



# Crystal structure of pymetrozine

#### Youngeun Jeon, Jineun Kim,\* Gihaeng Kang and Tae Ho Kim\*

Department of Chemistry and Research Institute of Natural Sciences. Gyeongsang National University, Jinju 660-701, Republic of Korea. \*Correspondence e-mail: thkim@gnu.ac.kr, jekim@gnu.ac.kr

Received 28 May 2015; accepted 4 June 2015

Edited by J. Simpson, University of Otago, New Zealand

The title compound, C<sub>10</sub>H<sub>11</sub>N<sub>5</sub>O {systematic name: 6-methyl-4-[(E)-(pyridin-3-ylmethylidene)amino]-4,5-dihydro-1,2,4-triazin-3(2H)-one},  $C_{10}H_{11}N_5O$ , is used as an antifeedant in pest control. The asymmetric unit comprises two independent molecules, A and B, in which the dihedral angles between the pyridinyl and triazinyl ring planes [r.m.s. deviations = 0.0132 and 0.0255 ] are 11.60 (6) and 18.06 (4) $^{\circ}$ , respectively. In the crystal, N-H···O, N-H···N, C-H···N and C-H···O hydrogen bonds, together with weak  $\pi$ - $\pi$  interactions [ringcentroid separations = 3.5456(9) and 3.9142(9) Å], link the pyridinyl and triazinyl rings of A molecules, generating a three-dimensional network.

Keywords: crystal structure; pymetrozine; triazinone; insecticide; antifeedant; hydrogen bonding;  $\pi - \pi$  interactions.

CCDC reference: 1404941

#### 1. Related literature

For information on the toxicity and insecticidal properties of the title compound, see: He et al. (2011); Torres et al. (2003); Ausborn et al. (2005); Barati et al. (2013). For a related crystal structure, see: Wang et al. (2012).



# 2. Experimental

OPEN d ACCESS

#### 2.1. Crystal data

| C <sub>10</sub> H <sub>11</sub> N <sub>5</sub> O | V = 2044.35 (9) Å <sup>3</sup> |
|--------------------------------------------------|--------------------------------|
| $M_r = 217.24$                                   | Z = 8                          |
| Monoclinic, $P2_1/n$                             | Mo $K\alpha$ radiation         |
| a = 8.0803 (2)  Å                                | $\mu = 0.10 \text{ mm}^{-1}$   |
| b = 23.7497 (6) Å                                | $T = 173  { m K}$              |
| c = 10.7846 (3) Å                                | $0.37 \times 0.16 \times 0.09$ |
| $\beta = 98.962 \ (1)^{\circ}$                   |                                |

#### 2.2. Data collection

| Bruker APEXII CCD                    |
|--------------------------------------|
| diffractometer                       |
| Absorption correction: multi-scan    |
| (SADABS; Bruker, 2009)               |
| $T_{\min} = 0.964, T_{\max} = 0.991$ |

2.3. Refinement  $R[F^2 > 2\sigma(F^2)] = 0.041$  $wR(F^2) = 0.107$ S = 1.043987 reflections

).09 mm

19037 measured reflections 3987 independent reflections 3103 reflections with  $I > 2\sigma(I)$  $R_{\rm int} = 0.042$ 

291 parameters H-atom parameters constrained  $\Delta \rho_{\rm max} = 0.19 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$ 

Table 1 Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                   | D-H  | $H \cdot \cdot \cdot A$ | $D{\cdots}A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|------------------------------------|------|-------------------------|--------------|--------------------------------------|
| $N4-H4\cdots O2^{i}$               | 0.88 | 2.32                    | 2.9545 (17)  | 129                                  |
| $N4 - H4 \cdot \cdot \cdot N7^{i}$ | 0.88 | 2.43                    | 3.2346 (17)  | 152                                  |
| N9−H9···N6 <sup>ii</sup>           | 0.88 | 2.04                    | 2.882 (2)    | 159                                  |
| C19−H19A···N1 <sup>iii</sup>       | 0.99 | 2.57                    | 3.0852 (19)  | 112                                  |
| C19−H19A····O1 <sup>iv</sup>       | 0.99 | 2.60                    | 3.5596 (19)  | 164                                  |
| $C20 - H20C \cdots O1^{v}$         | 0.98 | 2.53                    | 3.3906 (19)  | 147                                  |
|                                    |      |                         |              |                                      |

Symmetry codes: (i)  $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$ ; (ii) x, y, z - 1; (iii) x - 1, y, z - 1; (iv)  $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}; (v) - x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$ 

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL.

#### Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2014R1A1A4A01009105).

Supporting information for this paper is available from the IUCr electronic archives (Reference: SJ5463).

References

- Ausborn, J., Wolf, H., Mader, W. & Kayser, H. (2005). J. Exp. Biol. 208, 4451–4466.
- Barati, R., Golmohammadi, G., Ghajarie, H., Zarabi, M. & Mansouri, R. (2013). Pesticidi Fitomed. 28, 47–55.
- Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- He, Y., Chen, L., Chen, J., Zhang, J., Chen, L., Shen, J. & Zhu, Y. C. (2011). *Pest. Manag. Sci.* 67, 483–491.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Torres, J. B., Silva-Torres, C. S. A. & de Oliveira, J. V. (2003). Pesq. Agropec. Bras. 38, 459–466.
- Wang, B., Ke, S., Kishore, B., Xu, X., Zou, Z. & Li, Z. (2012). Synth. Commun. 42, 2327–2336.

# supporting information

Acta Cryst. (2015). E71, o461-o462 [doi:10.1107/S2056989015010804]

# Crystal structure of pymetrozine

# Youngeun Jeon, Jineun Kim, Gihaeng Kang and Tae Ho Kim

## S1. Comment

Pymetrozine: 4,5-dihydro-6-methyl-4-[(E)-(3-pyridinylmethylene)amino]-1,2,4-triazin-3(2*H*)-one, is an insecticide for the control of sucking insects, including the brown planthopper, Nilaparvata lugens, one of the most serious pests to affect rice crops (He *et al.*, 2011). Its crystal structure is reported herein. In the title compound (Fig. 1), the asymmetric unit comprises two independent molecules (A and B) and the dihedral angles between the pyridinyl and triazinyl ring planes are 11.60 (6) and 18.06 (4)° for A and B, respectively. All bond lengths and bond angles are normal and comparable to those observed in a similar crystal structure (Wang *et al.*, 2012).

The crystal structure, Fig. 2, is stabilized by intermolecular N—H···O, N—H···N, C—H···N and C—H···O hydrogen bonds (Table 1). In addition, weak intermolecular  $\pi$ ··· $\pi$  interactions between the pyridinyl and triazinyl rings link adjacent A molecules [Cg1··· $Cg2^i$ , 3.5456 (9) Å and Cg1··· $Cg2^{ii}$ , 3.9142 (9) Å] symmetry codes: (i) = x + 1/2, -y + 1/2, z + 1/2, (ii) = x + 1, y, z; Cg1 and Cg2 are the centroids of the N1···C5 and N3···C9 rings, respectively]. The  $\pi$ ··· $\pi$  interactions together with C1–H1···N5 hydrogen bonds generate sheets of A molecules in the ac plane. All of these contacts combine to generate a three dimensional network, Fig. 2.

## **S2. Experimental**

The title compound was purchased from the Dr. Ehrenstorfer GmbH Company. Slow evaporation of a solution in  $CH_2Cl_2$  gave single crystals suitable for X-ray analysis.

## **S3. Refinement**

All H-atoms were positioned geometrically and refined using a riding model with d(N-H) = 0.88 Å,  $U_{iso} = 1.2U_{eq}(C)$  for the amine group, d(C-H) = 0.98 Å,  $U_{iso} = 1.2U_{eq}(C)$  for the methyl group, d(C-H) = 0.99 Å,  $U_{iso} = 1.2U_{eq}(C)$  for methylene C-H and d(C-H) = 0.95 Å,  $U_{iso} = 1.2U_{eq}(C)$  for aromatic H atoms



# Figure 1

The asymmetric unit of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.



# Figure 2

Crystal packing viewed along the *a* axis. The hydrogen bonds are shown as dashed lines.

#### 6-Methyl-4-[(E)-(pyridin-3-ylmethylidene)amino]-4,5-dihydro-1,2,4-triazin-3(2H)-one

F(000) = 912

 $\theta = 2.7 - 27.3^{\circ}$ 

 $\mu = 0.10 \text{ mm}^{-1}$ T = 173 K

Block, colourless  $0.37 \times 0.16 \times 0.09 \text{ mm}$ 

 $D_{\rm x} = 1.412 {\rm Mg} {\rm m}^{-3}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 3981 reflections

#### Crystal data

 $C_{10}H_{11}N_5O$   $M_r = 217.24$ Monoclinic,  $P2_1/n$  a = 8.0803 (2) Å b = 23.7497 (6) Å c = 10.7846 (3) Å  $\beta = 98.962$  (1)° V = 2044.35 (9) Å<sup>3</sup> Z = 8

