

OPEN a ACCESS

Crystal structure of 1,2-bis(2,6-dimethylphenyl)-3-phenylguanidine

Hongfei Han,^a* Zhigiang Guo^b and Xuehong Wei^a

^aThe School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, People's Republic of China, and ^bInstitute of Applied Chemistry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China. *Correspondence e-mail: hfhan001@163.com

Received 13 June 2015; accepted 20 June 2015

Edited by S. Parkin, University of Kentucky, USA

In the title compound, $C_{23}H_{25}N_3$, the dihedral angles between the planes of the benzene ring and the two substituent dimethylphenyl rings are $60.94 (7)^{\circ}$ and $88.08 (7)^{\circ}$, and the dihedral angle between the planes of the two dimethylphenyl rings is 58.01 (7)°. In the crystal, weak $C-H \cdots N$ interactions exist between adjacent molecules. One of the dimethylphenyl rings has a small amount of π - π overlap with the phenyl ring of an adjacent molecule [centroid-to-centroid distance = 3.9631 (12) Å].

Keywords: crystal structure; guanidines; hydrogen bonding; $\pi - \pi$ overlap.

CCDC reference: 1407910

1. Related literature

For similar structures of various related compounds, see: Boeré et al. (2000); Brazeau et al. (2012); Ghosh et al. (2008); Han & Huynh (2009); Chlupatý & Padělková (2014); Yıldırım et al. (2007); Zhang et al. (2009). For applications of guanidines, see: Berlinck (2002); Heys et al. (2000); Laeckmann et al. (2002); Kelley et al. (2001); Moroni et al. (2001).

2. Experimental

2.1. Crystal data

C23H25N3 $M_r = 343.46$ Orthorhombic, Pca21 a = 19.003 (7) Å b = 7.924 (3) Å c = 13.056 (5) Å

2.2. Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.976, \ T_{\max} = 0.980$

2.3. Refinement $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.104$ S = 1.023547 reflections

239 parameters

 $V = 1966.0 (13) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 0.07 \text{ mm}^{-1}$ T = 194 K $0.35 \times 0.33 \times 0.30$ mm

10737 measured reflections 3547 independent reflections 2649 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.038$

1 restraint
H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.14 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C4-H4\cdots N2^i$	0.95	2.61	3.457 (3)	148

Symmetry code: (i) $x + \frac{1}{2}, -y + 2, z$.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Acknowledgements

Financial support from the National Natural Science Foundation of China (No. 21272142), the Special Fund for Agro-Scientific Research in the Public Interest (No. 201303106), and the Patent Promotion Program of Shanxi Province (No. 141006) are gratefully acknowledged.

Supporting information for this paper is available from the IUCr electronic archives (Reference: PK2556).

References

- Berlinck, R. G. S. (2002). Nat. Prod. Rep. 19, 617-649.
- Boeré, R. E., Boeré, R. T., Masuda, J. & Wolmershäuser, G. (2000). Can. J. Chem. 78, 1613-1619.
- Brazeau, A. L., Hänninen, M. M., Tuononen, H. M., Jones, N. D. & Ragogna, P. J. (2012). J. Am. Chem. Soc. 134, 5398-5414.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chlupatý, T. & Padělková, Z. (2014). Acta Cryst. E70, 0785.

- Ghosh, H., Yella, R., Nath, J. & Patel, B. K. (2008). Eur. J. Org. Chem. pp, 6189–6196.
- Han, Y. & Huynh, H. V. (2009). Dalton Trans., pp. 2201-2209.
- Heys, L., Moore, C. G. & Murphy, P. J. (2000). Chem. Soc. Rev. 29, 57-67.
- Kelley, M. T., Bürckstümmer, T., Wenzel-Seifert, K., Dove, S., Buschauer, A. & Seifert, R. (2001). *Mol. Pharmacol.* **60**, 1210–1225.
- Laeckmann, D., Rogister, F., Dejardin, J.-V., Prosperi-Meys, C., Géczy, J., Delarge, J. & Masereel, B. (2002). *Bioorg. Med. Chem.* **10**, 1793–1804.
- Moroni, M., Koksch, B., Osipov, S. N., Crucianelli, M., Frigerio, M., Bravo, P. & Burger, K. (2001). J. Org. Chem. 66, 130–133.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yıldırım, S. Ö., Akkurt, M., Servi, S., Şekerci, M. & Heinemann, F. W. (2007). *Acta Cryst.* E63, 02130–02132.
- Zhang, W.-X., Li, D., Wang, Z. & Xi, Z. (2009). Organometallics, 28, 882-887.

