CRYSTALLOGRAPHIC COMMUNICATIONS

Received 4 May 2015
Accepted 19 May 2015

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; aroylhydrazone; carbohydrazide; nicotinohydrazide; hydrogen bonding

CCDC reference: 1401825
Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of (E)- \mathbf{N}^{\prime}-(5-bromo-2-hydroxybenzylidene)nicotinohydrazide monohydrate

S. Sravya, ${ }^{\text {a }}$ S. Sruthy, ${ }^{\text {a }}$ N. Aiswarya, ${ }^{\text {b }}$ M. Sithambaresan ${ }^{\text {c* }}$ and M. R. Prathapachandra Kurup ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Amrita Vishwa Vidyapeetham, Clappana PO, Kollam 690 525, India, ${ }^{\mathbf{b}}$ Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 682022 , India, and ${ }^{\text {c }}$ Department of Chemistry, Faculty of Science, Eastern University, Chenkalady, Sri Lanka. *Correspondence e-mail: msithambaresan@gmail.com

In the title compound, $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{BrN}_{3} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, the conformation about the azomethine double bond is E. The molecule exists in the amido form with a $\mathrm{C}=\mathrm{O}$ bond length of $1.229(2) \AA$. There is an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond forming an $S(6)$ ring motif. The whole molecule is almost planar, with an r.m.s. deviation of $0.021 \AA$ for all non-H atoms, and the dihedral angle between the planes of the pyridine and benzene rings is $0.74(12)^{\circ}$. In the crystal, the water molecule of crystallization links the organic molecules via Ow$\mathrm{H} \cdots \mathrm{O}, \mathrm{Ow}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Ow}$ hydrogen bonds and short $\mathrm{C}-\mathrm{H} \cdots \mathrm{Ow}$ contacts, forming sheets lying parallel to (100). Within the sheets there is a weak $\pi-\pi$ interaction involving the pyridine and benzene rings [centroid-to-centroid distance $=3.8473(15) \AA]$. The sheets are linked via $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ interactions, forming a three-dimensional network.

1. Chemical context

Aroylhydrazones can coordinate to transition metals either in the amido form (Bessy Raj \& Kurup, 2007) or in the iminolato form (Ghosh et al., 2005; Galić et al., 2011), leading to the formation of two types of complexes. Hydrazones derived from isonicotinoyl hydrazides are potential drugs for the treatment of the iron-overload associated diseases (Macková et al., 2012). They are associated with a broad spectrum of biological activities, and studies have shown that nicotinic acid hydrazones could be considered as anti-inflammatory and analgesic agents (Navidpour et al., 2014; Kheradmand et al., 2013) and as a novel pharmacophore in the design of anticonvulsant drugs (Sinha et al., 2011). Hydrazones have been used in chemical processes, in non-linear optics and as sensors as well as in catalytic processes (Hosseini-Monfared et al., 2013; Du \& Hong, 2014). Their potential as analytical reagents (Galić et al., 2011) and their uses as molecular switches, metallo-assemblies and sensors have also been reported (Su \& Aprahamian, 2014). Salicylaldehyde isonicotinoylhydrazone has also been used for the spectrophotometric determination of gallium(III) and indium(III) (Reddy et al., 2011).

Figure 1
A view of the molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

2. Structural commentary

The title compound, Fig. 1, exists in the amido form with a $\mathrm{C} 8=\mathrm{O} 2$ bond length of 1.229 (2) Å. The molecule has an E conformation with respect to the azomethine bond, which is confirmed by the torsion angle $\mathrm{C} 6-\mathrm{C} 7=\mathrm{N} 1-\mathrm{N} 2$ of 179.09 (19) ${ }^{\circ}$. The two aromatic rings ($\mathrm{C} 1-\mathrm{C} 6$ and $\mathrm{N} 3 / \mathrm{C} 9-\mathrm{C} 13$), are inclined to the almost planar hydrazone moiety $[\mathrm{O} 2 / \mathrm{C} 8 /$ $\mathrm{N} 2 / \mathrm{N} 1 / \mathrm{C} 7$; planar to within $0.006(2) \AA$] by 2.12 (9) and $1.40(8)^{\circ}$, respectively, and to each other by $0.74(12)^{\circ}$. There is an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond present in the molecule that involves the phenolic oxygen, O1 and the azomethine nitrogen atom, N 1 , forming an $S(6)$ ring motif (Table 1 and Fig. 1).

