

Received 24 March 2015 Accepted 12 June 2015

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; triazole; dioxalabenzenacyclononaphane; pyrrolizine; pyrrolothiazole; tetrahydrodurodioxole; chiral; hydrogen bonding

CCDC references: 1023614; 1023839 Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structures of two triazola-dioxola-benzenacyclononaphanes

Vijayan Viswanathan,^a Naga Siva Rao,^b Raghavachary Raghunathan^b and Devadasan Velmurugan^a*

^aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and ^bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India. *Correspondence e-mail: shirai2011@gmail.com

In the title compounds, $C_{25}H_{29}BrN_5O_7$, (I) [systematic name: (Z)-1⁵-bromo- 3^{2} , 3^{2} -dimethyl- 2^{1} -nitro- 2^{2} , 2^{3} , 2^{5} , 2^{6} , 2^{7} , 2^{7a} , 3^{3a} , 3^{5} , 3^{6} , 3^{6a} -decahydro- $2^{1}H$, $6^{1}H$ -4, 9dioxa-2(3,2)-pyrrolizina-6(4,1)-triazola-3(5,6)-furo[2,3-d][1,3]dioxola-1(1,2)benzenacyclononaphane], and $C_{24}H_{29}N_5O_7S$, (II) [systematic name: (Z)- 3^2 , 3^2 dimethyl-2⁷-nitro-2⁵,2⁶,2⁷,2^{7a},3^{3a},3⁵,3⁶,3^{6a}-octahydro-2¹H,2³H,6¹H-4,9-dioxa-2(5,6)-pyrrolo[1,2-c]thiazola-6(4,1)-triazola-3(5,6)-furo[2,3-d][1,3]dioxola-1(1,2)-benzenacyclononaphane], the triazole rings adopt almost planar conformations. In (I), the fused pyrrolidine rings adopt envelope conformations with the C atoms opposite the fused N-C bond as the flap in each ring, and their mean planes are inclined to one another by 52.8 (3) $^{\circ}$. In (II), the pyrrolidine and thiazole rings are both twisted on the fused N-C bond, and their mean planes are inclined to one another by 70.8 (2)°. In both (I) and (II), the furan ring adopts an envelope conformation with the adjacent C atom of the macrocycle as the flap. In the crystal of (I), molecules are linked via $C-H\cdots N$ and $C-H\cdots O$ hydrogen bonds, forming sheets parallel to $(10\overline{1})$, while in (II), molecules are linked via C-H···N and C-H···O hydrogen bonds, forming helical chains propagating along [010], which are linked via $C - H \cdots S$ hydrogen bonds, forming slabs parallel to (001).

1. Chemical context

Triazoles and their derivatives are of great importance in medicinal chemistry and can be used for the synthesis of many heterocyclic compounds with different biological activities such as antiviral, antibacterial, antifungal (Mange et al., 2013), anticancer (Singhal et al., 2011), antituberculosis, anticonvulsant, antidepressant (Sahin et al., 2012) and antiinflammatory activities. They have been reported to be inhibitors of glycogen synthase kinase-3, antagonists of GABA receptors, agonists of muscarine receptors and have been shown to possess anti-HIV-1, cytotoxic, antihistaminic and antiproliferative activities (Pokhodylo et al., 2013). Triazoles are stable to acid and basic hydrolysis and reductive and oxidative conditions because of their high aromatic stabilization. In addition, this heterocycle has a high dipole moment and might participate in hydrogen-bond formation as well as in dipole-dipole and π -stacking interactions (Pertino *et al.*, 2013).

2. Structural commentary

The molecular structures of compounds (I) and (II) are illustrated in Figs. 1 and 2, respectively. The triazole rings (A =

research communications

N3–N5/C22/C23) adopt almost planar conformations in both compounds. In compound (I), the pyrrolidine rings (D = N1/C11-C13/C7 and E = N1/C8-C11) and the furan ring (B = O3/C15/C19/C20/C14) have envelope conformations with the maximum deviations from the respective mean planes of 0.465 (5) Å for atom C13, 0.490 (7) Å for C9 and 0.500 (4) Å for C14. The dioxalane ring (C = O4/C15/C19/O5/C16) has a twisted conformation on bond O5–C15. The mean planes of rings *B* and *C* are inclined to one another by 70.0 (3)°, and the mean planes of rings *D* and *E* are inclined to one another by 52.8 (3)°.

In compound (II), the pyrrolidine (*D*) and thiazole rings (E = N1/C8/S9/C10/C11) have twist conformations on bond N1 – C11. The furan and dioxolane rings (*B* and *C*) adopt envelope conformations with maximum deviations from the mean planes of 0.631 (3) Å for atom C14 and 0.319 (4) Å for C16. The mean planes of rings *B* and *C* are inclined to one another by 68.5 (2)° and the mean planes of rings *D* and *E* are inclined to one another by 70.8 (2)°. This latter dihedral angle is much larger than that in compound (I), *cf.* 52.8 (3)°.

In compound (I), the triazole ring (A) makes dihedral angles of 74.0 (3), 65.8 (3) and 65.8 (3)° with the mean planes of rings B and D and the benzene ring (C1–C6), respectively. The corresponding dihedral angles in compound (II) are 51.9 (2), 37.1 (2) and 60.9 (2)°, respectively. The most notable differences between the compounds involve dihedral angles

Figure 1

The molecular structure of compound (I), showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. H atoms are omitted for clarity.

A/B and A/D; 74.0 (3) and 65.8 (3), respectively, for (I), and 51.9 (2) and 37.1 (2)°, respectively, for (II).

Figure 2

The molecular structure of compound (II), showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. H atoms are omitted for clarity.

Figure 3

The crystal packing of compound (I), viewed approximately normal to plane $(10\overline{1})$. H atoms not involved in hydrogen bonding (dashed lines; Table 1) have been excluded for clarity.

3. Supramolecular features

In the crystal of (I), molecules are linked via $C-H \cdots N$ and $C-H \cdots O$ hydrogen bonds, forming sheets parallel to $(10\overline{1})$; Table 1 and Fig. 3. In the crystal of (II), molecules are linked

via $C-H\cdots N$ and $C-H\cdots O$ hydrogen bonds, forming helical chains propagating along [010], which are linked *via* $C-H\cdots S$ hydrogen bonds, forming slabs parallel to (001); Table 2 and Fig. 4.

Figure 4

A view along the *c* axis of the crystal packing of compound (II), showing the hydrogen-bonded helical chains along [010], linked by $C-H \cdots S$ hydrogen bonds forming slabs parallel to the *ab* plane. H atoms not involved in hydrogen bonding (dashed lines; Table 2) have been excluded for clarity.

research communications

Table 1	
Hydrogen-bond geometry (Å, $^{\circ}$) for (I).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C8-H8B\cdots O4^{i}$	0.97	2.51	3.295 (7)	138
$C18-H18C\cdots O2^{ii}$	0.96	2.57	3.509 (9)	164
$C25-H25A\cdots N3^{iii}$	0.97	2.62	3.589 (7)	173

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, -z + 2; (ii) x, y - 1, z; (iii) $-x, y - \frac{1}{2}, -z + 1$.

4. Synthesis and crystallization

Compound (I): A solution of 5-bromo-2-(2-{4-[({(3aS,6R,6aS)-2,2-dimethyl-5-[(Z)-2-nitrovinyl]tetrahydrofuro[2,3-d][1,3]dioxol-6-yl}oxy)methyl]-1H-1,2,3-triazol-1-yl}ethoxy)benzaldehyde (1 mmol) and proline (1.5 mmol) was refluxed in dry acetonitrile (50 ml) under a nitrogen atmosphere for 9 h. After completion of the reaction, as indicated by TLC, the acetonitrile was evaporated under reduced pressure. The crude product was purified by column chromatography using hexane/EtOAc (3:7) as eluent (yield 75%). After purification the compound was recrystallized in CHCl₃ by slow evaporation yielding colourless block-like crystals.

Compound (II): A solution of 5-bromo-2- $(2-[4-[({(3a,6R,6a,5)-2,2-dimethyl-5-[(Z)-2-nitrovinyl]tetrahydrofuro[2,3-d][1,3]di$ $oxol-6-yl}oxy)methyl]-1H-1,2,3-triazol-1-yl}ethoxy)benzalde$ hyde (1 mmol) and thiazolidine-4-carboxylic acid (1.5 m mol)

 Table 3

 Experimental details.