supporting information

Acta Cryst. (2015). E71, o506-o507 [doi:10.1107/S2056989015011822]

Crystal structure of 1,2-bis(2,6-dimethylphenyl)-3-phenylguanidine

Hongfei Han, Zhiqiang Guo and Xuehong Wei

S1. Structural commentary

Guanidines are important compounds due to their possible application in medicine, biology and chemistry (Berlinck *et al.*, 2002; Heys *et al.*, 2000). In particular, they have received increasing interest as medicinal agents with antitumour, anti-hypertensive, antiglaucoma and cardiotonic activities (Laeckmann *et al.*, 2002; Kelley *et al.*, 2001; Moroni *et al.*, 2001). In search of guanidinato metal complexes and their catalytic behaviors, we synthesized a new substituted guanidine by insertion of phenylamine with a symmetric carbodiimine, the crystal structure of which is presented here. In addition to two examples of phenyl-substituted benzimidazol amines (Ghosh *et al.*, 2008; Yildirim *et al.*, 2007), the title compound is structurally similar to the known compounds, 1-cyclohexyl-2,3-diphenylguanidine (Zhang *et al.*, 2009), 1-(2,6-diisopropylphenyl)-2,3-dimesitylguanidine (Brazeau *et al.*, 2012), N,N',N''-tris(2,6-dimethylphenyl)guanidine (Han & Huynh, 2009), 2-[2,6-Bis(propan-2-yl)phenyl]-1,3-dicyclohexylguanidine (Chlupatý & Padělková, 2014) and N,N',N''-tris(2,6-di-isopropylphenyl)guanidine (Boere *et al.*, 2000).

The molecular structure of the title compound is illustrated in Fig. 1. The C9—N2 bond in the guanidine unit is 1.266 (2) Å, and is characteristic for a C=N imine double bond. The bond lengths of C9—N1 and C9—N3 are 1.365 (2) and 1.376 (2) Å, showing single bond character (Allen *et al.*, 1987). The N—C9—N angles are 124.15 (18)° (N1—C9—N2), 121.58 (17)° (N2—C9—N3) and 114.26 (17)° (N1—C9—N3), indicating a deviation of the CN₃ plane from an ideal trigonal planar geometry. The dihedral angles between the planes of the benzene ring and the two substituent dimethylphenyl rings are 60.94 (7) and 88.08 (7)°, and the dihedral angle between the planes of the two dimethylphenyl rings is 58.01 (7)°. In the crystal, in addition to van der Waals interactions, weak C—H···N and N—H···C interactions exist between adjacent molecules. One of the dimethylphenyl rings has a small amount of π ··· π overlap with the phenyl ring of an adjacent (1-x, 2-y, 0.5+z) molecule [centroid-to-centroid distance = 3.9631 (12) Å].

S2. Synthesis and crystallization

To a stirred solution of phenylamine (1.863 g, 20 mmol) in hexane was added N,N'-dimethylphenyl carbodiimine (5.007 g, 20 mmol), followed by the addition of the trimethylaluminum (2.5 M, 0.40 mL, 1 mmol). After stirring for 2 h, the white precipitate was collected by suction filtration and recrystallized from hexane-diethylether (1:1) solution to obtain colorless crystals of 1,2-bis(2,6-dimethylphenyl)-3-phenylguanidine (yield: 90%). Anal. Calc. for $C_{23}H_{25}N_3$: C, 80.43; H, 7.34; N, 12.23. Found: C, 80.32; H, 7.25; N, 12.31%. ¹H NMR (300 MHz, CDCl₃, 25 °C) δ p.p.m. 2.35 (*d*, 12H, CH₃), 5.06 (*s*, 1H, NH), 5.56 (*s*, 1H, NH), 6.91 (*s*, 2H, PhH), 7.00 (*s*, 2H, PhH), 7.14 (*s*, 4H, PhH), 7.28 (*s*, 1H, PhH) , 7.58 (*s*, 2H, PhH).

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The N—H hydrogen atoms were located in a difference Fourier map and constrained (N—H = 0.87 Å). The C-bound H-atoms were included in calculated

C22 C2 C23 C20 C18 C19 C16 С N3 C2 C11 **C**3 **N1** C1 N2 **C**9 C10 C4 C12 C6 **C5** C17 **C**8 C13 C14

positions and treated as riding atoms: C—H = 0.95 - 0.98 Å with U_{iso} (H) = 1.2 or 1.5 U_{eq} (C_{Me}).