#### Data collection

| Bruker APEXII CCD                        | 19037 measured reflections                                          |
|------------------------------------------|---------------------------------------------------------------------|
| diffractometer                           | 3987 independent reflections                                        |
| Radiation source: fine-focus sealed tube | 3103 reflections with $I > 2\sigma(I)$                              |
| Graphite monochromator                   | $R_{\rm int} = 0.042$                                               |
| $\varphi$ and $\omega$ scans             | $\theta_{\rm max} = 26.0^{\circ}, \ \theta_{\rm min} = 2.1^{\circ}$ |
| Absorption correction: multi-scan        | $h = -8 \rightarrow 9$                                              |
| (SADABS; Bruker, 2009)                   | $k = -28 \rightarrow 29$                                            |
| $T_{\min} = 0.964, \ T_{\max} = 0.991$   | $l = -13 \rightarrow 12$                                            |
|                                          |                                                                     |

### Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier          |
|-------------------------------------------------|-----------------------------------------------------------|
| Least-squares matrix: full                      | map                                                       |
| $R[F^2 > 2\sigma(F^2)] = 0.041$                 | Hydrogen site location: inferred from                     |
| $wR(F^2) = 0.107$                               | neighbouring sites                                        |
| S = 1.04                                        | H-atom parameters constrained                             |
| 3987 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.0528P)^2 + 0.3325P]$         |
| 291 parameters                                  | where $P = (F_o^2 + 2F_c^2)/3$                            |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} = 0.001$                       |
| Primary atom site location: structure-invariant | $\Delta \rho_{\rm max} = 0.19 \text{ e } \text{\AA}^{-3}$ |
| direct methods                                  | $\Delta \rho_{\rm min} = -0.31 \text{ e} \text{ Å}^{-3}$  |

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|    | x            | У           | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ |
|----|--------------|-------------|---------------|-----------------------------|
| 01 | 0.54588 (13) | 0.37396 (4) | 0.67454 (12)  | 0.0371 (3)                  |
| O2 | 0.65704 (12) | 0.09515 (4) | -0.11461 (10) | 0.0298 (3)                  |
| N1 | 1.18740 (16) | 0.17122 (6) | 0.90565 (15)  | 0.0353 (4)                  |
| N2 | 0.70889 (14) | 0.27719 (5) | 0.72493 (13)  | 0.0269 (3)                  |
| N3 | 0.54303 (15) | 0.27730 (5) | 0.67218 (13)  | 0.0272 (3)                  |
|    |              |             |               |                             |