Table	2				
Hydro	gen-bond	geometry	(Å,	°) for	(II).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C23 - H23 \cdots N3^{i}$ $C25 - H25A \cdots N3^{i}$ $C25 - H25B = S0^{ii}$	0.93 0.97	2.58 2.60	3.433 (6) 3.553 (6)	152 168
$C25 - H25B \cdots S9^{n}$	0.97	2.80	3.591 (4)	140

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, -z + 1; (ii) -x + 2, $y + \frac{1}{2}$, -z + 1.

was refluxed in dry acetonitrile (50 ml) under a nitrogen atmosphere for 9 h. After completion of reaction, as indicated by TLC,the acetonitrile was evaporated under reduced pressure. The crude product was purified by column chromatography using hexane/EtOAc (4:6) as eluent (yield 75%). After purification the compound was recrystallized in CHCl₃ by slow evaporation yielding colourless block-like crystals.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The H atoms were placed in calculated positions and refined as riding: C-H = 0.93-0.98 Å with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C)$ for other H atoms. Compound (I) was refined using the instructions TWIN/BASF (see Table 3).

	(I)	(II)
Crystal data		
Chemical formula	$C_{25}H_{20}BtN_5O_7$	Ca4Ha0NeOaS
м	591 44	531.58
Crystal system, space group	Monoclinic. $P2_1$	Monoclinic. $P2_1$
Temperature (K)	293	293
a, b, c (Å)	9.913 (5), 11.414 (5), 12.144 (5)	8.756 (5), 10.811 (5), 13.569 (5)
$\beta(^{\circ})$	99.903 (5)	101.122 (5)
$V(A^3)$	1353.6 (11)	1260.3 (10)
Z	2	2
Radiation type	Μο Κα	Μο Κα
$\mu (\mathrm{mm}^{-1})$	1.57	0.18
Crystal size (mm)	$0.20 \times 0.15 \times 0.10$	$0.20 \times 0.15 \times 0.10$
Data collection		
Diffractometer	Bruker SMART APEXII area detector	Bruker SMART APEXII area detector
Absorption correction	Multi-scan (SADABS; Bruker, 2008)	Multi-scan (SADABS; Bruker, 2008)
T_{\min}, \hat{T}_{\max}	0.744, 0.859	0.964, 0.982
No. of measured, independent and observed	12444, 6278, 3587	11813, 4712, 2862
$[I > 2\sigma(I)]$ renections	0.040	0.041
κ_{int}	0.040	0.041
$(\sin \theta/\lambda)_{max}$ (A)	0.009	0.867
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.044, 0.105, 0.95	0.046, 0.103, 1.00
No. of reflections	6278	4712
No. of parameters	346	336
No. of restraints	1	1
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm A}^{-3})$	0.58, -0.46	0.17, -0.24
Absolute structure	Refined as an inversion twin.	Flack x determined using 794 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	-0.007(11)	-0.10 (9)

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008).

Acknowledgements

VV and DV thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collections. VV thanks the DBT, Government of India, for a fellowship.

References

- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

- Mange, Y. J., Isloor, A. M., Malladi, S., Isloor, S. & Fun, H. K. (2013). *Arab. J. Chem.* **6**, 177–181.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Pertino, M. W., Lopez, C., Theoduloz, C. & Hirschmann, G. S. (2013). *Molecules*, 18, 7661–7674.
- Pokhodylo, N., Shyyka, O. & Matiychuk, V. (2013). Sci. Pharm. 81, 663–676.
- Sahin, D., Bayrak, H., Demirbas, A., Demirbas, N. & Alpay Karaoglu, S. (2012). *Turk. J. Chem.* **36**, 411–426.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Singhal, N., Sharma, P. K., Dudhe, R & Nitin Kumar. (2011). J. Chem. Pharm. Res. **3** 126–133.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2015). E71, 827-831 [doi:10.1107/S205698901501141X]

Crystal structures of two triazola-dioxola-benzenacyclononaphanes

Vijayan Viswanathan, Naga Siva Rao, Raghavachary Raghunathan and Devadasan Velmurugan

Computing details

For both compounds, data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

(I) (Z)-1⁵-Bromo-3²,3²-dimethyl-2¹-nitro-2²,2³,2⁵,2⁶,2⁷,2^{7a},3^{3a},3⁵,3⁶,3^{6a}-decahydro-2¹H,6¹H-4,9-dioxa-2(3,2)pyrrolizina-6(4,1)-triazola-3(5,6)-furo[2,3-d][1,3]dioxola-1(1,2)-benzenacyclononaphane

Crystal data	
$C_{25}H_{29}BrN_5O_7$	F(000) = 610
$M_r = 591.44$	$D_{\rm x} = 1.451 {\rm Mg} {\rm m}^{-3}$
Monoclinic, <i>P</i> 2 ₁	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
a = 9.913 (5) Å	Cell parameters from 6278 reflections
b = 11.414 (5) Å	$\theta = 1.7 - 28.4^{\circ}$
c = 12.144(5) Å	$\mu = 1.57 \text{ mm}^{-1}$
$\beta = 99.903 (5)^{\circ}$	T = 293 K
$V = 1353.6(11) \text{ Å}^3$	Block, colourless
Z=2	$0.20 \times 0.15 \times 0.10 \text{ mm}$
Data collection	
Bruker SMART APEXII area-detector	12444 measured reflections
diffractometer	6278 independent reflections
Radiation source: fine-focus sealed tube	3587 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.040$
ω and φ scans	$\theta_{\text{max}} = 28.4^{\circ}, \theta_{\text{min}} = 1.7^{\circ}$
Absorption correction: multi-scan	$h = -12 \rightarrow 13$
(SADABS; Bruker, 2008)	$k = -14 \rightarrow 15$
$T_{\min} = 0.744, T_{\max} = 0.859$	$l = -16 \rightarrow 16$
Refinement	
Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^2(F_0^2) + (0.0281P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.044$	where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.105$	$(\Delta/\sigma)_{\rm max} < 0.001$
S = 0.95	$\Delta \rho_{\rm max} = 0.57 \ {\rm e} \ {\rm \AA}^{-3}$
6278 reflections	$\Delta \rho_{\rm min} = -0.46 \text{ e} \text{ Å}^{-3}$
346 parameters	Absolute structure: Refined as an inversion
1 restraint	twin.
Hydrogen site location: inferred from	Absolute structure parameter: -0.007 (11)
neighbouring sites	,

