

Received 23 May 2015 Accepted 10 June 2015

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; trisulfane; organosulfur compounds; $C-H\cdots\pi$ interactions

CCDC reference: 1406065 Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of bis(*N*-methyl-*N*-phenylamino)trisulfane

George Barany,^a* Matthew J. Henley,^a Lauren A. Polski,^a Alayne L. Schroll^b and Victor G. Young Jr^a

^aDepartment of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA, and ^bDepartment of Chemistry, Saint Michael's College, Colchester, VT 05439, USA. *Correspondence e-mail: barany@umn.edu

The title compound, $C_{14}H_{16}N_2S_3$, crystallized with two independent molecules [(1a) and (1b)] in the asymmetric unit. Both molecules display a pseudo-*trans* conformation. The two consecutive S–S bond lengths of the trisulfane unit of molecule (1a) are 2.06 (3) and 2.08 (3) Å, and 2.08 (3) and 2.07 (2) Å for molecule (1b). Torsion angles about each of the two S–S bonds are 86.6 (2) and 87.0 (2)° for (1a), and -84.6 (2) and -85.9 (2)° for (1b). The core atoms, *viz.* the N–S–S–S–N moiety, of the two molecules superimpose well if one is inverted on the other, but the phenyl groups do not. Thus, the two units are essentially conformational enantiomers. In molecule (1a), the two phenyl rings are inclined to one another by 86.7 (3)°, and in molecule (1b), by 81.1 (3)°. In the crystal, molecules are linked *via* C–H··· π interactions, forming sheets lying parallel to (010).

1. Chemical context

The reactions of substrates with one or two sulfanyl chloride, acid chloride, and/or (alkoxydichloromethyl)sulfanyl moieties have been of interest to our laboratory for some time (Barany *et al.*, 1983; Barany & Mott, 1984; Schroll & Barany, 1986; Schroll *et al.*, 1990; Schroll *et al.*, 2012). In some of these experiments, bis[methyl(phenyl)amino]trisulfane was a component of more complicated mixtures of polysulfanes with varying numbers of S atoms. One such mixture was separated by preparative HPLC at 298 K, eluting with methanol–water (17:3). The fraction containing the title compound (dissolved in the eluting solvent) was cooled to 277 K, after which the trisulfane was obtained directly in crystalline form.

2. Structural commentary

The title compound, (1), was obtained in crystalline form after preparative HPLC, as described by Schroll & Barany (1986). The proposed molecular structure of (1) was confirmed by single-crystal X-ray analysis at 173 K. The molecules do not take advantage of the twofold axis provided as an available symmetry option by the *Fdd2* space group. Instead, there are two molecules, (1*a*) and (1*b*), in the asymmetric unit (Fig. 1), and both of them display a pseudo-*trans* conformation (see

OPEN d ACCESS

Figure 1

The molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

later). All bond distances and angles in both molecules are within expected ranges. Selected geometric parameters for compound (1) are given in Table 1. The two consecutive S-S bond lengths (comprising the trisulfane) of molecule (1*a*) are 2.064 (3) and 2.078 (3) Å, and for molecule (1*b*) are 2.076 (3) and 2.067 (2) Å. These values are similar to the value of 2.07 Å reported for the S-S bond length in elemental sulfur (S₈). Torsion angles about each of the two S-S bonds (comprising the trisulfane) are, respectively, 86.6 (2) and 87.0 (2)° for (1*a*), and -84.6 (2) and -85.9 (2)° for (1*b*). The core atoms, *viz.* the N-S-S-S-N moiety, of the two units superimpose well if one is inverted on the other, but the phenyl groups do not. Thus, the two units are essentially

Figure 2

A view along the *b* axis of the crystal packing of the title compound. The dashed lines indicate the $C-H\cdots\pi$ interactions (see Table 2 for details). Only the H atoms involved in these interactions have been included for clarity.

conformational enantiomers. Moreover, with respect to the four measured torsion angles, which range in absolute value from 84.6 (2) to 87.0 (2)°, these are slightly smaller than the theoretical optimum of 90.0° (Pauling, 1949; Torrico-Vallejos *et al.*, 2010). Finally, given the presence of three consecutive linearly connected sulfur atoms, representing two dihedral angles close to 90°, it is noteworthy that both of the molecules in the asymmetric unit display a pseudo-*trans* conformation (torsion angles +,+ or -,- across the two S–S bonds). The theoretically possible pseudo-*cis* (torsion angles +,- or -,+) conformation (Meyer, 1976) was not observed for these structures.