| N4                 | 0.31072 (15)               | 0.32889 (5)              | 0.58809 (14)               | 0.0333 (3)      |
|--------------------|----------------------------|--------------------------|----------------------------|-----------------|
| H4                 | 0.2610                     | 0.3618                   | 0.5750                     | 0.040*          |
| N5                 | 0.21533 (15)               | 0.28219 (5)              | 0.54719 (14)               | 0.0314 (3)      |
| N6                 | 0.56087 (18)               | 0.08007 (6)              | 0.54024 (13)               | 0.0362 (3)      |
| N7                 | 0.53681 (14)               | 0.07233 (5)              | 0.09543 (12)               | 0.0226 (3)      |
| N8                 | 0.43763 (14)               | 0.06556 (5)              | -0.01909 (12)              | 0.0212 (3)      |
| N9                 | 0.41093 (15)               | 0.07374 (5)              | -0.23457 (12)              | 0.0273 (3)      |
| Н9                 | 0.4531                     | 0.0850                   | -0.3008                    | 0.033*          |
| N10                | 0.24931 (16)               | 0.05238 (5)              | -0.25699 (13)              | 0.0266 (3)      |
| C1                 | 1.28109 (19)               | 0.21759 (7)              | 0.91859 (17)               | 0.0325 (4)      |
| H1                 | 1.3940                     | 0.2145                   | 0.9587                     | 0.039*          |
| C2                 | 1.22268 (19)               | 0.26979 (7)              | 0.87674 (17)               | 0.0346 (4)      |
| H2                 | 1.2949                     | 0.3016                   | 0.8865                     | 0.041*          |
| C3                 | 1.05822 (19)               | 0.27537 (6)              | 0.82046 (17)               | 0.0319 (4)      |
| Н3                 | 1 0158                     | 0.3109                   | 0 7900                     | 0.038*          |
| C4                 | 0.95585 (18)               | 0.22816 (6)              | 0.80914 (15)               | 0.0253(3)       |
| C5                 | 1 02808 (19)               | 0.17746(6)               | 0.85192 (16)               | 0.0205(3)       |
| U5                 | 0.9594                     | 0.1448                   | 0.8423                     | 0.037*          |
| C6                 | 0.77874 (18)               | 0.22966 (6)              | 0.75433 (16)               | 0.037           |
| <del>С</del> 6     | 0.7162                     | 0.1958                   | 0.7407                     | 0.0209 (4)      |
| C7                 | 0.7102<br>0.47257(18)      | 0.1258                   | 0.64618 (16)               | 0.032           |
| C8                 | 0.47237(18)<br>0.28134(18) | 0.32778(0)<br>0.23414(7) | 0.04010(10)<br>0.57182(16) | 0.0273(4)       |
| C8                 | 0.23134(18)<br>0.45481(18) | 0.23414(7)<br>0.22477(6) | 0.57102(10)<br>0.63022(16) | 0.0231(4)       |
|                    | 0.43461 (16)               | 0.22477(0)               | 0.03922 (10)               | 0.0274(4)       |
|                    | 0.4495                     | 0.2029                   | 0.7107                     | 0.033*          |
| П9 <b>Б</b><br>С10 | 0.3185<br>0.1822 (2)       | 0.2022                   | 0.3833                     | $0.035^{\circ}$ |
|                    | 0.1825 (2)                 | 0.18203 (7)              | 0.55055 (19)               | 0.0397 (3)      |
| HIUA               | 0.0639                     | 0.1927                   | 0.5073                     | 0.060*          |
| HIUB               | 0.1946                     | 0.1552                   | 0.5989                     | 0.060*          |
| HIOC               | 0.2234                     | 0.1663                   | 0.4575                     | 0.060*          |
|                    | 0.7273 (2)                 | 0.08409 (7)              | 0.55839 (17)               | 0.0368 (4)      |
| HII                | 0.7839                     | 0.0886                   | 0.6418                     | 0.044*          |
| C12                | 0.8219 (2)                 | 0.08200 (7)              | 0.46212 (17)               | 0.0340 (4)      |
| HI2                | 0.9406                     | 0.0842                   | 0.4/9/                     | 0.041*          |
| C13                | 0.74117 (19)               | 0.07667 (6)              | 0.34017 (16)               | 0.0283 (4)      |
| HI3                | 0.8032                     | 0.0761                   | 0.2722                     | 0.034*          |
| C14                | 0.56786 (18)               | 0.07210 (6)              | 0.31837 (15)               | 0.0247 (3)      |
| C15                | 0.4844 (2)                 | 0.07337 (7)              | 0.42216 (16)               | 0.0315 (4)      |
| H15                | 0.3661                     | 0.0692                   | 0.4080                     | 0.038*          |
| C16                | 0.46794 (19)               | 0.06629 (6)              | 0.19390 (15)               | 0.0250 (3)      |
| H16                | 0.3517                     | 0.0580                   | 0.1860                     | 0.030*          |
| C17                | 0.51141 (17)               | 0.07926 (6)              | -0.12215 (14)              | 0.0219 (3)      |
| C18                | 0.18317 (18)               | 0.03964 (6)              | -0.16097 (15)              | 0.0241 (3)      |
| C19                | 0.26507 (17)               | 0.04665 (6)              | -0.02804 (15)              | 0.0233 (3)      |
| H19A               | 0.2010                     | 0.0744                   | 0.0140                     | 0.028*          |
| H19B               | 0.2626                     | 0.0103                   | 0.0164                     | 0.028*          |
| C20                | 0.01097 (18)               | 0.01533 (7)              | -0.17992 (17)              | 0.0324 (4)      |
| H20A               | -0.0309                    | 0.0125                   | -0.2700                    | 0.049*          |
| H20B               | -0.0633                    | 0.0397                   | -0.1402                    | 0.049*          |