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Br1	0.67368 (6)	-0.19346 (6)	0.79878 (5)	0.0761 (2)
01	0.1833 (5)	0.4138 (4)	0.6920 (4)	0.0819 (13)
O2	0.0613 (5)	0.4254 (4)	0.8212 (5)	0.0979 (16)
O3	0.2313 (4)	0.0525 (3)	0.9095 (3)	0.0615 (10)
O4	0.2390 (5)	-0.1342 (4)	0.9764 (4)	0.0874 (14)
05	0.0701 (3)	-0.1835 (4)	0.8366 (3)	0.0654 (9)
O6	-0.0509 (3)	0.1090 (3)	0.7772 (3)	0.0521 (9)
07	0.2747 (4)	0.1097 (3)	0.4964 (3)	0.0565 (9)
N1	0.4472 (4)	0.2353 (4)	0.8095 (3)	0.0452 (10)
N2	0.1474 (5)	0.3774 (4)	0.7764 (5)	0.0640 (14)
N3	-0.0839 (5)	0.2712 (4)	0.5621 (4)	0.0660 (13)
N4	-0.0173 (5)	0.2785 (4)	0.4772 (4)	0.0655 (12)
N5	-0.0008(4)	0.1692 (4)	0.4422 (4)	0.0550 (11)
C1	0.3678 (5)	0.0384 (4)	0.5593 (4)	0.0477 (12)
C2	0.4117 (6)	-0.0673 (6)	0.5232 (5)	0.0692 (17)
H2	0.3791	-0.0924	0.4506	0.083*
C3	0.5033 (6)	-0.1362 (5)	0.5932 (5)	0.0659 (16)
H3	0.5325	-0.2075	0.5685	0.079*
C4	0.5503 (5)	-0.0981 (5)	0.6990 (5)	0.0521 (13)
C5	0.5094 (4)	0.0081 (4)	0.7364 (4)	0.0440 (12)
Н5	0.5448	0.0330	0.8085	0.053*
C6	0.4170 (4)	0.0775 (4)	0.6685 (4)	0.0400 (11)
C7	0.3603 (4)	0.1881 (4)	0.7103 (4)	0.0387 (11)
H7	0.3533	0.2471	0.6509	0.046*
C8	0.5485 (5)	0.3221 (6)	0.7870 (4)	0.0616 (15)
H8A	0.5598	0.3183	0.7093	0.074*
H8B	0.6365	0.3074	0.8338	0.074*
C9	0.4947 (6)	0.4396 (6)	0.8129 (6)	0.0737 (18)
H9A	0.4350	0.4718	0.7483	0.088*
H9B	0.5689	0.4941	0.8371	0.088*
C10	0.4158 (6)	0.4135 (5)	0.9067 (5)	0.0657 (16)
H10A	0.3404	0.4679	0.9054	0.079*
H10B	0.4752	0.4184	0.9789	0.079*
C11	0.3630 (4)	0.2884 (4)	0.8834 (4)	0.0458 (12)
H11	0.3793	0.2453	0.9543	0.055*
C12	0.2136 (5)	0.2693 (4)	0.8294 (4)	0.0460 (12)
H12	0.1619	0.2414	0.8861	0.055*
C13	0.2173 (5)	0.1730 (4)	0.7424 (4)	0.0389 (11)
H13	0.1475	0.1897	0.6767	0.047*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C14	0.1887 (4)	0.0524 (4)	0.7888 (4)	0.0423 (11)
H14	0.2418	-0.0068	0.7562	0.051*
C15	0.1610 (6)	-0.0349 (5)	0.9550 (4)	0.0501 (14)
H15	0.1313	-0.0070	1.0234	0.060*
C16	0.1832 (6)	-0.2298 (4)	0.9097 (5)	0.0566 (14)
C17	0.2849 (7)	-0.2733 (7)	0.8436 (7)	0.101 (3)
H17A	0.2484	-0.3402	0.8007	0.152*
H17B	0.3672	-0.2952	0.8932	0.152*
H17C	0.3052	-0.2127	0.7942	0.152*
C18	0.1389 (8)	-0.3214 (6)	0.9836 (6)	0.087 (2)
H18A	0.0723	-0.2889	1.0237	0.130*
H18B	0.2168	-0.3482	1.0357	0.130*
H18C	0.0992	-0.3861	0.9389	0.130*
C19	0.0388 (5)	-0.0700 (4)	0.8692 (4)	0.0482 (13)
H19	-0.0472	-0.0670	0.8986	0.058*
C20	0.0399 (4)	0.0145 (4)	0.7713 (4)	0.0429 (11)
H20	0.0154	-0.0269	0.6999	0.051*
C21	-0.1598 (5)	0.1165 (6)	0.6832 (5)	0.0614 (15)
H21A	-0.2284	0.1712	0.6997	0.074*
H21B	-0.2028	0.0403	0.6694	0.074*
C22	-0.1072 (5)	0.1562 (5)	0.5805 (5)	0.0551 (14)
C23	-0.0554 (5)	0.0906 (5)	0.5042 (4)	0.0523 (13)
C24	0.0826 (6)	0.1482 (5)	0.3571 (4)	0.0568 (14)
H24A	0.1209	0.2219	0.3373	0.068*
H24B	0.0252	0.1173	0.2906	0.068*
C25	0.1960 (6)	0.0642 (5)	0.3954 (4)	0.0567 (14)
H25A	0.1591	-0.0121	0.4091	0.068*
H25B	0.2533	0.0557	0.3387	0.068*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0711 (3)	0.0748 (4)	0.0813 (4)	0.0282 (4)	0.0100 (3)	0.0041 (4)
O1	0.107 (3)	0.052 (3)	0.077 (3)	0.006 (2)	-0.011 (3)	0.013 (2)
O2	0.105 (3)	0.074 (3)	0.115 (4)	0.041 (3)	0.018 (3)	-0.016 (3)
O3	0.071 (2)	0.050 (2)	0.054 (2)	-0.015 (2)	-0.0156 (18)	0.0142 (19)
O4	0.098 (3)	0.046 (2)	0.096 (4)	-0.009(2)	-0.047 (3)	0.010 (2)
O5	0.078 (2)	0.046 (2)	0.063 (2)	-0.002 (2)	-0.0130 (18)	-0.006(2)
O6	0.0474 (18)	0.058 (2)	0.051 (2)	0.0146 (18)	0.0077 (16)	-0.0018 (17)
O7	0.077 (2)	0.046 (2)	0.041 (2)	0.0036 (19)	-0.0054 (18)	-0.0087 (17)
N1	0.047 (2)	0.046 (2)	0.040 (2)	-0.001 (2)	0.0014 (19)	-0.0033 (19)
N2	0.071 (3)	0.044 (3)	0.071 (4)	0.010 (3)	-0.005 (3)	-0.009 (3)
N3	0.082 (3)	0.046 (3)	0.063 (3)	0.018 (2)	-0.008(2)	-0.002(2)
N4	0.094 (3)	0.036 (3)	0.061 (3)	0.007 (2)	-0.002 (3)	0.004 (2)
N5	0.065 (3)	0.049 (3)	0.045 (3)	0.002 (2)	-0.007(2)	-0.005 (2)
C1	0.056 (3)	0.046 (3)	0.040 (3)	0.001 (3)	0.008 (2)	-0.003 (2)
C2	0.088 (4)	0.068 (4)	0.050 (4)	0.015 (4)	0.008 (3)	-0.018 (3)
C3	0.077 (4)	0.055 (3)	0.067 (4)	0.021 (3)	0.017 (3)	-0.013 (3)

C4	0.048 (3)	0.051 (3)	0.059 (4)	0.005 (3)	0.015 (3)	0.001 (3)
C5	0.041 (2)	0.045 (3)	0.048 (3)	0.000 (2)	0.013 (2)	-0.006 (2)
C6	0.041 (2)	0.043 (3)	0.039 (3)	-0.002 (2)	0.014 (2)	-0.003 (2)
C7	0.049 (3)	0.035 (2)	0.031 (2)	-0.005 (2)	0.005 (2)	-0.004(2)
C8	0.057 (3)	0.073 (4)	0.052 (3)	-0.018 (3)	0.001 (2)	-0.011 (3)
C9	0.075 (4)	0.054 (4)	0.089 (5)	-0.017 (3)	0.003 (4)	0.006 (3)
C10	0.074 (4)	0.043 (3)	0.074 (4)	-0.002 (3)	-0.003 (3)	-0.022 (3)
C11	0.057 (3)	0.041 (3)	0.038 (2)	0.003 (3)	0.007 (2)	0.002 (2)
C12	0.058 (3)	0.035 (3)	0.046 (3)	0.006 (2)	0.012 (2)	-0.001 (2)
C13	0.048 (3)	0.031 (2)	0.037 (3)	0.003 (2)	0.003 (2)	-0.002 (2)
C14	0.046 (2)	0.039 (3)	0.041 (3)	0.001 (2)	0.004 (2)	0.002 (2)
C15	0.068 (3)	0.048 (3)	0.035 (3)	-0.007 (3)	0.011 (3)	-0.004 (2)
C16	0.068 (3)	0.041 (3)	0.057 (3)	-0.008 (3)	-0.001 (3)	0.012 (3)
C17	0.093 (5)	0.072 (5)	0.149 (8)	0.017 (4)	0.051 (5)	0.031 (5)
C18	0.135 (6)	0.062 (4)	0.064 (4)	-0.021 (4)	0.018 (4)	0.013 (4)
C19	0.050 (3)	0.046 (3)	0.049 (3)	-0.008 (3)	0.009 (2)	-0.001 (3)
C20	0.045 (3)	0.045 (3)	0.040 (3)	0.004 (2)	0.010 (2)	-0.002 (2)
C21	0.043 (3)	0.077 (4)	0.063 (4)	0.015 (3)	0.006 (3)	-0.003 (3)
C22	0.048 (3)	0.061 (4)	0.051 (3)	0.010 (3)	-0.007 (2)	-0.001 (3)
C23	0.058 (3)	0.056 (3)	0.039 (3)	-0.006 (3)	-0.003 (2)	0.004 (3)
C24	0.082 (4)	0.053 (3)	0.032 (3)	-0.008 (3)	-0.001 (3)	0.005 (2)
C25	0.080 (3)	0.056 (3)	0.033 (3)	-0.012 (3)	0.007 (3)	-0.008 (3)

