CRYSTALLOGRAPHIC COMMUNICATIONS

Received 11 June 2015
Accepted 18 June 2015

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy

Keywords: crystal structure; chlorocyanopyridine; π-stacking; $\mathrm{C}-\mathrm{H} \cdot \mathrm{N}$ interactions

CCDC references: 1407613; 1407612
Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \odot ACCESS

Crystal structures of 4-chloropyridine-2-carbonitrile and 6-chloropyridine-2-carbonitrile exhibit different intermolecular π-stacking, $\mathbf{C}-\mathbf{H} \cdots \mathbf{N}_{\text {nitrile }}$ and $\mathbf{C}-\mathrm{H} \cdots \mathrm{N}_{\text {pyridine }}$ interactions

Matthew J. Montgomery, Thomas J. O'Connor and Joseph M. Tanski*

Department of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA. *Correspondence e-mail: jotanski@vassar.edu

The two title compounds are isomers of $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{ClN}_{2}$ containing a pyridine ring, a nitrile group, and a chloro substituent. The molecules of each compound pack together in the solid state with offset face-to-face π-stacking, and intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}_{\text {nitrile }}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}_{\text {pyridine }}$ interactions. 4-Chloropyridine-2-carbonitrile, (I), exhibits pairwise centrosymmetric head-to-head $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}_{\text {nitrile }}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}_{\text {pyridine }}$ interactions, forming one-dimensional chains, which are π stacked in an offset face-to-face fashion. The intermolecular packing of the isomeric 6-chloropyridine-2-carbonitrile, (II), which differs only in the position of the chloro substituent on the pyridine ring, exhibits head-to-tail C $\mathrm{H} \cdots \mathrm{N}_{\text {nitrile }}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}_{\text {pyridine }}$ interactions, forming two-dimensional sheets which are π-stacked in an offset face-to-face fashion. In contrast to (I), the offset face-to-face π-stacking in (II) is formed between molecules with alternating orientations of the chloro and nitrile substituents.

1. Chemical context

Chloropyridinecarbonitriles are members of a class of compounds containing the ubiquitous six-membered nitrogencontaining heterocycle pyridine. The pyridine heterocycle features prominently in many valuable synthetic compounds (Bull et al., 2012). While several of the ten possible isomers of chloropyridinecarbonitrile are commercially available, none of their crystal structures have been reported in the literature, although the structure of 2-chloropyridine-4-carbonitrile has been deposited in the Cambridge Structural Database (Version 5.31, June 2015 with updates; Groom \& Allen, 2014) as a private communication (refcode LOBVIJ). The title compounds represent two isomers of chloropyridine-2carbonitrile, namely 4-chloropyridine-2-carbonitrile, (I), and 6 -chloropyridine-2-carbonitrile, (II). In both cases, the intramolecular packing exhibits weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions, which are well documented (Desiraju \& Steiner, 1999), as well as aromatic π-stacking interactions (Hunter \& Saunders, 1990; Lueckheide et al., 2013).

(1)

(2)

Figure 1

A view of 4-chloropyridine-2-carbonitrile, (I), with the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level.

Figure 2
A view of 6-chloropyridine-2-carbonitrile, (II), with the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level.

4-Chloropyridine-2-carbonitrile, (I), may be synthesized by the cyanation of 4 -chloropyridine N -oxide with trimethylsilanecarbonitrile (TMSCN) (Sakamoto et al., 1985). More recently, it has been shown that (I) can be prepared in a onestep process from 4 -nitropyridine N-oxide with ethyl chloroformate and TMSCN (Veerareddy et al., 2011). (I) has found
use as a building block for a family of chiral catalysts (Busto et al., 2005).

6-Chloropyridine-2-carbonitrile, (II), may be synthesized by the vapor-phase chlorination of 2-cyanopyridine (Ruetman \& Taplin, 1971), or by the cyanation of 2-chloropyridine N-oxide hydrochloride with sodium cyanide (Tsukamoto et al., 2009). This compound has found applications in the preparation of biologically active or pharmaceutical compounds, such as heteroaromatic carboxylic acids (Kiener et al., 1996) and 2-arylamino-substituted pyridinyl nitriles (Guo et al., 2013).