| H20C      | 0.0140                                 | -0         | 0.0222          | -0.1420     | 0.049*      |             |
|-----------|----------------------------------------|------------|-----------------|-------------|-------------|-------------|
| Atomic di | Atomic displacement parameters $(A^2)$ |            |                 |             |             |             |
|           | $U^{11}$                               | $U^{22}$   | U <sup>33</sup> | $U^{12}$    | $U^{13}$    | $U^{23}$    |
| 01        | 0.0312 (6)                             | 0.0260 (6) | 0.0533 (9)      | 0.0021 (5)  | 0.0041 (5)  | -0.0001 (6) |
| 02        | 0.0280 (6)                             | 0.0374 (6) | 0.0254 (7)      | -0.0084 (4) | 0.0079 (5)  | -0.0027(5)  |
| N1        | 0.0292 (7)                             | 0.0321 (7) | 0.0420 (10)     | 0.0044 (6)  | -0.0023 (6) | 0.0034 (7)  |
| N2        | 0.0211 (7)                             | 0.0294 (7) | 0.0295 (8)      | 0.0016 (5)  | 0.0015 (5)  | 0.0001 (6)  |
| N3        | 0.0219 (6)                             | 0.0254 (7) | 0.0327 (8)      | 0.0026 (5)  | -0.0004 (6) | 0.0018 (6)  |
| N4        | 0.0254 (7)                             | 0.0264 (7) | 0.0465 (10)     | 0.0062 (5)  | 0.0010 (6)  | 0.0034 (7)  |
| N5        | 0.0243 (7)                             | 0.0336(7)  | 0.0354 (9)      | 0.0011 (5)  | 0.0024 (6)  | 0.0027 (6)  |
| N6        | 0.0471 (9)                             | 0.0417 (8) | 0.0204 (8)      | -0.0003 (6) | 0.0073 (6)  | -0.0018 (7) |
| N7        | 0.0266 (7)                             | 0.0222 (6) | 0.0185 (7)      | -0.0007 (5) | 0.0024 (5)  | -0.0007 (6) |
| N8        | 0.0214 (6)                             | 0.0250 (6) | 0.0170 (7)      | -0.0028 (5) | 0.0029 (5)  | 0.0000 (5)  |
| N9        | 0.0299 (7)                             | 0.0342 (7) | 0.0182 (7)      | -0.0078 (5) | 0.0045 (5)  | 0.0019 (6)  |
| N10       | 0.0275 (7)                             | 0.0257 (7) | 0.0256 (8)      | -0.0025 (5) | 0.0004 (6)  | -0.0010 (6) |
| C1        | 0.0243 (8)                             | 0.0389 (9) | 0.0330 (10)     | 0.0029 (7)  | 0.0007 (7)  | -0.0018 (8) |
| C2        | 0.0274 (8)                             | 0.0322 (9) | 0.0431 (12)     | -0.0046 (6) | 0.0024 (7)  | -0.0014 (8) |
| C3        | 0.0310 (9)                             | 0.0248 (8) | 0.0392 (11)     | 0.0023 (6)  | 0.0031 (7)  | 0.0020 (8)  |
| C4        | 0.0252 (8)                             | 0.0270 (8) | 0.0236 (9)      | 0.0028 (6)  | 0.0037 (6)  | -0.0019 (7) |
| C5        | 0.0291 (8)                             | 0.0256 (8) | 0.0352 (10)     | -0.0008 (6) | 0.0002 (7)  | -0.0008 (7) |
| C6        | 0.0260 (8)                             | 0.0264 (8) | 0.0278 (9)      | 0.0006 (6)  | 0.0031 (7)  | -0.0001 (7) |
| C7        | 0.0257 (8)                             | 0.0265 (8) | 0.0313 (10)     | 0.0039 (6)  | 0.0080 (7)  | 0.0031 (7)  |
| C8        | 0.0246 (8)                             | 0.0332 (8) | 0.0267 (9)      | 0.0011 (6)  | 0.0049 (7)  | 0.0029 (7)  |
| C9        | 0.0271 (8)                             | 0.0246 (8) | 0.0299 (10)     | 0.0011 (6)  | 0.0022 (7)  | 0.0017 (7)  |
| C10       | 0.0313 (9)                             | 0.0361 (9) | 0.0482 (12)     | -0.0030(7)  | -0.0046 (8) | 0.0022 (9)  |
| C11       | 0.0496 (11)                            | 0.0346 (9) | 0.0233 (10)     | 0.0021 (8)  | -0.0032 (8) | -0.0025 (8) |
| C12       | 0.0341 (9)                             | 0.0313 (9) | 0.0344 (11)     | -0.0002 (7) | -0.0015 (7) | -0.0027 (8) |
| C13       | 0.0357 (9)                             | 0.0231 (8) | 0.0270 (9)      | -0.0011 (6) | 0.0078 (7)  | -0.0009 (7) |
| C14       | 0.0320 (8)                             | 0.0206 (7) | 0.0219 (9)      | -0.0001 (6) | 0.0052 (6)  | -0.0004 (7) |
| C15       | 0.0358 (9)                             | 0.0349 (9) | 0.0249 (9)      | -0.0010 (7) | 0.0079 (7)  | -0.0005 (8) |
| C16       | 0.0270 (8)                             | 0.0268 (8) | 0.0221 (9)      | -0.0006 (6) | 0.0064 (6)  | -0.0003 (7) |
| C17       | 0.0268 (8)                             | 0.0190 (7) | 0.0207 (8)      | -0.0017 (6) | 0.0067 (6)  | -0.0010 (6) |
| C18       | 0.0257 (8)                             | 0.0194 (7) | 0.0267 (9)      | 0.0016 (6)  | 0.0023 (7)  | -0.0004 (7) |
| C19       | 0.0223 (7)                             | 0.0240 (7) | 0.0243 (9)      | -0.0006 (5) | 0.0059 (6)  | 0.0024 (7)  |
| C20       | 0.0268 (8)                             | 0.0328 (8) | 0.0367 (10)     | -0.0015 (6) | 0.0021 (7)  | 0.0004 (8)  |