3. Supramolecular features

In the crystal, the water molecule forms three hydrogen bonds with three different nicotinic hydrazone molecules (Table 1 and Fig. 2). This compound is an example of a system where a single atom acts both as donor and acceptor. There are also $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ (water) contacts present enclosing $R_{2}^{1}(6)$ and $R_{2}^{1}(7)$ ring motifs (Fig. 2). Finally sheets are formed lying parallel to (100). There are weak $\pi-\pi$ interactions within the sheets involving the bromine-bearing aromatic ring of one molecule and the pyridine ring of another, with a centroid-centroid

Figure 2
Hydrogen bonds (dashed lines) and a weak $\pi-\pi$ interaction (in blue) in the crystal of the title compound [symmetry codes: (i) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (ii) $\left.-x, y+\frac{1}{2},-z+\frac{1}{2}\right]$.

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{~N} 1$	$0.86(1)$	$1.91(2)$	$2.641(2)$	$143(3)$
$\mathrm{O} 1 W-\mathrm{H} 1 A \cdots \mathrm{O} 2$	$0.85(1)$	$1.91(1)$	$2.756(2)$	$172(3)$
$\mathrm{O} 1 W-\mathrm{H} 1 B \cdots \mathrm{~N}^{\mathrm{i}}$	$0.85(1)$	$2.03(1)$	$2.845(3)$	$162(2)$
$\mathrm{N} 2-\mathrm{H} 2^{\prime} \cdots \mathrm{O} 1 W^{\text {ii }}$	$0.87(1)$	$1.95(1)$	$2.806(3)$	$169(3)$
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O} 1 W^{\text {ii }}$	0.93	2.49	$3.263(3)$	140
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{O} 1 W^{\text {ii }}$	0.93	2.45	$3.362(3)$	165
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{Br}^{\text {iii }}$	0.93	2.93	$3.825(3)$	162

Symmetry codes: (i) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (ii) $-x, y-\frac{1}{2},-z+\frac{1}{2}$; (iii) $x-1, y, z-1$.
distance of 3.8473 (15) \AA (Fig. 2). The sheets are linked via $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ interactions, forming a three-dimensional network (Table 1 and Fig. 3).

4. Database survey

A search of the Cambridge Structural Database (Version 5.36, update Feb. 2015; Groom \& Allen, 2014) yielded 22 hits for the substructure N^{\prime}-(2-hydroxybenzylidene)nicotinohydrazide. The crystal structure of N^{\prime}-(2-hydroxybenzylidene)nicotinohydrazide itself is reported as a monohydrate (IDASUB; Galić et al., 2001), and the crystal structure of the chloro derivative of the title compound, which crystallized with two independent molecules in the asymmetric unit, has also been reported (MOZPIB; Ren, 2009). In these two

Figure 3
A view along the c axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1 for details) and H atoms not involved in hydrogen bonding have been omitted for clarity.