Geometric parameters (Å, °)

Br1—C4	1.908 (5)	C9—C10	1.519 (8)
O1—N2	1.214 (6)	С9—Н9А	0.9700
O2—N2	1.218 (6)	С9—Н9В	0.9700
O3—C15	1.385 (6)	C10—C11	1.530 (8)
O3—C14	1.454 (5)	C10—H10A	0.9700
O4—C15	1.372 (7)	C10—H10B	0.9700
O4—C16	1.414 (7)	C11—C12	1.529 (7)
O5—C19	1.405 (6)	C11—H11	0.9800
O5—C16	1.408 (6)	C12—C13	1.530 (7)
O6—C20	1.415 (6)	C12—H12	0.9800
O6—C21	1.433 (6)	C13—C14	1.533 (7)
O7—C1	1.362 (6)	C13—H13	0.9800
O7—C25	1.432 (6)	C14—C20	1.516 (6)
N1—C7	1.458 (6)	C14—H14	0.9800
N1-C11	1.459 (6)	C15—C19	1.510 (7)
N1-C8	1.469 (6)	C15—H15	0.9800
N2-C12	1.490 (7)	C16—C17	1.478 (8)
N3—N4	1.319 (6)	C16—C18	1.492 (8)
N3—C22	1.358 (7)	C17—H17A	0.9600
N4—N5	1.337 (6)	C17—H17B	0.9600
N5-C23	1.344 (6)	C17—H17C	0.9600
N5-C24	1.450 (6)	C18—H18A	0.9600
C1—C2	1.380 (8)	C18—H18B	0.9600

C1—C6	1.405 (7)	C18—H18C	0.9600
C2—C3	1.378 (8)	C19—C20	1.533 (7)
С2—Н2	0.9300	С19—Н19	0.9800
C3—C4	1.361 (8)	C20—H20	0.9800
С3—Н3	0.9300	C21—C22	1.501 (8)
C4—C5	1.380 (7)	C21—H21A	0.9700
C5—C6	1.373 (7)	C21—H21B	0.9700
С5—Н5	0.9300	C^{22} C^{23}	1 359 (7)
C6—C7	1 506 (6)	C_{24} C_{25}	1 490 (8)
C7-C13	1 542 (6)	C24_H24A	0.9700
C7H7	0.9800	C24 H24R	0.9700
C_{1}^{2}	1 /07 (0)	$C_{24} = H_{24}$	0.9700
	0.0700	C25 H25P	0.9700
	0.9700	С25—п25В	0.9700
Со—пов	0.9700		
$C_{15} O_{2} C_{14}$	100 0 (1)	C12 C12 C14	1112(A)
C15 - 03 - C14	108.8 (4)	C12 - C13 - C14	111.5(4)
C15 - 04 - C16	112.1 (4)	C12-C13-C7	103.1 (4)
05-01	111.0 (4)	C14—C13—C7	115.5 (4)
C20—O6—C21	113.8 (4)	С12—С13—Н13	108.9
C1—O7—C25	118.7 (4)	С14—С13—Н13	108.9
C7—N1—C11	110.0 (3)	С7—С13—Н13	108.9
C7—N1—C8	114.9 (4)	O3—C14—C20	104.4 (3)
C11—N1—C8	108.4 (4)	O3—C14—C13	109.3 (4)
O1—N2—O2	123.5 (6)	C20—C14—C13	116.2 (4)
O1—N2—C12	118.5 (5)	O3—C14—H14	108.9
O2—N2—C12	118.0 (5)	C20—C14—H14	108.9
N4—N3—C22	108.2 (4)	C13—C14—H14	108.9
N3—N4—N5	107.1 (4)	O4—C15—O3	111.4 (4)
N4—N5—C23	111.2 (4)	O4—C15—C19	105.7 (4)
N4—N5—C24	119.7 (5)	O3—C15—C19	108.3 (4)
C23—N5—C24	128.6 (4)	O4—C15—H15	110.4
O7—C1—C2	124.4 (5)	O3—C15—H15	110.4
O7—C1—C6	115.6 (4)	С19—С15—Н15	110.4
C2-C1-C6	120.1 (5)	O5—C16—O4	105.2 (4)
$C_3 - C_2 - C_1$	120.8 (5)	05—C16—C17	109.1 (5)
C3-C2-H2	119.6	04-C16-C17	109.1(c) 109.5(5)
C1 - C2 - H2	119.6	05-C16-C18	109.0(5)
$C_{4} - C_{3} - C_{2}$	118.9 (5)	04-C16-C18	108.8(5)
C4-C3-H3	120.6	C_{17} C_{16} C_{18}	100.0(5)
$C_2 C_3 H_3$	120.6	$C_{16} = C_{17} = H_{17A}$	100 5
$C_2 = C_3 = C_4 = C_5$	120.0	C16 C17 H17P	109.5
$C_{3} - C_{4} - C_{5}$	121.3(3)	1174 177 $117D$	109.5
C_{3} C_{4} D_{11}	117.7 (4)	$\Pi / A = \bigcup / - \Pi / D$	109.5
$C_{-}C_{-}C_{-}B_{-}B_{-}B_{-}B_{-}B_{-}B_{-}B_{-}B$	119.0 (4)	$U_{10} - U_{1} - H_{1} / U_{120}$	109.5
0 - 0 - 04	120.8 (3)	$\Pi I / A - U / - H I / U$	109.5
	119.6	HI/B - UI/-HI/C	109.5
C4—C5—H5	119.6	C16—C18—H18A	109.5
C5—C6—C1	118.1 (4)	C16—C18—H18B	109.5
C5—C6—C7	122.0 (4)	H18A—C18—H18B	109.5

	110 5 (1)		100 5
CIC6C7	119.7 (4)	C16—C18—H18C	109.5
N1—C7—C6	112.7 (4)	H18A—C18—H18C	109.5
N1—C7—C13	105.7 (3)	H18B—C18—H18C	109.5
C6—C7—C13	113.8 (4)	O5—C19—C15	104.5 (4)
N1—C7—H7	108.1	O5—C19—C20	109.3 (4)
С6—С7—Н7	108.1	C15—C19—C20	104.9 (4)
С13—С7—Н7	108.1	O5—C19—H19	112.5
N1—C8—C9	106.6 (4)	C15—C19—H19	112.5
N1—C8—H8A	110.4	С20—С19—Н19	112.5
С9—С8—Н8А	110.4	O6—C20—C14	112.8 (4)
N1—C8—H8B	110.4	O6—C20—C19	110.5 (3)
С9—С8—Н8В	110.4	C14—C20—C19	102.0 (4)
H8A—C8—H8B	108.6	O6—C20—H20	110.4
C8—C9—C10	103.3 (5)	С14—С20—Н20	110.4
С8—С9—Н9А	111.1	С19—С20—Н20	110.4
C10—C9—H9A	111.1	06-C21-C22	111.0 (4)
C8-C9-H9B	111.1	06-C21-H21A	109.4
C10-C9-H9B	111.1	$C_{22} = C_{21} = H_{21}A$	109.4
H9A - C9 - H9B	109.1	06-C21-H21B	109.4
C_{0} C_{10} C_{11}	104.4(4)	C_{22} C_{21} H_{21B}	109.4
C_{9} C_{10} H_{10A}	110.0	H_{21} H	109.4
$C_{11} = C_{10} = H_{10A}$	110.9	$N_{2} = C_{2} = C_{2}$	100.0(5)
C_{10} C_{10} H_{10} H_{10}	110.9	$N_{3} = C_{22} = C_{23}$	109.0(3)
	110.9	$N_{3} = C_{22} = C_{21}$	121.3(3)
	110.9	$C_{23} = C_{22} = C_{21}$	128.7 (5)
HI0A—CI0—HI0B	108.9	N5-C23-C22	104.5 (5)
NI-CII-CI2	106.9 (4)	N5—C24—C25	112.1 (4)
N1—C11—C10	106.7 (4)	N5—C24—H24A	109.2
C12—C11—C10	119.2 (4)	C25—C24—H24A	109.2
N1—C11—H11	107.9	N5—C24—H24B	109.2
C12—C11—H11	107.9	C25—C24—H24B	109.2
C10—C11—H11	107.9	H24A—C24—H24B	107.9
N2—C12—C11	112.9 (4)	O7—C25—C24	107.7 (4)
N2—C12—C13	111.0 (4)	O7—C25—H25A	110.2
C11—C12—C13	105.2 (4)	C24—C25—H25A	110.2
N2—C12—H12	109.2	O7—C25—H25B	110.2
C11—C12—H12	109.2	С24—С25—Н25В	110.2
C13—C12—H12	109.2	H25A—C25—H25B	108.5
C22—N3—N4—N5	0.7 (6)	C6—C7—C13—C12	153.8 (4)
N3—N4—N5—C23	-0.4 (6)	N1—C7—C13—C14	-92.1 (5)
N3—N4—N5—C24	-173.2(4)	C6-C7-C13-C14	32.2 (5)
C25-07-C1-C2	13.2 (7)	$C_{15} - C_{3} - C_{14} - C_{20}$	32.4(5)
$C_{25} = 07 = C_{1} = C_{6}$	-1654(4)	$C_{15} = 0_{3} = C_{14} = C_{13}$	1574(4)
07 - C1 - C2 - C3	-1780(5)	C_{12} C_{13} C_{14} C_{13}	-27.6(5)
C_{6} C_{1} C_{2} C_{3}	0.4 (8)	C7-C13-C14-O3	27.0 (3) 89 5 (4)
$C_1 - C_2 - C_3 - C_4$	-0.2(9)	C_{12} C_{13} C_{14} C_{20}	90.2(7)
$C_1 = C_2 = C_3 = C_4$	-0.8(8)	$C_{12}^{-} - C_{13}^{-} - C_{14}^{-} - C_{20}^{-}$	-152.8(4)
$C_2 = C_3 = C_4 = C_3$	0.0(0)	$C_1 = C_1 = C_1 = C_2 $	114.0 (5)
U2-U3-U4-Bri	1/8.3 (4)	010-04-015-03	-114.9 (5)