# Geometric parameters (Å, °)

| 01—C7  | 1.2202 (18) | C4—C5  | 1.385 (2) |  |
|--------|-------------|--------|-----------|--|
| O2—C17 | 1.2263 (16) | C4—C6  | 1.461 (2) |  |
| N1—C1  | 1.331 (2)   | С5—Н5  | 0.9500    |  |
| N1—C5  | 1.3352 (19) | С6—Н6  | 0.9500    |  |
| N2—C6  | 1.2797 (19) | C8—C10 | 1.491 (2) |  |
| N2—N3  | 1.3719 (17) | C8—C9  | 1.492 (2) |  |
| N3—C7  | 1.3807 (18) | С9—Н9А | 0.9900    |  |
| N3—C9  | 1.4534 (18) | С9—Н9В | 0.9900    |  |
|        |             |        |           |  |

| N4—C7                                                | 1.3594 (19) | C10—H10A                                     | 0.9800               |
|------------------------------------------------------|-------------|----------------------------------------------|----------------------|
| N4—N5                                                | 1.3832 (17) | C10—H10B                                     | 0.9800               |
| N4—H4                                                | 0.8800      | C10—H10C                                     | 0.9800               |
| N5—C8                                                | 1.2701 (19) | C11—C12                                      | 1.383 (2)            |
| N6—C11                                               | 1.332 (2)   | C11—H11                                      | 0.9500               |
| N6—C15                                               | 1.335 (2)   | C12—C13                                      | 1.380(2)             |
| N7—C16                                               | 1.281 (2)   | C12—H12                                      | 0.9500               |
| N7—N8                                                | 1.3730 (17) | C13—C14                                      | 1.388 (2)            |
| N8—C17                                               | 1.3795 (19) | C13—H13                                      | 0.9500               |
| N8—C19                                               | 1 4536 (17) | C14—C15                                      | 1 394 (2)            |
| N9-C17                                               | 1.3564(19)  | C14-C16                                      | 1.391(2)<br>1 461(2) |
| N9—N10                                               | 1.3867 (17) | C15—H15                                      | 0.9500               |
| NO HO                                                | 0.8800      | C16 H16                                      | 0.9500               |
| N10 C18                                              | 1.274(2)    | $C_{18}$ $C_{20}$                            | 1.491(2)             |
| C1 $C2$                                              | 1.277(2)    | $C_{10}^{10} = C_{20}^{10}$                  | 1.491(2)             |
| $C_1 = C_2$                                          | 1.377(2)    | $C_{10}$ $H_{100}$                           | 1.492(2)             |
| $C_1$                                                | 0.9300      | C19—119A                                     | 0.9900               |
| $C_2 = C_3$                                          | 1.379 (2)   | C19—H19B                                     | 0.9900               |
| C2—H2                                                | 0.9500      | C20—H20A                                     | 0.9800               |
| C3—C4                                                | 1.387 (2)   | C20—H20B                                     | 0.9800               |
| С3—Н3                                                | 0.9500      | C20—H20C                                     | 0.9800               |
|                                                      |             |                                              | 100.0                |
| CI-NI-C5                                             | 116.61 (13) | N3—C9—H9B                                    | 109.2                |
| C6—N2—N3                                             | 117.97 (12) | С8—С9—Н9В                                    | 109.2                |
| N2—N3—C7                                             | 115.55 (12) | H9A—C9—H9B                                   | 107.9                |
| N2—N3—C9                                             | 120.66 (11) | C8—C10—H10A                                  | 109.5                |
| C7—N3—C9                                             | 123.66 (12) | C8—C10—H10B                                  | 109.5                |
| C7—N4—N5                                             | 127.42 (12) | H10A—C10—H10B                                | 109.5                |
| C7—N4—H4                                             | 116.3       | C8—C10—H10C                                  | 109.5                |
| N5—N4—H4                                             | 116.3       | H10A-C10-H10C                                | 109.5                |
| C8—N5—N4                                             | 117.31 (13) | H10B-C10-H10C                                | 109.5                |
| C11—N6—C15                                           | 117.07 (15) | N6-C11-C12                                   | 123.42 (16)          |
| C16—N7—N8                                            | 117.67 (12) | N6-C11-H11                                   | 118.3                |
| N7—N8—C17                                            | 115.60 (11) | C12—C11—H11                                  | 118.3                |
| N7—N8—C19                                            | 121.02 (12) | C13—C12—C11                                  | 118.97 (16)          |
| C17—N8—C19                                           | 123.36 (12) | C13—C12—H12                                  | 120.5                |
| C17—N9—N10                                           | 127.41 (13) | C11—C12—H12                                  | 120.5                |
| С17—N9—H9                                            | 116.3       | C12—C13—C14                                  | 118.91 (16)          |
| N10—N9—H9                                            | 116.3       | С12—С13—Н13                                  | 120.5                |
| C18—N10—N9                                           | 116.63 (13) | C14—C13—H13                                  | 120.5                |
| N1-C1-C2                                             | 123 36 (14) | $C_{13}$ $-C_{14}$ $-C_{15}$                 | 117 63 (15)          |
| N1-C1-H1                                             | 118.3       | $C_{13}$ $C_{14}$ $C_{16}$                   | 124 17 (15)          |
| C2-C1-H1                                             | 118.3       | $C_{15}$ $C_{14}$ $C_{16}$                   | $118\ 20\ (14)$      |
| C1 - C2 - C3                                         | 119.24 (15) | N6-C15-C14                                   | 123.96 (15)          |
| C1 - C2 - C3                                         | 120.4       | N6-C15-H15                                   | 118.0                |
| $C_1 = C_2 = H_2$                                    | 120.4       | C14_C15_H15                                  | 118.0                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 120.7       | N7 C16 C14                                   | 120 11 (14)          |
| $C_2 = C_3 = C_4$                                    | 120.6       | N7 C16 H16                                   | 120.11(14)           |
| $C_2 = C_3 = H_2$                                    | 120.0       | $\frac{1}{10} - \frac{1}{10} = \frac{1}{10}$ | 119.9                |
| U <del>4</del> —U3—П3                                | 120.0       |                                              | 117.7                |