Table 2
Experimental details.
Crystal data

Chemical formula	$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{BrN}_{3} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$
M_{r}	338.17
Crystal system, space group	Monoclinic, $P 2_{1} / c$
Temperature (K)	296
$a, b, c(\AA)$	$8.1623(7), 12.5953(9), 13.2510(8)$
$\beta\left({ }^{\circ}\right)$	$90.226(3)$
$V\left(\mathrm{~A}^{3}\right)$	$1362.28(17)$
Z	4
Radiation type	Mo $\mathrm{K} \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	3.03
Crystal size (mm)	$0.42 \times 0.12 \times 0.11$
Data collection	Bruker Kappa APEXII CCD
Diffractometer	Multi-scan $(S A D A B S ;$ Bruker,
Absorption correction	$2004)$
	$0.349,0.356$
$T_{\text {min }}, T_{\text {max }}$	$7570,3331,2233$
No. of measured, independent and	
\quad observed $[I>2 \sigma(I)]$ reflections	0.028
$R_{\text {int }}$	0.668
(sin $\theta / \lambda)_{\text {max }}\left(\AA \AA^{-1}\right)$	
Refinement	$0.036,0.102,0.99$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	3331
No. of reflections	198
No. of parameters	5
No. of restraints	H atoms treated by a mixture of
H-atom treatment	independent and constrained
	refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA{ }^{-3}\right)$	$0.46,-0.35$

Computer programs: APEX2, SAINT and XPREP (Bruker, 2004), SHELXS2014 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2010), Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).
compounds, an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond is also present. The molecules are also relatively planar, with the benzene and pyridine rings being inclined to one another by $c a$ 4.2° in IDASUB, and by ca 12.8 and 1.9° in the two independent molecules of MOZPIB. This last dihedral angle is similar to that in the title compound [cf. $\left.0.74(12)^{\circ}\right]$. In the crystal structure of N^{\prime}-(2-hydroxybenzylidene)nicotinohydrazide monohydrate (IDASUB), the water molecule forms three hydrogen bonds and is another example of a system where a single atom acts both as donor and acceptor.

5. Synthesis and crystallization

The title compound was prepared by adapting a reported procedure (Mathew \& Kurup, 2011). A methanolic solution of 5-bromosalicylaldehyde ($0.10051 \mathrm{~g}, 0.5 \mathrm{mmol}$) and nicotinic hydrazide ($0.06857 \mathrm{~g}, 0.5 \mathrm{mmol}$) was refluxed for 3 h with two drops of glacial acetic acid. Light-yellow block-shaped crystals of the title compound were obtained by slow evaporation of the solvent. The crystals were filtered, washed with minimum quantity of methanol and dried over $\mathrm{P}_{4} \mathrm{O}_{10}$ in vacuo (yield: $0.22 \mathrm{~g}, 68.5 \%$; m.p.: 480 K). Elemental analysis calculated for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Br} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 46.17, \mathrm{H}, 3.58$, $\mathrm{N}, 12.43 \%$; found: C, $46.14, \mathrm{H}, 3.57$, N, 12.44\%. IR FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 3059 (NH), $3269(\mathrm{OH}), 1680(\mathrm{C}=\mathrm{O}), 1584(\mathrm{C}=\mathrm{N})$.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The water, hydroxyl and NH H atoms were located in difference Fourier maps and refined with distances restraints: $\mathrm{O}-\mathrm{H}=0.86$ (1) \AA and $\mathrm{N}-\mathrm{H}=$ 0.88 (1) \AA. All C-bound H atoms were placed in calculated positions and refined as riding: $\mathrm{C}-\mathrm{H}=0.93 \AA$ with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$. Three reflections were omitted owing to bad agreement, viz. 100, 110 and 200.

Acknowledgements

NA is grateful to the UGC, New Delhi, India, for the award of a Senior Research Fellowship. MRPK is grateful to the UGC, New Delhi, India, for a UGC-BSR one-time grant to Faculty. We also thank the Sophisticated Analytical Instruments Facility, Cochin University of S\&T, Kochi-22, India, for the diffraction measurements.

References

Bessy Raj, B. N. \& Kurup, M. R. P. (2007). Spectrochim. Acta Part A, 66, 898-903.
Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Du, C. \& Hong, Z. (2014). Synth. React. Inorg. Met. Org. Nano-Met. Chem. 45, 507-511.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Galić, N., Perić, B., Kojić-Prodić, B. \& Cimerman, Z. (2001). J. Mol. Struct. 559, 187-194.
Galić, N., Rubčić, M., Magdić, K., Cindrić, M. \& Tomišić (2011). Inorg. Chim. Acta, 366, 98-104.
Ghosh, T., Bhattacharya, S., Das, A., Mukherjee, G. \& Drew, M. G. B. (2005). Inorg. Chim. Acta, 358, 989-996.