C3—C4—C5—C6	1.6 (7)	C16—O4—C15—C19	2.5 (6)
Br1-C4-C5-C6	-177.7 (3)	C14—O3—C15—O4	98.4 (5)
C4—C5—C6—C1	-1.3 (6)	C14—O3—C15—C19	-17.4 (5)
C4—C5—C6—C7	174.1 (4)	C19—O5—C16—O4	-11.1 (5)
O7—C1—C6—C5	178.9 (4)	C19—O5—C16—C17	-128.5 (5)
C2—C1—C6—C5	0.3 (7)	C19—O5—C16—C18	106.4 (5)
O7—C1—C6—C7	3.4 (6)	C15—O4—C16—O5	4.9 (6)
C2-C1-C6-C7	-175.2 (4)	C15-04-C16-C17	122.1 (5)
C11—N1—C7—C6	-145.0 (4)	C15-04-C16-C18	-114.0 (5)
C8—N1—C7—C6	92.3 (5)	C16—O5—C19—C15	12.4 (5)
C11—N1—C7—C13	-20.1 (5)	C16	124.2 (4)
C8—N1—C7—C13	-142.8 (4)	O4—C15—C19—O5	-8.9 (5)
C5—C6—C7—N1	21.8 (6)	O3—C15—C19—O5	110.5 (4)
C1—C6—C7—N1	-162.9 (4)	O4—C15—C19—C20	-123.9 (4)
C5—C6—C7—C13	-98.6 (5)	O3—C15—C19—C20	-4.4 (5)
C1—C6—C7—C13	76.7 (5)	C21—O6—C20—C14	128.0 (4)
C7—N1—C8—C9	103.5 (5)	C21—O6—C20—C19	-118.6 (4)
C11—N1—C8—C9	-20.0 (5)	O3—C14—C20—O6	85.4 (4)
N1-C8-C9-C10	31.6 (6)	C13—C14—C20—O6	-35.0 (5)
C8—C9—C10—C11	-30.9 (6)	O3—C14—C20—C19	-33.1 (5)
C7—N1—C11—C12	2.2 (5)	C13—C14—C20—C19	-153.5 (4)
C8—N1—C11—C12	128.6 (4)	O5-C19-C20-O6	151.2 (4)
C7—N1—C11—C10	-126.4 (4)	C15—C19—C20—O6	-97.2 (4)
C8—N1—C11—C10	0.0 (5)	O5-C19-C20-C14	-88.6 (4)
C9-C10-C11-N1	19.4 (6)	C15-C19-C20-C14	22.9 (5)
C9—C10—C11—C12	-101.6 (5)	C20-06-C21-C22	-71.5 (6)
O1—N2—C12—C11	70.1 (6)	N4—N3—C22—C23	-0.8 (6)
O2—N2—C12—C11	-108.9 (5)	N4—N3—C22—C21	169.5 (4)
O1—N2—C12—C13	-47.7 (6)	O6—C21—C22—N3	-81.0 (6)
O2—N2—C12—C13	133.3 (5)	O6—C21—C22—C23	87.3 (7)
N1-C11-C12-N2	-104.5 (5)	N4—N5—C23—C22	-0.1 (6)
C10-C11-C12-N2	16.4 (6)	C24—N5—C23—C22	172.0 (5)
N1—C11—C12—C13	16.7 (5)	N3—C22—C23—N5	0.5 (6)
C10-C11-C12-C13	137.6 (4)	C21—C22—C23—N5	-168.9 (5)
N2-C12-C13-C14	-141.1 (4)	N4—N5—C24—C25	123.3 (5)
C11—C12—C13—C14	96.5 (4)	C23—N5—C24—C25	-48.1 (7)
N2-C12-C13-C7	94.6 (5)	C1—O7—C25—C24	167.4 (4)
C11—C12—C13—C7	-27.9 (5)	N5-C24-C25-O7	-56.2 (6)
N1—C7—C13—C12	29.5 (5)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D··· A	D—H··· A	
C8—H8 <i>B</i> ····O4 ⁱ	0.97	2.51	3.295 (7)	138	
C18—H18C···O2 ⁱⁱ	0.96	2.57	3.509 (9)	164	
C25—H25A…N3 ⁱⁱⁱ	0.97	2.62	3.589 (7)	173	

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+2; (ii) *x*, *y*-1, *z*; (iii) -*x*, *y*-1/2, -*z*+1.

(II) (*Z*)-3²,3²-Dimethyl-2⁷-nitro-2⁵,2⁶,2⁷,2^{7a},3^{3a},3⁵,3⁶,3^{6a}-octahydro-2¹*H*,2³*H*,6¹*H*-4,9-dioxa-2(5,6)-pyrrolo[1,2c]thiazola-6(4,1)-triazola-3(5,6)-furo[2,3-*d*][1,3]dioxola-1(1,2)-benzenacyclononaphane

F(000) = 560

 $\theta = 1.5 - 22.3^{\circ}$

 $\mu = 0.18 \text{ mm}^{-1}$

Block, colourless

 $0.20 \times 0.15 \times 0.10$ mm

T = 293 K

 $D_{\rm x} = 1.401 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 4712 reflections

Crystal data

 $C_{24}H_{29}N_5O_7S$ $M_r = 531.58$ Monoclinic, P2₁ a = 8.756 (5) Å b = 10.811 (5) Å c = 13.569 (5) Å $\beta = 101.122$ (5)° V = 1260.3 (10) Å³ Z = 2

Data collection

Bruker SMART APEXII area-detector	11813 measured reflections
diffractometer	4712 independent reflections
Radiation source: fine-focus sealed tube	2862 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.041$
ω and φ scans	$\theta_{\rm max} = 28.3^{\circ}, \ \theta_{\rm min} = 1.5^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$
(SADABS; Bruker, 2008)	$k = -13 \rightarrow 14$
$T_{\min} = 0.964, \ T_{\max} = 0.982$	$l = -17 \rightarrow 18$
D ofin on out	