3. Supramolecular features

In the crystal of (1), molecules are linked via $C-H\cdots\pi$ interactions, forming sheets lying parallel to (010) (see Table 2 and Fig. 2).

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.36, February 2015; Groom & Allen, 2014) revealed the presence of two compounds (see Fig. 3) that also have an N-S-S-S-N moiety, *viz.* bis(oxamido)trisulfane, (2) (CSD refcode GEHPUE; Brunn *et al.*, 1988), and bis[*tert*-butyl(di-

Table 1

Selected geometric parameters (Å, $^\circ)$ of the title compound (1), and the comparison compounds (2) and (3).

	(1 <i>a</i>)	(1 <i>b</i>)	(2)	(3)
S1-N1	1.664 (5)	1.653 (5)	1.693 (2)	1.668 (2)
S1-S2	2.064 (3)	2.076 (3)	2.040(1)	2.102(1)
S2-S3	2.078 (3)	2.067 (2)	2.045 (1)	2.082(1)
\$3-N2	1.663 (6)	1.649 (5)	1.687 (2)	1.680 (2)
N1-S1-S2	106.9 (2)	107.3 (2)	105.0(1)	110.0 (1)
S1-S2-S3	106.05 (11)	105.41 (11)	105.2(2)	104.7 (1)
N2-S3-S2	107.6 (2)	107.2 (2)	103.8 (1)	110.3 (1)
N1-S1-S2-S3	86.6 (2)	-84.6(2)	93.2 (7)	109.7 (2)
S1-S2-S3-N2	87.0 (2)	-85.9 (2)	-89.5 (2)	95.9 (1)

research communications

 Table 2

 Hydrogen-bond geometry (Å, °).

*Cg*1, *Cg*2, *Cg*3, and *Cg*4 are the centroids of rings C3A–C8A, C9A–C14A, C3B–C8B, and C9B–C14B, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C1A - H1AA \cdots Cg2^{i}$	0.98	2.91	3.810 (7)	153
$C2A - H2AA \cdots Cg3^{ii}$	0.98	2.76	3.658 (8)	153
$C1B - H1BA \cdots Cg4^{iii}$	0.98	2.73	3.575 (7)	145
$C2B - H2BA \cdots Cg1^{ii}$	0.98	2.98	3.870 (7)	151
-				

Symmetry codes: (i) $x - \frac{1}{4}, -y + \frac{3}{4}, z + \frac{1}{4}$, (ii) $-x + \frac{1}{2}, -y + 1, z + \frac{1}{2}$, (iii) $x + \frac{1}{4}, -y + \frac{5}{4}, z + \frac{1}{4}$.

tert-butylfluorosilyl)amino]trisulfane, (3) (SOTLAO; Klingebiel *et al.*, 1991). Unlike the title compound, (1), compounds (2) and (3) each have a unique conformation in the unit cell (Z' = 1). Selected geometric parameters of (1) and the comparison compounds, (2) and (3), are given in Table 1. While the average S-S bond length of the title compound is *ca* 2.07 Å, the corresponding value is longer (2.09 Å) in (3) and shorter (2.04 Å) in (2). The absolute value of the average torsion angle of the title compound (1) is *ca* 86.0°, while the corresponding value is larger (93.2 and -89.5°) and closer to the theoretical optimum in (2), and significantly larger (109.7 and 95.9°) in (3).

Note regarding nomenclature: In the discussion above, a consistent nomenclature scheme has been used that differs from the names used in the original publications, *viz.* bis-(oxamido)trisulfan, (2) (Brunn *et al.*, 1988) and 1,3-bis[*tert*-butyl(di-*tert*-butylfluorsilyl)amino]trisulfan, (3) (Klingebiel *et al.*, 1991).

5. Synthesis and crystallization

The title compound, (1), was synthesized and obtained in crystalline form after preparative HPLC, as described by Schroll & Barany (1986): compound (37) in that publication.

Figure 3

Compounds that also have an N-S-S-S-N moiety, *viz.* bis(oxamido)-trisulfane, (2) (CSD refcode, GEHPUE; Brunn *et al.*, 1988), and bis[*tert*-butyl(di-*tert*-butylfluorosilyl)amino]trisulfane, (3) (SOTLAO; Klingebiel *et al.*, 1991).