| C5—C4—C3       | 117.30 (14)  | O2—C17—N9       | 121.57 (14)  |
|----------------|--------------|-----------------|--------------|
| C5—C4—C6       | 119.41 (13)  | O2—C17—N8       | 123.36 (14)  |
| C3—C4—C6       | 123.28 (13)  | N9—C17—N8       | 115.07 (12)  |
| N1-C5-C4       | 124.65 (14)  | N10-C18-C20     | 118.78 (14)  |
| N1—C5—H5       | 117.7        | N10-C18-C19     | 125.12 (13)  |
| С4—С5—Н5       | 117.7        | C20—C18—C19     | 116.10 (14)  |
| N2—C6—C4       | 119.22 (14)  | N8—C19—C18      | 112.06 (12)  |
| N2—C6—H6       | 120.4        | N8—C19—H19A     | 109.2        |
| С4—С6—Н6       | 120.4        | C18—C19—H19A    | 109.2        |
| O1—C7—N4       | 121.57 (14)  | N8—C19—H19B     | 109.2        |
| O1—C7—N3       | 123.81 (14)  | C18—C19—H19B    | 109.2        |
| N4—C7—N3       | 114.60 (13)  | H19A—C19—H19B   | 107.9        |
| N5-C8-C10      | 119.06 (14)  | C18—C20—H20A    | 109.5        |
| N5—C8—C9       | 124.62 (14)  | C18—C20—H20B    | 109.5        |
| C10—C8—C9      | 116.31 (13)  | H20A—C20—H20B   | 109.5        |
| N3—C9—C8       | 112.26 (12)  | C18—C20—H20C    | 109.5        |
| N3—C9—H9A      | 109.2        | H20A—C20—H20C   | 109.5        |
| С8—С9—Н9А      | 109.2        | H20B—C20—H20C   | 109.5        |
|                |              |                 |              |
| C6—N2—N3—C7    | 177.92 (15)  | C7—N3—C9—C8     | 1.3 (2)      |
| C6—N2—N3—C9    | -6.1 (2)     | N5—C8—C9—N3     | -1.1(2)      |
| C7—N4—N5—C8    | 4.1 (2)      | C10—C8—C9—N3    | 178.12 (14)  |
| C16—N7—N8—C17  | 172.24 (12)  | C15—N6—C11—C12  | 0.4 (2)      |
| C16—N7—N8—C19  | -6.07 (19)   | N6-C11-C12-C13  | 1.4 (3)      |
| C17—N9—N10—C18 | 4.7 (2)      | C11—C12—C13—C14 | -1.7 (2)     |
| C5—N1—C1—C2    | -1.8 (3)     | C12—C13—C14—C15 | 0.2 (2)      |
| N1—C1—C2—C3    | 1.3 (3)      | C12—C13—C14—C16 | 179.96 (14)  |
| C1—C2—C3—C4    | 0.8 (3)      | C11—N6—C15—C14  | -2.0(2)      |
| C2—C3—C4—C5    | -2.1 (2)     | C13—C14—C15—N6  | 1.7 (2)      |
| C2—C3—C4—C6    | 178.24 (16)  | C16—C14—C15—N6  | -178.07 (14) |