Refinement

Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.0413P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.046$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.103$	$(\Delta/\sigma)_{\rm max} < 0.001$
S = 1.00	$\Delta ho_{ m max} = 0.17 \ { m e} \ { m \AA}^{-3}$
4712 reflections	$\Delta ho_{ m min} = -0.24 \mathrm{e} \mathrm{\AA}^{-3}$
336 parameters	Absolute structure: Flack x determined using
1 restraint	794 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> ,
Hydrogen site location: inferred from	2013)
neighbouring sites	Absolute structure parameter: -0.10 (9)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S9	0.85963 (16)	-0.08380 (12)	0.26658 (11)	0.0856 (5)	
01	0.2482 (4)	-0.0495 (3)	0.0593 (3)	0.0996 (13)	
O2	0.2983 (4)	-0.0548 (3)	0.2195 (3)	0.0873 (11)	
03	0.2622 (3)	0.2632 (2)	0.11689 (17)	0.0547 (7)	
O4	0.2164 (3)	0.4638 (3)	0.06070 (18)	0.0578 (7)	
05	0.2374 (4)	0.5327 (2)	0.2191 (2)	0.0631 (8)	
06	0.2153 (3)	0.2254 (2)	0.31708 (18)	0.0496 (7)	

O7	0.8007 (3)	0.2715 (2)	0.43718 (18)	0.0538 (7)
N1	0.7152 (3)	0.1098 (3)	0.1692 (2)	0.0434 (8)
N2	0.3210 (4)	-0.0163 (3)	0.1400 (3)	0.0598 (10)
N3	0.4307 (4)	0.0753 (3)	0.4787 (3)	0.0597 (9)
N4	0.5760 (4)	0.0738 (3)	0.5266 (3)	0.0600 (10)
N5	0.6117 (4)	0.1899 (3)	0.5601 (2)	0.0521 (9)
C1	0.7925 (4)	0.3522(4)	0.3582 (3)	0.0441 (9)
C2	0.8434(5)	0.4733(4)	0.3693 (3)	0.0553 (11)
H2	0.8865	0.5038	0.4326	0.066*
C3	0.8302(5)	0.5485 (4)	0.2866 (4)	0.0615 (12)
H3	0.8615	0.6307	0 2946	0.074*
C4	0.7715(4)	0.5040(4)	0.1926 (4)	0.0558(12)
H4	0.7642	0.5551	0.1368	0.067*
C5	0.7234(4)	0.3827(4)	0.1800 0.1817(3)	0.0512(10)
н5	0.6863	0.3518	0.1176	0.061*
C6	0.0009 0.7288 (4)	0.3054(4)	0.2638(3)	0.001
C7	0.6631(4)	0.3051(1) 0.1762(3)	0.2522(3)	0.0404(9)
е <i>т</i> Н7	0.7020	0.1310	0.2522 (5)	0.049*
C8	0.7020 0.8712 (5)	0.1510 0.0606 (4)	0.3140 0.1945 (3)	0.049
HSB	0.9400	0.1196	0.1348	0.0029 (12)
H8A	0.9110	0.0431	0.1340	0.076*
C10	0.6519(5)	-0.0954(4)	0.1340 0.2256(3)	0.070
H10A	0.6232	-0.1768	0.2230 (3)	0.0074 (12)
HIOR	0.5990	-0.0806	0.2811	0.077*
C11	0.6000 (4)	0.0000	0.2011 0.1445(3)	0.077
	0.6163	-0.0280	0.1443(3) 0.0784	0.0458 (10)
C12	0.0105 0.4536(4)	0.0209	0.0784 0.1302 (3)	0.035
U12	0.4330 (4)	0.0711(3)	0.1392 (3)	0.0403 (9)
C12	0.4314	0.1105 0.1625(2)	0.0703	0.045°
U13	0.4604 (4)	0.1023 (3)	0.2271(2)	0.0339 (8)
П13 С14	0.4461 0.2855 (4)	0.1222 0.2812 (2)	0.2644 0.2042(2)	0.043°
U14	0.3833 (4)	0.2012 (5)	0.2042 (2)	0.0377(8)
П14 С15	0.4342 0.1627 (5)	0.54/8	0.1900 0.1128 (2)	0.043°
U15	0.1037(3)	0.3001(3)	0.1128 (5)	0.0474 (10)
ПІЗ	0.0360	0.5442	0.0852 0.1102 (2)	0.037°
C10	0.2204(3)	0.3744(4)	0.1192(3)	0.0438(10)
	0.3722 (5)	0.6412 (5)	0.1111 (4)	0.0824 (16)
HI/A	0.4588	0.5852	0.1255	0.124*
HI/B	0.3881	0.7083	0.1582	0.124*
HI/C	0.3638	0.0731	0.0442	0.124^{*}
	0.0832 (5)	0.6512 (4)	0.0852 (3)	0.0667 (13)
HI8C	0.0792	0.6775	0.01/1	0.100*
HI8B	0.0864	0.7224	0.1278	0.100*
HI8A G10	-0.00/5	0.6029	0.0888	0.100*
C19	0.1/66 (4)	0.4125 (4)	0.2205 (3)	0.0453 (9)
H19	0.0763	0.4113	0.2423	0.054*
020	0.2947 (4)	0.3260 (3)	0.2824 (3)	0.0398 (9)
H20	0.3617	0.3694	0.3379	0.048*
C21	0.2186 (5)	0.2264 (5)	0.4235 (3)	0.0630 (12)

H21A	0.1419	0.1685	0.4389	0.076*	
H21B	0.1911	0.3083	0.4436	0.076*	
C22	0.3746 (5)	0.1924 (4)	0.4809 (3)	0.0504 (10)	
C23	0.4913 (5)	0.2649 (4)	0.5322 (3)	0.0548 (11)	
H23	0.4870	0.3492	0.5449	0.066*	
C24	0.7723 (5)	0.2219 (4)	0.6012 (3)	0.0624 (12)	
H24A	0.8373	0.1489	0.6036	0.075*	
H24B	0.7806	0.2527	0.6692	0.075*	
C25	0.8274 (5)	0.3194 (4)	0.5369 (3)	0.0585 (11)	
H25A	0.7699	0.3957	0.5393	0.070*	
H25B	0.9373	0.3361	0.5603	0.070*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S9	0.0720 (8)	0.0642 (8)	0.1050 (10)	0.0174 (7)	-0.0215 (7)	0.0085 (8)
O1	0.097 (3)	0.087 (3)	0.096 (3)	-0.032 (2)	-0.028 (2)	-0.016 (2)
O2	0.104 (3)	0.072 (3)	0.095 (3)	-0.032(2)	0.042 (2)	-0.011 (2)
O3	0.0668 (19)	0.0457 (16)	0.0421 (15)	0.0084 (15)	-0.0129 (13)	-0.0093 (13)
O4	0.085 (2)	0.0445 (16)	0.0423 (15)	0.0019 (16)	0.0087 (14)	0.0044 (14)
O5	0.107 (2)	0.0362 (15)	0.0420 (17)	0.0049 (16)	0.0050 (16)	0.0013 (13)
O6	0.0474 (15)	0.0523 (17)	0.0492 (16)	-0.0038 (13)	0.0098 (12)	0.0093 (13)
O7	0.0715 (19)	0.0501 (17)	0.0370 (14)	-0.0061 (15)	0.0041 (12)	-0.0081 (13)
N1	0.0393 (18)	0.0464 (19)	0.0439 (18)	0.0011 (15)	0.0064 (14)	-0.0083 (15)
N2	0.063 (2)	0.040 (2)	0.075 (3)	-0.001 (2)	0.008 (2)	-0.010 (2)
N3	0.068 (3)	0.048 (2)	0.059 (2)	0.000 (2)	0.0015 (19)	0.0108 (18)
N4	0.075 (3)	0.039 (2)	0.059 (2)	-0.0001 (19)	-0.004(2)	0.0038 (18)
N5	0.066 (2)	0.046 (2)	0.0411 (19)	0.0018 (19)	0.0010 (16)	0.0059 (16)
C1	0.040 (2)	0.042 (2)	0.049 (2)	-0.0014 (18)	0.0069 (18)	-0.002 (2)
C2	0.054 (3)	0.052 (3)	0.061 (3)	-0.006 (2)	0.012 (2)	-0.010 (2)
C3	0.049 (3)	0.041 (2)	0.096 (4)	-0.005 (2)	0.020 (3)	0.000 (3)
C4	0.039 (2)	0.053 (3)	0.073 (3)	-0.003 (2)	0.004 (2)	0.020 (2)
C5	0.044 (2)	0.050 (3)	0.056 (3)	-0.003 (2)	-0.0004 (19)	0.007 (2)
C6	0.035 (2)	0.040 (2)	0.044 (2)	0.0013 (17)	0.0037 (16)	0.0001 (18)
C7	0.042 (2)	0.040 (2)	0.037 (2)	0.0005 (18)	0.0015 (16)	-0.0002 (17)
C8	0.044 (2)	0.067 (3)	0.076 (3)	0.012 (2)	0.005 (2)	-0.008 (3)
C10	0.069 (3)	0.046 (2)	0.074 (3)	0.008 (2)	0.002 (2)	0.005 (2)
C11	0.045 (2)	0.049 (2)	0.039 (2)	0.0041 (19)	-0.0012 (17)	-0.0080 (18)
C12	0.045 (2)	0.036 (2)	0.040 (2)	-0.0010 (18)	0.0073 (16)	-0.0034 (17)
C13	0.040 (2)	0.035 (2)	0.0319 (19)	0.0008 (17)	0.0051 (15)	0.0013 (16)
C14	0.039 (2)	0.038 (2)	0.0340 (19)	-0.0019 (17)	0.0022 (15)	-0.0017 (16)
C15	0.044 (2)	0.038 (2)	0.053 (3)	0.0008 (19)	-0.0082 (18)	0.0029 (19)
C16	0.052 (2)	0.037 (2)	0.046 (2)	-0.001 (2)	0.0051 (18)	0.0005 (19)
C17	0.056 (3)	0.068 (3)	0.124 (4)	-0.008 (3)	0.019 (3)	0.008 (3)
C18	0.061 (3)	0.059 (3)	0.080 (3)	0.015 (2)	0.012 (2)	0.016 (3)
C19	0.044 (2)	0.044 (2)	0.050 (2)	0.005 (2)	0.0130 (18)	0.005 (2)
C20	0.042 (2)	0.035 (2)	0.042 (2)	-0.0008 (18)	0.0079 (16)	0.0038 (18)
C21	0.060 (3)	0.077 (3)	0.057 (3)	0.008 (3)	0.025 (2)	0.018 (3)

