -174.58 \ (16) \\ -176.64 \ (14) \\ 6.7 \ (3) \\ 25.06 \ (14) \\ -157.20 \ (15) \\ -176.29 \ (18) \\ 2.5 \ (3) \\ 6.1 \ (2) \end{array}$
C3—C4—C5—C6	-2.3 (3)	C1—C6—C8—O4	-175.15 (14)

Symmetry code: (i) -x, y, -z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C3—H3…O1 ⁱⁱ	0.95	2.52	3.204 (2)	129

Symmetry code: (ii) -x-1/2, y-1/2, -z+1/2.