2. Structural commentary

4-Chloropyridine-2-carbonitrile, (I) (Fig. 1), and 6-chloro-pyridine-2-carbonitrile, (II) (Fig. 2), exhibit similar metrical parameters. The nitrile bond length $\mathrm{C} 1-\mathrm{N} 2$ of 1.156 (3) \AA in (I) and 1.138 (2) \AA in (II) are similar to those seen in the related structure 2 -chloropyridine-4-carbonitrile, with the nitrile $\mathrm{C} \equiv \mathrm{N}$ distance is $1.141 \AA$ (CSD refcode LOBVIJ). The nitrile bond lengths in 2- and 3-cyanopyridine [1.145 (2) and 1.150 (1) \AA, respectively; Kubiak et al., 2002] and 4-cyanopyridine [1.137 (8) Å; Laing et al., 1971] are also similar to those found in the title compounds. The aromatic chlorine bond lengths, viz. C4-Cl and C6-Cl of 1.740 (3) \AA in (I) and 1.740 (1) \AA in (II), are similar to those seen in the related structures 2-chloropyridine-4-carbonitrile (1.732 \AA; CSD refcode LOBVIJ), 2- and 3-chloropyridine hydrochloride (1.710 and 1.727 Å, respectively; Freytag \& Jones, 2001), and 4-chloropyridine hydrochloride (1.730 Å; Freytag et al., 1999).

Both (I) and (II) are almost planar, with r.m.s. deviations from the mean planes of all non-H atoms of 0.0077 and $0.0161 \AA$ A , respectively. As may be expected, the heterocyclic rings are slightly wedge shaped as the pyridine $\mathrm{C}-\mathrm{N}$ bond are shorter than the $\mathrm{C}-\mathrm{C}$ bonds in each aromatic ring. In (I), the ring $\mathrm{C} 2-\mathrm{N} 1$ and $\mathrm{C} 6-\mathrm{N} 1$ bond lengths of 1.361 (3) and 1.350 (3) \AA are similar to those found in (II) of 1.349 (1) and 1.322 (1) \AA. The average ring $\mathrm{C}-\mathrm{C}$ bond lengths are

Figure 3
A view of the intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}_{\text {nitrile }}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}_{\text {pyridine }}$ contacts (dashed lines) in 4-chloropyridine-2-carbonitrile, (I), that form a onedimensional chain. [Symmetry codes: (i) $-x-1,-y+1,-z$; (ii) $-x,-y+1,-z+1$.]

Table 1
Hydrogen-bond geometry ($\left({ }^{\circ},{ }^{\circ}\right)$ for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.95	2.64	$3.462(5)$	146
$\mathrm{C} 6-\mathrm{H} 6 A \cdots \mathrm{~N} 1^{1 i}$	0.95	2.75	$3.493(5)$	136

Symmetry codes: (i) $-x-1,-y+1,-z$; (ii) $-x,-y+1,-z+1$.
1.403 (2) \AA in (I) and 1.391 (5) \AA in (II). The lengths are comparable to those found in the parent compound, pyridine, with $\mathrm{C}-\mathrm{N}$ of $1.34 \AA$ and $\mathrm{C}-\mathrm{C}$ of $1.38 \AA$ (Mootz \& Wussow, 1981), and in the related structure 2-chloropyridine-4-carbonitrile, with $\mathrm{C}-\mathrm{N}$ bond lengths of 1.328 and $1.340 \AA$, and an average $\mathrm{C}-\mathrm{C}$ bond length of 1.377 (7) \AA (CSD refcode LOBVIJ).

3. Supramolecular features

The molecules of each of the title compounds pack together in the solid state with π-stacking, and intermolecular C $\mathrm{H} \cdots \mathrm{N}_{\text {nitrile }}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}_{\text {pyridine }}$ interactions, however, the packing motifs are unique, and also different than those found in the related structure 2-chloropyridine-4-carbonitrile (CSD

Figure 4
A view of the offset face-to-face π-stacking in 4-chloropyridine-2carbonitrile, (I), with the thick dashed line indicating a centroid-tocentroid interaction. [Symmetry code: (i) $x+1, y, z$.]