Groom, C. R. \& Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662671.

Hosseini-Monfared, H., Farrokhi, A., Alavi, S. \& Mayer, P. (2013). Transition Met. Chem. 38, 267-273.
Kheradmand, A., Navidpour, L., Shafaroodi, H., Saeedi-Motahar, G. \& Shafiee, A. (2013). Med. Chem. Res. 22, 2411-2420.
Macková, E., Hrušková, K., Bendová, P., Vávrová, A., Jansová, H., Hašková, P., Kovaříková, P., Vávrová, K. \& Šimůnek, T. (2012). Chem-Biol. Interact. 197, 69-79.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
Mathew, N. \& Kurup, M. R. P. (2011). Spectrochim. Acta Part A, 78, 1424-1428.
Navidpour, L., Shafaroodi, H., Saeedi-Motahar, G. \& Shafiee, A. (2014). Med. Chem. Res. 23, 2793-2802.

Reddy, G. C., Devanna, N. \& Chandrasekhar, K. B. (2011). Orbital Elec. J. Chem. 3, 24-31.
Ren, C.-G. (2009). Acta Cryst. E65, o1505-o1506.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Sinha, R., Singh Sara, U. V., Khosa, R. L., Shenoi, V., Stables, J. \& Jain, J. (2011). Med. Chem. Res. 20, 1499-1504.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Su, X. \& Aprahamian, I. (2014). Chem. Soc. Rev. 43, 1963-1981.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Crystal structure of (E)- N^{\prime}-(5-bromo-2-hydroxybenzylidene)nicotinohydrazide monohydrate

S. Sravya, S. Sruthy, N. Aiswarya, M. Sithambaresan and M. R. Prathapachandra Kurup

Computing details

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2010) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

(E)- N^{\prime}-(5-Bromo-2-hydroxybenzylidene)nicotinohydrazide monohydrate

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{BrN}_{3} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=338.17$
Monoclinic, $P 2_{1} / c$
$a=8.1623$ (7) Å
$b=12.5953$ (9) \AA
$c=13.2510(8) \AA$
$\beta=90.226(3)^{\circ}$
$V=1362.28(17) \AA^{3}$
$Z=4$

Data collection

Bruker Kappa APEXII CCD diffractometer
Radiation source: fine-focus sealed tube
ω and φ scan
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
$T_{\min }=0.349, T_{\max }=0.356$
7570 measured reflections

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.102$
$S=0.99$
3331 reflections
198 parameters
5 restraints

$$
\begin{aligned}
& F(000)=680 \\
& D_{\mathrm{x}}=1.649 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 2267 \text { reflections } \\
& \theta=2.9-25.5^{\circ} \\
& \mu=3.03 \mathrm{~mm}^{-1} \\
& T=296 \mathrm{~K} \\
& \text { Needle, yellow } \\
& 0.42 \times 0.12 \times 0.11 \mathrm{~mm}
\end{aligned}
$$

3331 independent reflections
2233 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.028$
$\theta_{\text {max }}=28.3^{\circ}, \theta_{\text {min }}=3.0^{\circ}$
$h=-10 \rightarrow 4$
$k=-16 \rightarrow 16$
$l=-16 \rightarrow 17$

```
Hydrogen site location: mixed
H atoms treated by a mixture of independent
    and constrained refinement
\(w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0557 P)^{2}\right]\)
    where \(P=\left(F_{0}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\text {max }}<0.001\)
\(\Delta \rho_{\text {max }}=0.46\) e \(\AA^{-3}\)
\(\Delta \rho_{\text {min }}=-0.35 \mathrm{e}^{-3}\)
```

Extinction correction: SHELXL2014 (Sheldrick, 2015), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.0129 (13)