| C1—N1—C5—C4    | 0.3 (3)      | N8—N7—C16—C14   | 179.00 (12)  |
| C3—C4—C5—N1    | 1.7 (3)      | C13—C14—C16—N7  | -8.9 (2)     |
| C6-C4-C5-N1    | -178.69 (16) | C15—C14—C16—N7  | 170.84 (14)  |
| N3—N2—C6—C4    | 179.19 (14)  | N10—N9—C17—O2   | 174.79 (13)  |
| C5-C4-C6-N2    | 174.00 (15)  | N10—N9—C17—N8   | -5.0 (2)     |
| C3—C4—C6—N2    | -6.4 (3)     | N7—N8—C17—O2    | 1.8 (2)      |
| N5-N4-C7-O1    | 177.59 (16)  | C19—N8—C17—O2   | -179.92 (13) |
| N5—N4—C7—N3    | -3.9 (2)     | N7—N8—C17—N9    | -178.42 (11) |
| N2-N3-C7-O1    | -4.7 (2)     | C19—N8—C17—N9   | -0.15 (19)   |
| C9—N3—C7—O1    | 179.44 (15)  | N9—N10—C18—C20  | -178.69 (13) |
| N2—N3—C7—N4    | 176.77 (13)  | N9—N10—C18—C19  | 0.8 (2)      |
| C9—N3—C7—N4    | 1.0 (2)      | N7—N8—C19—C18   | -177.33 (11) |
| N4—N5—C8—C10   | 179.51 (15)  | C17—N8—C19—C18  | 4.49 (19)    |
| N4—N5—C8—C9    | -1.3 (2)     | N10-C18-C19-N8  | -5.0 (2)     |
| N2—N3—C9—C8    | -174.34 (14) | C20-C18-C19-N8  | 174.58 (12)  |

| D—H···A                             | <i>D</i> —Н | H···A | $D \cdots A$ | D—H···A |  |
|-------------------------------------|-------------|-------|--------------|---------|--|
| N4—H4···O2 <sup>i</sup>             | 0.88        | 2.32  | 2.9545 (17)  | 129     |  |
| $N4$ — $H4$ ··· $N7^{i}$            | 0.88        | 2.43  | 3.2346 (17)  | 152     |  |
| N9—H9····N6 <sup>ii</sup>           | 0.88        | 2.04  | 2.882 (2)    | 159     |  |
| C19—H19A…N1 <sup>iii</sup>          | 0.99        | 2.57  | 3.0852 (19)  | 112     |  |
| C19—H19A…O1 <sup>iv</sup>           | 0.99        | 2.60  | 3.5596 (19)  | 164     |  |
| C20—H20 <i>C</i> ···O1 <sup>v</sup> | 0.98        | 2.53  | 3.3906 (19)  | 147     |  |
|                                     |             |       |              |         |  |

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) *x*-1/2, *-y*+1/2, *z*+1/2; (ii) *x*, *y*, *z*-1; (iii) *x*-1, *y*, *z*-1; (iv) *x*-1/2, *-y*+1/2, *z*-1/2; (v) *-x*+1/2, *y*-1/2, *-z*+1/2.