Table 2
Hydrogen-bond geometry ($\AA,^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{~N} 1^{\mathrm{i}}$	0.95	2.49	$3.4099(15)$	164
${\text { C } 5-\mathrm{H} 5 A \cdots \mathrm{~N} 2^{\mathrm{ii}}}^{2}$	0.95	2.70	$3.5651(17)$	152

Symmetry codes: (i) $x-1, y, z$; (ii) $-x+\frac{3}{2}, y-\frac{1}{2},-z+\frac{3}{2}$.
refcode LOBVIJ). For a discussion of weak $\mathrm{C}-\mathrm{H} \cdots X$ interactions, see Desiraju \& Steiner (1999).

The molecules of (I) pack together in the solid state via alternating centrosymmetric head-to-head intermolecular C $\mathrm{H} \cdots \mathrm{N}_{\text {nitrile }}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}_{\text {pyridine }}$ interactions to form a onedimensional zigzag chain (Fig. 3 and Table 1). The chains further pack together through offset face-to-face π-stacking (Fig. 4). This π-stacking is characterized by a centroid-tocentroid distance of 3.813 (5) \AA, a plane-to-centroid distance of 3.454 (4) \AA, and a ring offset or ring-slippage distance of 1.615 (3) A (Hunter \& Saunders, 1990; Lueckheide et al., 2013). The π-stacking in (I) is similar to that found in the related unpublished structure 2-chloropyridine-4-carbonitrile (CSD refcode LOBVIJ).

In contrast to (I), the molecules of (II) pack together via head-to-tail $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}_{\text {nitrile }}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}_{\text {pyridine }}$ interactions to form two-dimensional sheets that are parallel to the (001) plane (Fig. 5 and Table 2). As in (I), the parallel planes of the molecules engage in offset face-to-face π-stacking between the two-dimensional sheets, which is characterized by a ring centroid-to-centroid distance of 3.7204 (7) \AA, a centroid-toplane distance of 3.41 (1) \AA, and a ring-offset slippage of 1.48 (2) A (Fig. 6). However, in constrast to (I), the π-stacking in (II) is formed between molecules with alternating orienta-

Figure 5
A view of the intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}_{\text {nitrile }}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}_{\text {pyridine }}$ contacts (dashed lines) in 6-chloropyridine-2-carbonitrile, (I), that form a two-dimensional sheet. [Symmetry codes: (i) $x-1, y, z$; (ii) $-x+\frac{3}{2}, y-\frac{1}{2}$, $-z+\frac{3}{2}$.]

Table 3
Experimental details.

	(I)	(II)
Crystal data		
Chemical formula	$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{ClN}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{ClN}_{2}$
$M_{\text {r }}$	138.55	138.55
Crystal system, space group	Monoclinic, $P 2_{1} / n$	Monoclinic, $P 2{ }_{1} / n$
Temperature (K)	125	125
$a, b, c(\AA)$	3.813 (5), 14.047 (19), 11.356 (15)	6.1739 (15), 15.238 (4), 7.0123 (18)
$\beta\left({ }^{\circ}\right.$)	96.806 (19)	112.492 (4)
$V\left(\mathrm{~A}^{3}\right)$	604.0 (14)	609.5 (3)
Z	4	4
Radiation type	Mo $K \alpha$	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.52	0.52
Crystal size (mm)	$0.25 \times 0.10 \times 0.04$	$0.20 \times 0.15 \times 0.03$
Data collection		
Diffractometer	Bruker APEXII CCD	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2013)	Multi-scan (SADABS; Bruker, 2013)
$T_{\text {min }}, T_{\text {max }}$	0.67, 0.98	0.82, 0.98
No. of measured, independent and observed [$I>2 \sigma(I)$] reflections	12191, 1852, 1498	15460, 1868, 1657
R_{int}	0.063	0.031
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$	0.715	0.717
Refinement		
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	$0.050,0.135,1.12$	0.028, 0.082, 1.09
No. of reflections	1852	1868
No. of parameters	82	82
H -atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	$0.53,-0.37$	0.48, -0.19