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	0.3276 (3)	0.35310 (19)	0.45911 (17)	0.0442 (6)
C2	0.4115 (4)	0.3763 (2)	0.54807 (18)	0.0527 (7)
H2	0.4272	0.4467	0.5667	0.063*
C3	0.4712 (3)	0.2969 (2)	0.60856 (16)	0.0499 (6)
H3	0.5276	0.3134	0.6676	0.060*
C4	0.4471 (3)	0.19134 (19)	0.58114 (15)	0.0443 (6)
C5	0.3653 (3)	0.16695 (19)	0.49313 (15)	0.0441 (6)
H5	0.3499	0.0962	0.4753	0.053*
C6	0.3057 (3)	0.24637 (18)	0.43065 (15)	0.0401 (5)
C7	0.2191 (3)	0.21655 (19)	0.33854 (15)	0.0431 (6)
H7	0.2084	0.1452	0.3219	0.052*
C8	0.0128 (3)	0.32662 (17)	0.13365 (15)	0.0385 (5)
C9	-0.0754 (3)	0.28892 (17)	0.04153 (15)	0.0358 (5)
C10	-0.0990 (3)	0.18419 (18)	0.01526 (15)	0.0450 (6)
H10	-0.0591	0.1321	0.0586	0.054*
C11	-0.2332 (4)	0.2286 (2)	-0.12925 (19)	0.0560 (7)
H11	-0.2880	0.2083	-0.1878	0.067*
C12	-0.2160 (3)	0.3349 (2)	-0.10981 (18)	0.0580 (7)
H12	-0.2581	0.3852	-0.1542	0.070*
C13	-0.1355 (3)	0.36555 (19)	-0.02368 (18)	0.0487 (6)
H13	-0.1214	0.4372	-0.0092	0.058*
N1	0.1580 (2)	0.28694 (15)	0.28050 (12)	0.0426 (5)
N2	0.0760 (3)	0.25244 (15)	0.19557 (13)	0.0403 (4)
N3	-0.1758 (3)	0.15309 (16)	-0.06888 (13)	0.0524 (6)
O1	0.2713 (3)	0.43501 (14)	0.40347 (14)	0.0634 (6)
O2	0.0235 (3)	0.42215 (12)	0.15145 (12)	0.0586 (6)
O1W	-0.0975 (3)	0.53043 (13)	0.31578 (13)	0.0641 (6)
Brl	0.52655 (4)	0.08150 (2)	0.66553 (2)	0.06576 (15)
H1	0.218 (4)	0.412 (2)	0.3516 (16)	0.079 (11)*
H2'	0.075 (3)	0.1842 (9)	0.1847 (18)	0.060 (8)*
H1A	-0.053 (4)	0.4947 (19)	0.2684 (15)	0.087 (11)*
H1B	-0.129 (3)	0.4858 (16)	0.3591 (15)	0.065 (9)*

Atomic displacement parameters (\AA^{2})

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0439(15)$	$0.0460(13)$	$0.0426(11)$	$-0.0079(11)$	$0.0002(10)$	$-0.0046(10)$