Figure 1

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

1,2-Bis(2,6-dimethylphenyl)-3-phenylguanidine

Crystal data	
C ₂₃ H ₂₅ N ₃	F(000) = 736
$M_r = 343.46$	$D_{\rm x} = 1.160 {\rm Mg} {\rm m}^{-3}$
Orthorhombic, <i>Pca</i> 2 ₁	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2c -2ac	Cell parameters from 2316 reflections
a = 19.003 (7) Å	$\theta = 2.8 - 23.5^{\circ}$
b = 7.924 (3) Å	$\mu = 0.07 \; \mathrm{mm^{-1}}$
c = 13.056 (5) Å	T = 194 K
$V = 1966.0(13) \text{ Å}^3$	Block, colourless
Z = 4	$0.35 \times 0.33 \times 0.30 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector	10737 measured reflections
diffractometer	3547 independent reflections
Radiation source: fine-focus sealed tube	2649 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.038$
φ and ω scans	$\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$
Absorption correction: multi-scan	$h = -23 \rightarrow 23$
(SADABS; Sheldrick, 1996)	$k = -9 \rightarrow 5$
$T_{\min} = 0.976, \ T_{\max} = 0.980$	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.104$	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
S = 1.01	H-atom parameters constrained
3547 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0564P)^2]$
239 parameters	where $P = (F_o^2 + 2F_c^2)/3$
1 restraint	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant direct methods	$\Delta ho_{ m max} = 0.14$ e Å ⁻³ $\Delta ho_{ m min} = -0.14$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.51390 (8)	0.8726 (2)	0.22933 (14)	0.0499 (4)	
H1	0.5001	0.8129	0.2815	0.060*	
N2	0.39761 (8)	0.9417 (2)	0.19326 (13)	0.0470 (4)	
N3	0.48706 (8)	1.0319 (2)	0.08715 (13)	0.0494 (5)	
H3	0.5300	1.0109	0.0680	0.059*	
C1	0.58760 (9)	0.8820(3)	0.21187 (15)	0.0414 (5)	
C2	0.62483 (11)	1.0196 (3)	0.24776 (18)	0.0535 (6)	
C3	0.69708 (12)	1.0198 (4)	0.2354 (2)	0.0693 (7)	
H3A	0.7238	1.1136	0.2586	0.083*	
C4	0.73035 (12)	0.8867 (4)	0.1904 (2)	0.0695 (7)	
H4	0.7801	0.8879	0.1840	0.083*	
C5	0.69327 (12)	0.7521 (4)	0.15447 (18)	0.0612 (6)	
H5	0.7173	0.6614	0.1223	0.073*	
C6	0.62094 (10)	0.7464 (3)	0.16442 (17)	0.0482 (5)	
C7	0.58943 (16)	1.1640 (3)	0.3014 (2)	0.0825 (8)	
H7A	0.5631	1.1213	0.3605	0.124*	
H7B	0.5570	1.2202	0.2539	0.124*	
H7C	0.6250	1.2448	0.3247	0.124*	
C8	0.57928 (15)	0.5980 (3)	0.1261 (2)	0.0732 (7)	
H8A	0.5423	0.6375	0.0796	0.110*	
H8B	0.5578	0.5392	0.1843	0.110*	
H8C	0.6106	0.5204	0.0894	0.110*	
C9	0.46259 (9)	0.9480 (3)	0.17228 (15)	0.0392 (4)	
C10	0.37336 (10)	0.8594 (3)	0.28195 (16)	0.0470 (5)	
C11	0.36221 (11)	0.9503 (4)	0.37126 (18)	0.0592 (7)	