[^0]

Figure 6
A view of the alternating offset face-to-face π-stacking in 6-chloro-pyridine-2-carbonitrile, (II), with the thick dashed line indicating a centroid-to-centroid interaction. [Symmetry code: (i) $x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$.]
tions of the chloro and nitrile substituents with a plane-toplane angle of $0.23(5)^{\circ}$. For a more thorough description of π-stacking, see Hunter \& Saunders (1990) and Lueckheide et al. (2013).

Notably, there are no significant $\mathrm{Cl} \cdots \mathrm{Cl}$ contacts in (I) or (II), in contrast to 2 -chloropyridine-4-carbonitrile (CSD refcode LOBVIJ), which exhibits a $\mathrm{Cl} \cdots \mathrm{Cl}$ contact distance of $3.371 \AA$ that is shorter than the sum of the van der Waals radius of chlorine ($3.5 \AA$; Bondi, 1964). For more information on halide-halide contacts, see Pedireddi et al. (1994) and Jelsch et al. (2015).

4. Synthesis and crystallization

4-Chloropyridine-2-carbonitrile (97%) and 6-chloropyridine2 -carbonitrile (96%) were purchased from Aldrich Chemical Company, USA. 4-Chloropyridine-2-carbonitrile was recrystallized from 95% ethanol.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms on C atoms were included in calculated positions and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ of the aryl C atoms.

Acknowledgements

This work was supported by Vassar College. X-ray facilities were provided by the US National Science Foundation (grant No. 0521237 to JMT).

References

Bondi, A. (1964). J. Phys. Chem. 68, 441-451 .
Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bull, J. A., Mousseau, J. J., Pelletier, G. \& Charette, A. B. (2012). Chem. Rev. 112, 2642-2713.
Busto, E., Gotor-Fernandez, V. \& Gotor, V. (2005). Tetrahedron Asymmetry, 16, 3427-3425.
Desiraju, G. R. \& Steiner, T. (1999). In The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Freytag, M. \& Jones, P. G. (2001). Z. Naturforsch. Teil B, 56, 889-896.
Freytag, M., Jones, P. G., Aherns, B. \& Fischer, A. K. (1999). New J. Chem. 23, 1137-1139.
Groom, C. R. \& Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662671.

Guo, S., Wang, Y., Sun, C., Li, J., Zou, D., Wu, Y. \& Wu, Y. (2013). Tetrahedron Lett. 54, 3233-3237.

Hunter, C. A. \& Saunders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525-5534.
Jelsch, C., Soudani, S. \& Ben Nasr, C. (2015). IUCrJ, 2, 327-340.
Kiener, A., Roduit, J.-P. \& Glockler, R. (1996). Eur. Patent Appl. EP747486A119961211.
Kubiak, R., Janczak, J. \& Śledź, M. (2002). J. Mol. Struct. 610, 59-64.
Laing, M., Sparrow, N. \& Sommerville, P. (1971). Acta Cryst. B27, 1986-1990.
Lueckheide, M., Rothman, N., Ko, B. \& Tanski, J. M. (2013). Polyhedron, 58, 79-84.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
Mootz, D. \& Wussow, H. G. (1981). J. Chem. Phys. 75, 1517-1522.
Pedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. \& Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 23532360.