C2	$0.0600(18)$	$0.0505(14)$	$0.0477(13)$	$-0.0140(13)$	$0.0000(12)$	$-0.0154(11)$
C3	$0.0470(16)$	$0.0603(15)$	$0.0423(12)$	$-0.0117(12)$	$-0.0076(11)$	$-0.0122(11)$
C4	$0.0385(14)$	$0.0545(14)$	$0.0399(11)$	$0.0016(11)$	$-0.0018(10)$	$-0.0070(10)$
C5	$0.0429(15)$	$0.0446(13)$	$0.0446(12)$	$-0.0009(11)$	$-0.0008(10)$	$-0.0131(10)$
C6	$0.0364(13)$	$0.0462(13)$	$0.0378(11)$	$-0.0056(10)$	$0.0010(9)$	$-0.0113(9)$
C7	$0.0467(15)$	$0.0435(13)$	$0.0391(11)$	$-0.0050(11)$	$-0.0024(10)$	$-0.0104(10)$
C8	$0.0475(15)$	$0.0335(12)$	$0.0346(10)$	$-0.0053(10)$	$0.0043(9)$	$-0.0044(8)$
C9	$0.0387(13)$	$0.0339(11)$	$0.0349(10)$	$-0.0006(9)$	$0.0038(9)$	$-0.0037(8)$
C10	$0.0599(17)$	$0.0366(12)$	$0.0384(11)$	$-0.0042(11)$	$-0.0085(11)$	$-0.0012(9)$
C11	$0.0588(18)$	$0.0624(17)$	$0.0469(13)$	$-0.0008(13)$	$-0.0150(12)$	$-0.0026(11)$
C12	$0.0626(19)$	$0.0557(17)$	$0.0556(14)$	$0.0138(14)$	$-0.0201(13)$	$0.0040(11)$
C13	$0.0533(17)$	$0.0363(13)$	$0.0564(14)$	$0.0067(11)$	$-0.0034(12)$	$0.0000(10)$
N1	$0.0479(13)$	$0.0449(11)$	$0.0348(9)$	$-0.0106(9)$	$-0.0022(8)$	$-0.0090(8)$
N2	$0.0510(13)$	$0.0350(11)$	$0.0348(9)$	$-0.0064(9)$	$-0.0039(8)$	$-0.0069(7)$
N3	$0.0667(16)$	$0.0464(12)$	$0.0439(11)$	$-0.0042(11)$	$-0.0110(10)$	$-0.0066(9)$
O1	$0.0871(16)$	$0.0443(11)$	$0.0587(11)$	$-0.0099(9)$	$-0.0178(11)$	$-0.0052(8)$
O2	$0.0956(17)$	$0.0328(9)$	$0.0472(9)$	$-0.0063(8)$	$-0.0065(10)$	$-0.0094(6)$
O1W	$0.1112(19)$	$0.0316(9)$	$0.0494(10)$	$0.0065(10)$	$0.0025(11)$	$0.0023(8)$
Br1	$0.0773(3)$	$0.0634(2)$	$0.0564(2)$	$0.00894(15)$	$-0.01868(14)$	$-0.00546(12)$

Geometric parameters $\left({ }_{A},{ }^{\circ}\right)$

C1-O1	1.348 (3)	C8-C9	1.492 (3)
C1-C2	1.392 (3)	C9-C10	1.378 (3)
C1-C6	1.407 (3)	C9-C13	1.384 (3)
C2-C3	1.370 (4)	C10-N3	1.336 (3)
C2-H2	0.9300	C10-H10	0.9300
C3-C4	1.392 (3)	C11-N3	1.327 (3)
C3-H3	0.9300	C11-C12	1.370 (4)
C4-C5	1.376 (3)	C11-H11	0.9300
$\mathrm{C} 4-\mathrm{Br} 1$	1.892 (2)	C12-C13	1.370 (3)
C5-C6	1.386 (3)	C12-H12	0.9300
C5-H5	0.9300	C13-H13	0.9300
C6-C7	1.457 (3)	N1-N2	1.378 (2)
C7-N1	1.274 (3)	N 2 - $\mathrm{H} 2^{\prime}$	0.872 (10)
C7-H7	0.9300	$\mathrm{O} 1-\mathrm{H} 1$	0.858 (10)
C8-O2	1.229 (2)	O1W-H1A	0.854 (10)
C8-N2	1.345 (3)	O1W-H1B	0.845 (9)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	117.9 (2)	N2-C8-C9	117.42 (18)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6$	122.8 (2)	C10-C9-C13	117.5 (2)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	119.3 (2)	C10-C9-C8	125.3 (2)
C3-C2-C1	121.0 (2)	C13-C9-C8	117.22 (19)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	119.5	N3-C10-C9	123.8 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.5	N3-C10-H10	118.1
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	119.6 (2)	C9-C10-H10	118.1
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	120.2	N3-C11-C12	123.4 (2)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.2	N3-C11-H11	118.3