supporting information

C22	0.055 (3)	0.053 (3)	0.045 (2)	0.006 (2)	0.014 (2)	0.014 (2)	
C23	0.072 (3)	0.044 (2)	0.051 (2)	0.008 (2)	0.017 (2)	0.006 (2)	
C24	0.073 (3)	0.072 (3)	0.038 (2)	-0.006 (3)	0.000(2)	0.001 (2)	
C25	0.061 (3)	0.069 (3)	0.042 (2)	-0.009 (2)	0.0005 (19)	-0.014 (2)	

Geometric parameters (Å, °)

S9—C10	1.801 (4)	C8—H8B	0.9700	
S9—C8	1.855 (5)	C8—H8A	0.9700	
O1—N2	1.210 (4)	C10—C11	1.536 (6)	
O2—N2	1.207 (4)	C10—H10A	0.9700	
O3—C15	1.402 (4)	C10—H10B	0.9700	
O3—C14	1.454 (4)	C11—C12	1.528 (5)	
O4—C15	1.398 (5)	C11—H11	0.9800	
O4—C16	1.428 (5)	C12—C13	1.532 (5)	
O5—C19	1.406 (5)	C12—H12	0.9800	
O5—C16	1.415 (4)	C13—C14	1.528 (5)	
O6—C20	1.418 (4)	C13—H13	0.9800	
O6—C21	1.439 (4)	C14—C20	1.523 (5)	
O7—C1	1.373 (4)	C14—H14	0.9800	
O7—C25	1.425 (4)	C15—C19	1.528 (5)	
N1-C8	1.445 (5)	C15—H15	0.9800	
N1-C11	1.466 (5)	C16—C17	1.490 (6)	
N1—C7	1.480 (4)	C16—C18	1.501 (5)	
N2-C12	1.498 (5)	C17—H17A	0.9600	
N3—N4	1.312 (4)	C17—H17B	0.9600	
N3—C22	1.360 (5)	C17—H17C	0.9600	
N4—N5	1.351 (4)	C18—H18C	0.9600	
N5-C23	1.326 (5)	C18—H18B	0.9600	
N5-C24	1.451 (5)	C18—H18A	0.9600	
C1—C2	1.382 (6)	C19—C20	1.521 (5)	
C1—C6	1.390 (5)	C19—H19	0.9800	
C2—C3	1.372 (6)	С20—Н20	0.9800	
С2—Н2	0.9300	C21—C22	1.483 (6)	
C3—C4	1.366 (6)	C21—H21A	0.9700	
С3—Н3	0.9300	C21—H21B	0.9700	
C4—C5	1.377 (6)	C22—C23	1.366 (6)	
C4—H4	0.9300	С23—Н23	0.9300	
C5—C6	1.385 (5)	C24—C25	1.506 (6)	
С5—Н5	0.9300	C24—H24A	0.9700	
С6—С7	1.508 (5)	C24—H24B	0.9700	
C7—C13	1.576 (5)	C25—H25A	0.9700	
С7—Н7	0.9800	C25—H25B	0.9700	
C10—S9—C8	92.9 (2)	C12—C13—H13	107.8	
C15—O3—C14	106.3 (3)	C7—C13—H13	107.8	
C15—O4—C16	110.0 (3)	O3—C14—C20	101.8 (3)	
C19—O5—C16	110.5 (3)	O3—C14—C13	110.0 (3)	

C20—O6—C21	114.3 (3)	C20—C14—C13	117.5 (3)
C1—O7—C25	119.0 (3)	O3—C14—H14	109.0
C8—N1—C11	107.3 (3)	C20—C14—H14	109.0
C8—N1—C7	114.5 (3)	C13—C14—H14	109.0
C11—N1—C7	106.0 (3)	O4—C15—O3	111.0 (3)
O2—N2—O1	123.8 (4)	O4—C15—C19	105.4 (3)
O2—N2—C12	119.1 (4)	O3—C15—C19	106.9 (3)
01—N2—C12	117.0 (4)	O4—C15—H15	111.1
N4—N3—C22	108.7 (4)	O3—C15—H15	111.1
N3—N4—N5	107.1 (3)	C19—C15—H15	111.1
C23—N5—N4	110.6 (4)	05-016-04	104.6 (3)
$C_{23} = N_5 = C_{24}$	128.5 (4)	05-016-017	108.9 (4)
N4—N5—C24	1197(4)	04-C16-C17	109.0(4)
07-C1-C2	123 3 (4)	05-C16-C18	1117(3)
07 - C1 - C6	116.1 (3)	04-C16-C18	109.5(3)
C_{2} C_{1} C_{6}	120.6(4)	C17 - C16 - C18	107.3(3) 112.7(4)
C_{2}^{-} C_{1}^{-} C_{1}^{-}	120.0(4) 110.8(4)	C_{16} C_{17} H_{17A}	109.5
$C_3 = C_2 = C_1$	120.1	C16 C17 H17R	109.5
$C_{1} = C_{2} = H_{2}$	120.1	H17A C17 H17B	109.5
$C_1 = C_2 = H_2$	120.1	$\frac{117}{A} = \frac{17}{4} = \frac{117}{B}$	109.5
$C_4 = C_3 = C_2$	120.8 (4)	$H_{17} = C_{17} = H_{17} C_{17}$	109.5
C_{4} C_{2} C_{3} H_{2}	119.0	$\frac{1117}{A} = \frac{117}{117} = \frac{117}{117}$	109.5
$C_2 = C_3 = C_4 = C_5$	119.0	$n_1/b_{}C_1/n_1/C$	109.5
$C_3 = C_4 = C_3$	119.2 (4)	C16 - C18 - H18C	109.5
C3—C4—H4	120.4	C10-C18-H18B	109.5
C3—C4—H4	120.4	H18C	109.5
C4 - C5 - C6	121.7 (4)	C16—C18—H18A	109.5
C4—C5—H5	119.1	H18C—C18—H18A	109.5
С6—С5—Н5	119.1	H18B—C18—H18A	109.5
C5—C6—C1	117.8 (4)	05-C19-C20	110.9 (3)
C5—C6—C7	121.5 (3)	O5—C19—C15	104.4 (3)
C1—C6—C7	120.7 (3)	C20—C19—C15	104.1 (3)
N1—C7—C6	111.2 (3)	O5—C19—H19	112.3
N1—C7—C13	103.8 (3)	С20—С19—Н19	112.3
C6—C7—C13	117.4 (3)	C15—C19—H19	112.3
N1—C7—H7	108.0	O6—C20—C19	109.3 (3)
С6—С7—Н7	108.0	O6—C20—C14	110.1 (3)
С13—С7—Н7	108.0	C19—C20—C14	101.6 (3)
N1—C8—S9	106.9 (3)	O6—C20—H20	111.8
N1—C8—H8B	110.4	С19—С20—Н20	111.8
S9—C8—H8B	110.4	С14—С20—Н20	111.8
N1—C8—H8A	110.4	O6—C21—C22	111.3 (3)
S9—C8—H8A	110.4	O6—C21—H21A	109.4
H8B—C8—H8A	108.6	C22—C21—H21A	109.4
C11—C10—S9	105.4 (3)	O6-C21-H21B	109.4
C11-C10-H10A	110.7	C22—C21—H21B	109.4
S9—C10—H10A	110.7	H21A—C21—H21B	108.0
C11—C10—H10B	110.7	N3—C22—C23	107.9 (4)
S9—C10—H10B	110.7	N3—C22—C21	121.3 (4)