Ruetman, S. H. \& Taplin, W. H. (1971). US Patent 3591597 A.
Sakamoto, T., Kaneda, S.-I., Nishimura, S. \& Yamanaka, H. (1985). Chem. Pharm. Bull. 2, 565-571.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Tsukamoto, I., Koshio, H., Kuramochi, T., Saitoh, C., Yanai-Inamura, H., Kitada-Nozawa, C., Yamamoto, E., Yatsu, T., Shimada, Y., Sakamoto, S. \& Tsukamoto, S.-I. (2009). Bioorg. Med. Chem. 17, 3130-3141.
Veerareddy, A., Surendrareddy, G. \& Dubey, P. K. (2011). J. Heterocycl. Chem. 48, 961-964.

supporting information

Acta Cryst. (2015). E71, 852-856 [doi:10.1107/S2056989015011767]

Crystal structures of 4-chloropyridine-2-carbonitrile and 6-chloropyridine-2-

 carbonitrile exhibit different intermolecular π-stacking, $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}_{\text {nitrile }}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{N}_{\text {pyridine }}$ interactionsMatthew J. Montgomery, Thomas J. O'Connor and Joseph M. Tanski

Computing details

For both compounds, data collection: APEX2 (Bruker, 2013); cell refinement: APEX2 (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL2014 (Sheldrick, 2008); software used to prepare material for publication: SHELXTL2014 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008).
(I) 4-Chloropyridine-2-carbonitrile

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{ClN}_{2}$
$M_{r}=138.55$
Monoclinic, $P 2_{1} / n$
$a=3.813$ (5) \AA
$b=14.047$ (19) \AA
$c=11.356(15) \AA$
$\beta=96.806(19)^{\circ}$
$V=604.0(14) \AA^{3}$
$Z=4$

Data collection

Bruker APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 8.3333 pixels mm^{-1}
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
$T_{\text {min }}=0.67, T_{\text {max }}=0.98$
$F(000)=280$
$D_{\mathrm{x}}=1.524 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3637 reflections
$\theta=2.9-30.3^{\circ}$
$\mu=0.52 \mathrm{~mm}^{-1}$
$T=125 \mathrm{~K}$
Plate, colourless
$0.25 \times 0.10 \times 0.04 \mathrm{~mm}$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.135$
$S=1.12$
1852 reflections

82 parameters
0 restraints
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

supporting information

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0646 P)^{2}+0.4268 P\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001
\end{aligned}
$$

$$
\begin{aligned}
& \Delta \rho_{\max }=0.53 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.37 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
C1	$0.27576(14)$	$0.79489(4)$	$0.15624(5)$	$0.02207(17)$
N 1	$0.0055(5)$	$0.52050(12)$	$0.33977(16)$	$0.0197(4)$
N 2	$-0.4067(5)$	$0.39592(13)$	$0.09730(18)$	$0.0253(4)$
C1	$-0.2642(5)$	$0.45592(15)$	$0.15388(19)$	$0.0204(4)$
C2	$-0.0811(5)$	$0.53460(14)$	$0.22134(18)$	$0.0173(4)$
C3	$-0.0084(5)$	$0.61731(14)$	$0.15971(18)$	$0.0177(4)$
H3A	-0.0758	0.6235	0.0768	0.021^{*}
C4	$0.1688(5)$	$0.69050(13)$	$0.22646(18)$	$0.0163(4)$
C5	$0.2634(5)$	$0.67930(15)$	$0.34888(18)$	$0.0192(4)$
H5A	0.383	0.7283	0.3953	0.023^{*}
C6	$0.1748(6)$	$0.59298(15)$	$0.40037(19)$	$0.0207(4)$
H6A	0.2382	0.5851	0.4832	0.025^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0217(3)$	$0.0212(3)$	$0.0227(3)$	$-0.00411(18)$	$0.00040(18)$	$0.00357(18)$
N 1	$0.0200(8)$	$0.0197(8)$	$0.0191(9)$	$0.0004(6)$	$0.0016(7)$	$0.0014(7)$
N 2	$0.0261(9)$	$0.0245(9)$	$0.0247(10)$	$-0.0046(7)$	$0.0003(8)$	$-0.0011(7)$
C1	$0.0176(9)$	$0.0218(9)$	$0.0216(10)$	$0.0002(7)$	$0.0019(8)$	$0.0027(8)$
C2	$0.0141(8)$	$0.0180(9)$	$0.0199(10)$	$0.0012(7)$	$0.0021(7)$	$-0.0016(7)$
C3	$0.0161(9)$	$0.0217(9)$	$0.0153(9)$	$-0.0004(7)$	$0.0020(7)$	$-0.0001(7)$
C4	$0.0144(8)$	$0.0169(8)$	$0.0180(9)$	$0.0012(7)$	$0.0032(7)$	$0.0018(7)$
C5	$0.0185(9)$	$0.0201(9)$	$0.0185(10)$	$0.0003(7)$	$0.0002(8)$	$-0.0024(7)$
C6	$0.0236(10)$	$0.0230(10)$	$0.0152(9)$	$0.0012(8)$	$0.0020(8)$	$-0.0004(7)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Cl}-\mathrm{C} 4$	$1.740(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.402(3)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.350(3)$	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.95
$\mathrm{~N} 1-\mathrm{C} 2$	$1.361(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.403(3)$
$\mathrm{N} 2-\mathrm{C} 1$	$1.156(3)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.405(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.473(3)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.95
$\mathrm{C} 2-\mathrm{C} 3$	$1.401(3)$	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	0.95
		$\mathrm{C} 3-\mathrm{C} 4-\mathrm{Cl}$	$119.61(18)$