$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$120.1(2)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{Br} 1$	$120.11(18)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{Br} 1$	$119.75(17)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$120.9(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	119.6
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	119.6
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$119.1(2)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$118.8(2)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$	$122.1(2)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 6$	$120.9(2)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{H} 7$	119.5
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7$	119.5
$\mathrm{O} 2-\mathrm{C} 8-\mathrm{N} 2$	$122.4(2)$
$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 9$	$120.1(2)$
$\mathrm{O} 4-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$179.6(2)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-0.7(4)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-0.4(4)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$0.8(4)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{Br} 1$	$-179.05(19)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-0.1(4)$
$\mathrm{Br} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$179.72(18)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$-1.0(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-179.7(2)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-179.0(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$1.4(4)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$	$-0.3(4)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$	$-180.0(2)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 1$	$177.9(2)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 1$	$-0.8(3)$
$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-178.1(2)$

$\mathrm{C} 12-\mathrm{C} 11-\mathrm{H} 11$	118.3
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 11$	$118.7(2)$
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{H} 12$	120.6
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12$	120.6
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 9$	$119.4(2)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{H} 13$	120.3
$\mathrm{C} 9-\mathrm{C} 13-\mathrm{H} 13$	120.3
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{N} 2$	$117.49(18)$
$\mathrm{C} 8-\mathrm{N} 2-\mathrm{N} 1$	$117.59(18)$
$\mathrm{C} 8-\mathrm{N} 2-\mathrm{H} 2$	
$\mathrm{~N} 1-\mathrm{N} 2-\mathrm{H} 2$	
$\mathrm{C} 11-\mathrm{N} 3-\mathrm{C} 10$	$125.4(19)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{H} 1$	$116.9(19)$
$\mathrm{H} 1 \mathrm{~A}-\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 1 \mathrm{~B}$	$117.2(2)$
	$111(2)$
$\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$106(2)$
$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 13$	$0.7(3)$
$\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 13$	$3.2(3)$
$\mathrm{C} 13-\mathrm{C} 9-\mathrm{C} 10-\mathrm{N} 3$	$-177.9(2)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{N} 3$	$0.1(4)$
$\mathrm{N} 3-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$-178.6(2)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 9$	$0.0(5)$
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 13-\mathrm{C} 12$	$-0.6(4)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 13-\mathrm{C} 12$	$0.6(4)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 1-\mathrm{N} 2$	$179.4(2)$
$\mathrm{O} 2-\mathrm{C} 8-\mathrm{N} 2-\mathrm{N} 1$	$-179.09(19)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{N} 2-\mathrm{N} 1$	$-1.4(3)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 8$	$179.77(18)$
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{N} 3-\mathrm{C} 10$	$-179.3(2)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{N} 3-\mathrm{C} 11$	$0.7(4)$
	$-0.7(4)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} 1 \cdots \mathrm{~N} 1$	$0.86(1)$	$1.91(2)$	$2.641(2)$	$143(3)$
$\mathrm{O} 1 W — \mathrm{H} 1 A \cdots \mathrm{O} 2$	$0.85(1)$	$1.91(1)$	$2.756(2)$	$172(3)$
$\mathrm{O} 1 W — \mathrm{H} 1 B \cdots \mathrm{~N} 3^{\mathrm{i}}$	$0.85(1)$	$2.03(1)$	$2.845(3)$	$162(2)$
$\mathrm{N} 2 — \mathrm{H} 2^{\prime} \cdots \mathrm{O} 1 W^{\text {ii }}$	$0.87(1)$	$1.95(1)$	$2.806(3)$	$169(3)$
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O} 1 W^{\text {ii }}$	0.93	2.49	$3.263(3)$	140
$\mathrm{C} 10 — \mathrm{H} 10 \cdots \mathrm{O} 1 W^{\text {ii }}$	0.93	2.45	$3.362(3)$	165
$\mathrm{C} 11 — \mathrm{H} 11 \cdots \mathrm{Br}^{\text {iii }}$	0.93	2.93	$3.825(3)$	162

Symmetry codes: (i) $x,-y+1 / 2, z+1 / 2$; (ii) $-x, y-1 / 2,-z+1 / 2$; (iii) $x-1, y, z-1$.