C12	0.32944 (14)	0.8739 (5)	0.4525 (2)	0.0830 (9)
H12	0.3214	0.9366	0.5133	0.100*
C13	0.30812 (15)	0.7093 (6)	0.4476 (3)	0.0950 (12)
H13	0.2852	0.6584	0.5044	0.114*
C14	0.32015 (14)	0.6189 (4)	0.3606 (3)	0.0918 (11)
H14	0.3059	0.5041	0.3580	0.110*
C15	0.35250 (11)	0.6897 (3)	0.2757 (2)	0.0628 (7)
C16	0.38379 (16)	1.1319 (4)	0.3781 (2)	0.0814 (9)
H16A	0.3731	1.1888	0.3133	0.122*
H16B	0.4344	1.1389	0.3916	0.122*
H16C	0.3580	1.1868	0.4338	0.122*
C17	0.36204 (16)	0.5931 (4)	0.1775 (3)	0.0942 (10)
H17A	0.3381	0.6526	0.1217	0.141*
H17B	0.3419	0.4799	0.1850	0.141*
H17C	0.4123	0.5839	0.1619	0.141*
C18	0.44829 (10)	1.1495 (3)	0.02788 (14)	0.0437 (5)
C19	0.37790 (11)	1.1326 (3)	0.00775 (16)	0.0546 (6)
H19	0.3529	1.0372	0.0326	0.065*
C20	0.34337 (13)	1.2550 (3)	-0.04892 (17)	0.0641 (7)
H20	0.2943	1.2446	-0.0611	0.077*
C21	0.37888 (15)	1.3896 (3)	-0.0873 (2)	0.0685 (7)
H21	0.3546	1.4731	-0.1258	0.082*
C22	0.44980 (15)	1.4048 (3)	-0.07045 (19)	0.0666 (7)
H22	0.4749	1.4976	-0.0985	0.080*
C23	0.48466 (11)	1.2853 (3)	-0.01269 (16)	0.0533 (5)
H23	0.5338	1.2964	-0.0007	0.064*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0348 (8)	0.0591 (10)	0.0557 (10)	0.0034 (8)	0.0009 (8)	0.0171 (9)
N2	0.0339 (9)	0.0611 (11)	0.0460 (10)	0.0061 (8)	0.0012 (7)	0.0097 (9)
N3	0.0358 (9)	0.0664 (12)	0.0461 (9)	0.0083 (8)	0.0054 (7)	0.0140 (10)
C1	0.0336 (10)	0.0483 (11)	0.0424 (11)	-0.0002 (9)	-0.0060 (8)	0.0072 (10)
C2	0.0533 (12)	0.0528 (13)	0.0543 (13)	-0.0053 (11)	-0.0068 (11)	0.0059 (11)
C3	0.0564 (14)	0.0834 (19)	0.0682 (15)	-0.0248 (14)	-0.0165 (13)	0.0080 (15)
C4	0.0356 (11)	0.111 (2)	0.0622 (15)	-0.0066 (13)	-0.0028 (11)	0.0113 (17)
C5	0.0477 (13)	0.0820 (18)	0.0540 (13)	0.0115 (12)	0.0023 (10)	-0.0007 (13)
C6	0.0432 (11)	0.0551 (13)	0.0461 (11)	0.0001 (10)	-0.0039 (10)	0.0016 (11)
C7	0.0967 (19)	0.0517 (14)	0.099 (2)	0.0000 (14)	-0.0121 (17)	-0.0118 (17)
C8	0.0800 (18)	0.0600 (17)	0.0795 (17)	-0.0056 (14)	-0.0001 (14)	-0.0135 (14)
C9	0.0368 (10)	0.0428 (11)	0.0379 (10)	0.0029 (9)	-0.0032 (9)	-0.0003 (9)
C10	0.0295 (9)	0.0615 (14)	0.0498 (12)	0.0091 (10)	0.0007 (9)	0.0086 (11)
C11	0.0449 (13)	0.0842 (18)	0.0483 (13)	0.0202 (13)	0.0008 (10)	0.0096 (13)
C12	0.0684 (18)	0.127 (3)	0.0534 (15)	0.0326 (18)	0.0107 (13)	0.0181 (18)
C13	0.0656 (17)	0.129 (3)	0.091 (2)	0.0279 (19)	0.0308 (16)	0.058 (2)
C14	0.0606 (16)	0.078 (2)	0.137 (3)	0.0074 (15)	0.0213 (18)	0.044 (2)
C15	0.0420 (12)	0.0628 (15)	0.0837 (17)	0.0046 (11)	0.0078 (12)	0.0096 (15)

supporting information

010	0.000 (2)	0.005 (2)	0.0710 (17)	0.0102 (17)	0.00(4.(15))	0.017((17))
C16	0.088(2)	0.085 (2)	0.0/10(1/)	0.0123(17)	-0.0064 (15)	-0.01/6(1/)
C17	0.0784 (18)	0.0710 (18)	0.133 (3)	-0.0084 (15)	0.015 (2)	-0.023 (2)
C18	0.0450 (11)	0.0506 (13)	0.0355 (10)	0.0058 (9)	0.0019 (9)	0.0008 (10)
C19	0.0453 (12)	0.0729 (17)	0.0455 (12)	0.0040 (11)	-0.0026 (9)	0.0083 (12)
C20	0.0533 (13)	0.0902 (19)	0.0487 (12)	0.0137 (13)	-0.0040 (11)	0.0067 (14)
C21	0.0819 (18)	0.0696 (18)	0.0541 (14)	0.0251 (15)	-0.0055 (13)	0.0062 (14)
C22	0.090 (2)	0.0497 (15)	0.0606 (15)	0.0046 (13)	-0.0032 (13)	0.0051 (13)
C23	0.0574 (13)	0.0517 (13)	0.0509 (12)	-0.0007 (11)	-0.0028 (11)	-0.0014 (12)