$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2$	$177.6(2)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$125.12(19)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$116.70(19)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$118.2(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$116.7(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	121.7
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	121.7
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$120.27(19)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$-0.1(3)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$179.66(19)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$0.3(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-179.48(18)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-0.3(3)$

$\mathrm{C} 5-\mathrm{C} 4-\mathrm{Cl}$	$120.11(16)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$117.58(19)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	121.2
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	121.2
$\mathrm{~N} 1-\mathrm{C} 6-\mathrm{C} 5$	$124.3(2)$
$\mathrm{N} 1-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	117.9
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	117.9

$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{Cl} \quad 178.93$ (15)
C3-C4-C5-C6 0.1 (3)
$\mathrm{Cl}-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6 \quad-179.07$ (16)
C2-N1-C6-C5
-0.1 (3)
0.1 (3)

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.95	2.64	$3.462(5)$	146
$\mathrm{C} 6-\mathrm{H} 6 A \cdots \mathrm{~N} 1^{\mathrm{ii}}$	0.95	2.75	$3.493(5)$	136

Symmetry codes: (i) $-x-1,-y+1,-z$; (ii) $-x,-y+1,-z+1$.
(II) 6-Chloropyridine-2-carbonitrile

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{ClN}_{2}$
$M_{r}=138.55$
Monoclinic, $P 2{ }_{1} / n$
$a=6.1739$ (15) \AA
$b=15.238$ (4) \AA
$c=7.0123(18) \AA$
$\beta=112.492(4)^{\circ}$
$V=609.5(3) \AA^{3}$
$Z=4$

Data collection

Bruker APEXII CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 8.3333 pixels mm^{-1} φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
$T_{\text {min }}=0.82, T_{\text {max }}=0.98$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.082$
$F(000)=280$
$D_{\mathrm{x}}=1.510 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9960 reflections
$\theta=2.7-30.5^{\circ}$
$\mu=0.52 \mathrm{~mm}^{-1}$
$T=125 \mathrm{~K}$
Plate, colourless
$0.20 \times 0.15 \times 0.03 \mathrm{~mm}$

15460 measured reflections
1868 independent reflections
1657 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=30.6^{\circ}, \theta_{\text {min }}=2.7^{\circ}$
$h=-8 \rightarrow 8$
$k=-21 \rightarrow 21$
$l=-10 \rightarrow 9$
$S=1.09$
1868 reflections
82 parameters
0 restraints