H10A—C10—H10B	108.8	C23—C22—C21	130.3 (4)
N1—C11—C12	99.5 (3)	N5-C23-C22	105.7 (4)
N1—C11—C10	109.0 (3)	N5—C23—H23	127.2
C12—C11—C10	117.2 (4)	С22—С23—Н23	127.2
N1—C11—H11	110.2	N5-C24-C25	109.8 (3)
C12—C11—H11	110.2	N5—C24—H24A	109.7
C10—C11—H11	110.2	C25—C24—H24A	109.7
N2—C12—C11	112.8 (3)	N5—C24—H24B	109.7
N2—C12—C13	113.8 (3)	C25—C24—H24B	109.7
C11—C12—C13	105.4 (3)	H24A—C24—H24B	108.2
N2—C12—H12	108.2	O7—C25—C24	106.5 (3)
C11—C12—H12	108.2	O7—C25—H25A	110.4
С13—С12—Н12	108.2	С24—С25—Н25А	110.4
C14—C13—C12	112.9 (3)	O7—C25—H25B	110.4
C14—C13—C7	117.0 (3)	С24—С25—Н25В	110.4
C12—C13—C7	103.0 (3)	H25A—C25—H25B	108.6
C14—C13—H13	107.8		
C22—N3—N4—N5	0.6 (4)	N1—C7—C13—C12	8.4 (3)
N3—N4—N5—C23	-1.2 (4)	C6—C7—C13—C12	131.5 (3)
N3—N4—N5—C24	-169.7(3)	C15 - O3 - C14 - C20	43.5 (3)
C25-07-C1-C2	15.5 (5)	C15-03-C14-C13	168.8 (3)
C25—O7—C1—C6	-164.5(3)	C12—C13—C14—O3	16.1 (4)
07—C1—C2—C3	-179.6(4)	C7—C13—C14—O3	135.5 (3)
C6-C1-C2-C3	0.4 (6)	C_{12} C_{13} C_{14} C_{20}	131.9 (3)
C1-C2-C3-C4	-2.0(6)	C7-C13-C14-C20	-108.7(4)
$C_{2}-C_{3}-C_{4}-C_{5}$	0.9 (6)	C16-04-C15-03	-128.7(3)
$C_{3}-C_{4}-C_{5}-C_{6}$	1.9 (6)	$C_{16} - O_{4} - C_{15} - C_{19}$	-13.3(4)
C4—C5—C6—C1	-3.4(6)	C14-O3-C15-O4	86.5 (3)
C4-C5-C6-C7	174.6 (4)	$C_{14} - O_{3} - C_{15} - C_{19}$	-28.0(4)
07-C1-C6-C5	-177.8(3)	C19-05-C16-04	-22.5(4)
C_{2} C_{1} C_{6} C_{5}	2.2 (5)	$C_{19} - O_{5} - C_{16} - C_{17}$	-138.9(4)
07—C1—C6—C7	4.2 (5)	C19-O5-C16-C18	96.0 (4)
C_{2} C_{1} C_{6} C_{7}	-175.8(4)	$C_{15} - O_{4} - C_{16} - O_{5}$	22.0 (4)
C8—N1—C7—C6	79.3 (4)	$C_{15} - O_{4} - C_{16} - C_{17}$	138.3 (4)
$C_{11} = N_1 = C_7 = C_6$	-162.6(3)	C15-O4-C16-C18	-97.9 (4)
C8—N1—C7—C13	-153.6(3)	C16-O5-C19-C20	126.0 (3)
$C_{11} = N_1 = C_7 = C_{13}$	-35.5(3)	$C_{16} - O_{5} - C_{19} - C_{15}$	14.4 (4)
C5-C6-C7-N1	47.2 (4)	04—C15—C19—O5	-0.6(4)
C1-C6-C7-N1	-134.8(3)	O3-C15-C19-O5	117.6 (3)
C5-C6-C7-C13	-72.0(5)	04-C15-C19-C20	-116.9(3)
C1-C6-C7-C13	105.9 (4)	O3-C15-C19-C20	1.2 (4)
$C_{11} = N_1 = C_8 = S_9$	-38.5(3)	$C_{21} - O_{6} - C_{20} - C_{19}$	-110.0(3)
C7—N1—C8—S9	78.8 (3)	C21—O6—C20—C14	139.3 (3)
C10—S9—C8—N1	16.8 (3)	05-C19-C20-O6	156.1 (3)
C8—S9—C10—C11	8.6 (3)	C15—C19—C20—O6	-92.2(3)
C8-N1-C11-C12	170.2 (3)	O5-C19-C20-C14	-87.7(4)
C7—N1—C11—C12	47.5 (3)	C15—C19—C20—C14	24.1 (4)
			(.)

C8—N1—C11—C10	47.0 (4)	O3—C14—C20—O6	75.0 (3)
C7—N1—C11—C10	-75.7 (4)	C13—C14—C20—O6	-45.2 (4)
S9—C10—C11—N1	-32.5 (4)	O3—C14—C20—C19	-40.6 (3)
S9—C10—C11—C12	-144.4 (3)	C13-C14-C20-C19	-160.8 (3)
O2—N2—C12—C11	83.3 (5)	C20—O6—C21—C22	-73.2 (4)
O1—N2—C12—C11	-92.5 (4)	N4—N3—C22—C23	0.1 (4)
O2—N2—C12—C13	-36.8 (5)	N4—N3—C22—C21	173.3 (3)
O1—N2—C12—C13	147.5 (4)	O6-C21-C22-N3	-69.4 (5)
N1-C11-C12-N2	-165.7 (3)	O6—C21—C22—C23	102.1 (5)
C10-C11-C12-N2	-48.5 (5)	N4—N5—C23—C22	1.2 (4)
N1-C11-C12-C13	-41.0 (3)	C24—N5—C23—C22	168.4 (4)
C10-C11-C12-C13	76.2 (4)	N3—C22—C23—N5	-0.8 (4)
N2-C12-C13-C14	-88.8 (4)	C21—C22—C23—N5	-173.1 (4)
C11—C12—C13—C14	147.1 (3)	C23—N5—C24—C25	-49.6 (5)
N2-C12-C13-C7	144.0 (3)	N4—N5—C24—C25	116.7 (4)
C11—C12—C13—C7	19.9 (4)	C1—O7—C25—C24	159.4 (3)
N1-C7-C13-C14	-116.0 (3)	N5-C24-C25-O7	-55.0 (4)
C6—C7—C13—C14	7.1 (5)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	$D \cdots A$	D—H···A
C23—H23…N3 ⁱ	0.93	2.58	3.433 (6)	152
C25—H25A···N3 ⁱ	0.97	2.60	3.553 (6)	168
C25—H25 <i>B</i> ····S9 ⁱⁱ	0.97	2.80	3.591 (4)	140

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+1; (ii) -*x*+2, *y*+1/2, -*z*+1.