Geometric parameters (Å, °)

N1—C9	1.365 (2)	C11—C12	1.370 (4)	
N1C1	1.421 (2)	C11—C16	1.499 (4)	
N1—H1	0.8700	C12—C13	1.368 (5)	
N2—C9	1.266 (2)	C12—H12	0.9500	
N2-C10	1.407 (3)	C13—C14	1.363 (5)	
N3—C9	1.376 (2)	C13—H13	0.9500	
N3—C18	1.418 (3)	C14—C15	1.386 (4)	
N3—H3	0.8699	C14—H14	0.9500	
C1—C2	1.381 (3)	C15—C17	1.503 (4)	
C1—C6	1.393 (3)	C16—H16A	0.9800	
C2—C3	1.382 (3)	C16—H16B	0.9800	
C2—C7	1.501 (4)	C16—H16C	0.9800	
C3—C4	1.363 (4)	C17—H17A	0.9800	
С3—НЗА	0.9500	C17—H17B	0.9800	
C4—C5	1.362 (3)	C17—H17C	0.9800	
C4—H4	0.9500	C18—C19	1.370 (3)	
C5—C6	1.381 (3)	C18—C23	1.385 (3)	
С5—Н5	0.9500	C19—C20	1.385 (3)	
C6—C8	1.503 (3)	C19—H19	0.9500	
С7—Н7А	0.9800	C20—C21	1.358 (3)	
С7—Н7В	0.9800	C20—H20	0.9500	
С7—Н7С	0.9800	C21—C22	1.371 (4)	
C8—H8A	0.9800	C21—H21	0.9500	
C8—H8B	0.9800	C22—C23	1.380 (3)	
C8—H8C	0.9800	C22—H22	0.9500	
C10-C11	1.387 (3)	C23—H23	0.9500	
C10—C15	1.405 (3)			
C9—N1—C1	126.42 (17)	C12—C11—C16	120.2 (3)	
C9—N1—H1	116.8	C10-C11-C16	120.5 (2)	
C1—N1—H1	116.8	C13—C12—C11	121.3 (3)	
C9—N2—C10	121.07 (16)	C13—C12—H12	119.3	
C9—N3—C18	125.64 (16)	C11—C12—H12	119.3	
C9—N3—H3	117.2	C14—C13—C12	119.3 (3)	
С18—N3—H3	117.2	C14—C13—H13	120.3	
C2-C1-C6	121.78 (17)	C12—C13—H13	120.3	
C2-C1-N1	119.46 (19)	C13—C14—C15	121.9 (3)	