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0424 P)^{2}+0.1697 P\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.48 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
C1	$1.01050(5)$	$0.09596(2)$	$0.82065(4)$	$0.02803(10)$
N 1	$0.98012(14)$	$0.26545(6)$	$0.82258(13)$	$0.01720(17)$
N 2	$1.10287(19)$	$0.47889(7)$	$0.79286(18)$	$0.0351(2)$
C1	$1.00059(18)$	$0.41966(8)$	$0.81170(17)$	$0.0232(2)$
C2	$0.87412(16)$	$0.34169(7)$	$0.83298(15)$	$0.01728(19)$
C3	$0.66223(17)$	$0.34787(7)$	$0.85770(15)$	$0.0198(2)$
H3A	0.5958	0.4032	0.8664	0.024^{*}
C4	$0.55044(17)$	$0.26976(8)$	$0.86928(16)$	$0.0210(2)$
H4A	0.4041	0.271	0.8846	0.025^{*}
C5	$0.65405(17)$	$0.19009(7)$	$0.85828(15)$	$0.0205(2)$
H5A	0.5818	0.1359	0.8659	0.025^{*}
C6	$0.86897(17)$	$0.19295(7)$	$0.83550(15)$	$0.01759(19)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.03124(16)$	$0.02096(15)$	$0.03084(16)$	$0.00422(9)$	$0.01070(11)$	$-0.00400(9)$
N 1	$0.0135(3)$	$0.0212(4)$	$0.0168(4)$	$-0.0004(3)$	$0.0058(3)$	$-0.0014(3)$
N 2	$0.0343(5)$	$0.0294(5)$	$0.0430(6)$	$-0.0068(4)$	$0.0164(5)$	$0.0013(4)$
C1	$0.0207(5)$	$0.0237(5)$	$0.0250(5)$	$0.0006(4)$	$0.0085(4)$	$-0.0006(4)$
C2	$0.0148(4)$	$0.0199(4)$	$0.0167(4)$	$-0.0007(3)$	$0.0055(3)$	$-0.0001(3)$
C3	$0.0154(4)$	$0.0238(5)$	$0.0204(4)$	$0.0035(3)$	$0.0071(3)$	$0.0010(4)$
C4	$0.0135(4)$	$0.0317(5)$	$0.0187(4)$	$-0.0012(4)$	$0.0072(3)$	$0.0010(4)$
C5	$0.0182(4)$	$0.0246(5)$	$0.0186(4)$	$-0.0051(3)$	$0.0068(3)$	$0.0004(4)$
C6	$0.0175(4)$	$0.0193(4)$	$0.0151(4)$	$0.0004(3)$	$0.0052(3)$	$-0.0012(3)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Cl}-\mathrm{C} 6$	$1.7402(11)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.3938(15)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.3218(13)$	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.95
$\mathrm{~N} 1-\mathrm{C} 2$	$1.3490(13)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.3881(16)$
$\mathrm{N} 2-\mathrm{C} 1$	$1.1378(16)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.95
$\mathrm{C} 1-\mathrm{C} 2$	$1.4604(15)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.3965(14)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.3870(14)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.95

$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 2$	$116.15(9)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	120.2
$\mathrm{~N} 2-\mathrm{C} 1-\mathrm{C} 2$	$177.99(12)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	120.2
$\mathrm{~N} 1-\mathrm{C} 2-\mathrm{C} 3$	$124.44(9)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$117.21(9)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$113.94(9)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	121.4
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$121.62(9)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	121.4
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$117.46(9)$	$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	$125.09(9)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	121.3	$\mathrm{~N} 1-\mathrm{C} 6-\mathrm{Cl}$	$114.83(8)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	121.3	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{Cl}$	$120.07(8)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$119.65(9)$		
		$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-0.07(15)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$0.62(14)$	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	$0.12(15)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$-178.24(8)$	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 6-\mathrm{Cl}$	$179.80(7)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-1.03(15)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 5-\mathrm{C} 5-\mathrm{N} 1$	$-0.38(15)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$		$179.96(7)$	
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$0.71(15)$		

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4 — \mathrm{H} 4 A \cdots \mathrm{~N} 1^{\mathrm{i}}$	0.95	2.49	$3.4099(15)$	164
$\mathrm{C} 5 — \mathrm{H} 5 A \cdots \mathrm{~N} 2^{\mathrm{ii}}$	0.95	2.70	$3.5651(17)$	152

Symmetry codes: (i) $x-1, y, z$; (ii) $-x+3 / 2, y-1 / 2,-z+3 / 2$.

[^0]: Mercury (Macrae et al., 2008).