C6—C1—N1	118.63 (17)	C13—C14—H14	119.0
C1—C2—C3	118.0 (2)	C15—C14—H14	119.0
C1—C2—C7	122.0 (2)	C14—C15—C10	117.8 (3)
C3—C2—C7	119.9 (2)	C14—C15—C17	122.0 (3)
C4—C3—C2	120.7 (2)	C10-C15-C17	120.2 (2)
C4—C3—H3A	119.7	C11—C16—H16A	109.5
C^2 — C^3 — H^3A	119.7	C_{11} C_{16} H_{16B}	109.5
$C_{2} = C_{3} = C_{3}$	1210(2)	H_{16A} C_{16} H_{16B}	109.5
$C_5 = C_4 = C_5$	110.5	$\begin{array}{ccc} 11 & C16 & H16C \end{array}$	109.5
C_{3}	119.5		109.5
C3-C4-H4	119.5	H16A - C16 - H16C	109.5
C4—C5—C6	120.5 (2)	H16B—C16—H16C	109.5
С4—С5—Н5	119.7	C15—C17—H17A	109.5
С6—С5—Н5	119.7	C15—C17—H17B	109.5
C5—C6—C1	118.0 (2)	H17A—C17—H17B	109.5
C5—C6—C8	121.2 (2)	С15—С17—Н17С	109.5
C1—C6—C8	120.80 (18)	H17A—C17—H17C	109.5
С2—С7—Н7А	109.5	H17B—C17—H17C	109.5
С2—С7—Н7В	109.5	C19—C18—C23	119.3 (2)
H7A—C7—H7B	109.5	C19—C18—N3	123.2 (2)
C2—C7—H7C	109.5	C23—C18—N3	117 43 (18)
H7A - C7 - H7C	109.5	C_{18} C_{19} C_{20}	1198(2)
H7B C7 H7C	109.5	C_{18} C_{19} H_{19}	120.1
$\frac{11}{D} - \frac{1}{C} - \frac{11}{C}$	109.5	$C_{10} = C_{10} = H_{10}$	120.1
	109.5	$C_{20} - C_{19} - H_{19}$	120.1
	109.5	$C_{21} = C_{20} = C_{19}$	120.8 (2)
H8A—C8—H8B	109.5	C21—C20—H20	119.6
С6—С8—Н8С	109.5	C19—C20—H20	119.6
H8A—C8—H8C	109.5	C20—C21—C22	119.9 (2)
H8B—C8—H8C	109.5	C20—C21—H21	120.1
N2—C9—N1	124.15 (18)	C22—C21—H21	120.1
N2—C9—N3	121.58 (17)	C21—C22—C23	120.0 (2)
N1—C9—N3	114.26 (16)	C21—C22—H22	120.0
C11—C10—C15	120.2 (2)	С23—С22—Н22	120.0
C11—C10—N2	120.1 (2)	C22—C23—C18	120.2 (2)
C15—C10—N2	119.2 (2)	С22—С23—Н23	119.9
$C_{12} - C_{11} - C_{10}$	119.2(2) 119.4(3)	C_{18} C_{23} H_{23}	119.9
	11).1(5)		119.9
C9 N1 C1 C2	82.0 (3)	C15 C10 C11 C12	-1.3(3)
$C_{0} = N_{1} - C_{1} - C_{2}$	101.1(2)	$N_{2} = C_{10} = C_{11} = C_{12}$	1.3(3)
$C_{2} = N_{1} = C_{1} = C_{2}$	-101.1(2)	$N_2 = C_{10} = C_{11} = C_{12}$	170.91 (19)
	0.0(3)		-1/9.4(2)
NI-CI-C2-C3	175.9 (2)	N2—C10—C11—C16	-7.3 (3)
C6—C1—C2—C7	-178.4 (2)	C10—C11—C12—C13	0.7 (4)
N1—C1—C2—C7	-2.5 (3)	C16—C11—C12—C13	178.9 (3)
C1—C2—C3—C4	-0.9 (4)	C11—C12—C13—C14	0.5 (4)
C7—C2—C3—C4	177.5 (2)	C12—C13—C14—C15	-1.0 (5)
C2—C3—C4—C5	1.4 (4)	C13-C14-C15-C10	0.4 (4)
C3—C4—C5—C6	-1.0 (4)	C13—C14—C15—C17	-176.4 (3)
C4—C5—C6—C1	0.1 (3)	C11-C10-C15-C14	0.7 (3)
C4—C5—C6—C8	-179.4 (2)	N2-C10-C15-C14	-171.5 (2)

C2-C1-C6-C5	0.4 (3)	C11—C10—C15—C17	177.6 (2)
N1-C1-C6-C5	-175.5 (2)	N2-C10-C15-C17	5.4 (3)
C2-C1-C6-C8	179.9 (2)	C9—N3—C18—C19	-37.2 (3)
N1—C1—C6—C8	4.0 (3)	C9—N3—C18—C23	144.1 (2)
C10—N2—C9—N1	2.6 (3)	C23-C18-C19-C20	-2.8 (3)
C10—N2—C9—N3	-178.32 (19)	N3-C18-C19-C20	178.5 (2)
C1—N1—C9—N2	-177.0 (2)	C18—C19—C20—C21	1.8 (3)
C1—N1—C9—N3	3.9 (3)	C19—C20—C21—C22	0.3 (4)
C18—N3—C9—N2	15.3 (3)	C20—C21—C22—C23	-1.4 (4)
C18—N3—C9—N1	-165.6 (2)	C21—C22—C23—C18	0.4 (4)
C9—N2—C10—C11	94.0 (2)	C19—C18—C23—C22	1.8 (3)
C9—N2—C10—C15	-93.7 (2)	N3—C18—C23—C22	-179.54 (19)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C4—H4···N2 ⁱ	0.95	2.61	3.457 (3)	148

Symmetry code: (i) x+1/2, -y+2, z.