Table	3	
Experi	mental	details

Crystal data	
Chemical formula	$C_{14}H_{16}N_2S_3$
M _r	308.47
Crystal system, space group	Orthorhombic, Fdd2
Temperature (K)	173
a, b, c (Å)	19.284 (3), 56.440 (8), 11.1695 (15)
$V(Å^3)$	12157 (3)
Z	32
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.48
Crystal size (mm)	$0.25 \times 0.22 \times 0.04$
Data collection	
Diffractometer	Bruker SMART CCD area
	detector
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2001)
T_{\min}, T_{\max}	0.890, 0.981
No. of measured, independent and	15884, 4978, 3097
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.075
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.597
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.056, 0.129, 1.06
No. of reflections	4978
No. of parameters	347
No. of restraints	1
H-atom treatment	H-atom parameters constrained
	$w = 1/[\sigma^2(F_0^2) + (0.0357P)^2 +$
	$36.8709P$] where $P = (F_0^2 + 2F^2)/3$
$\Delta \rho = \Delta \rho \cdot (e \ \mathring{A}^{-3})$	0.43 - 0.31
$\Delta p_{\text{max}}, \Delta p_{\text{min}} (C \Delta)$	2194 Friedel pairs (Flack 1083)
Absolute structure parameter	0.08(12)
resolute structure parameter	0.00 (12)

Computer programs: *SMART* and *SAINT* (Bruker, 2001), *SHELXS97* and *SHELXL97* (Sheldrick, 2008) and *Mercury* (Macrae *et al.*, 2008).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The H atoms were positioned geometrically and refined using a riding model, with C-H =0.95–0.98 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C)$ for other H atoms.

References

- Barany, G. & Mott, A. W. (1984). J. Org. Chem. 49, 1043-1051.
- Barany, G., Schroll, A. L., Mott, A. W. & Halsrud, D. A. (1983). J. Org. Chem. 48, 4750–4761.
- Bruker (2001). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Brunn, K., Endres, H. & Weiss, J. (1988). Z. Naturforsch. Teil B, 43, 113–116.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662– 671.
- Klingebiel, U., Pauer, F., Sheldrick, G. M. & Stalke, D. (1991). *Chem. Ber.* **124**, 2651–2653.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Meyer, B. (1976). Chem. Rev. 76, 367-388.
- Pauling, L. (1949). Proc. Natl Acad. Sci. USA, 35, 495–499.
- Schroll, A. L. & Barany, G. (1986). J. Org. Chem. 51, 1866-1881.

- Schroll, A. L., Eastep, S. J. & Barany, G. (1990). J. Org. Chem. 55, 1475–1479.
- Schroll, A. L., Pink, M. & Barany, G. (2012). Acta Cryst. E68, 01550.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Torrico-Vallejos, S., Erben, M. F., Boese, R. & Vedova, C. O. D. (2010). New J. Chem. 34, 1365–1372.

supporting information

Acta Cryst. (2015). E71, 836-839 [doi:10.1107/S2056989015011342]

Crystal structure of bis(N-methyl-N-phenylamino)trisulfane

George Barany, Matthew J. Henley, Lauren A. Polski, Alayne L. Schroll and Victor G. Young

Computing details

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Bis(N-methyl-N-phenylamino)trisulfane

Crystal data	
$C_{14}H_{16}N_{2}S_{3}$ $M_{r} = 308.47$ Orthorhombic, <i>Fdd2</i> Hall symbol: F 2 -2d $a = 19.284 (3) \text{ Å}$ $b = 56.440 (8) \text{ Å}$ $c = 11.1695 (15) \text{ Å}$ $V = 12157 (3) \text{ Å}^{3}$ $Z = 32$ $F(000) = 5184$	$D_x = 1.348 \text{ Mg m}^{-3}$ Melting point: 353 K Mo <i>Ka</i> radiation, $\lambda = 0.71$ Cell parameters from 194 $\theta = 2.4-24.9^{\circ}$ $\mu = 0.48 \text{ mm}^{-1}$ T = 173 K Plate, colorless $0.25 \times 0.22 \times 0.04 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector diffractometer Radiation source: sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2001) $T_{min} = 0.890, T_{max} = 0.981$	15884 measured reflection 4978 independent reflection 3097 reflections with $I > R_{int} = 0.075$ $\theta_{max} = 25.1^\circ, \theta_{min} = 1.4^\circ$ $h = 0 \rightarrow 22$ $k = 0 \rightarrow 67$ $l = -13 \rightarrow 11$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.129$ S = 1.06 4978 reflections 347 parameters 1 restraint Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map	Hydrogen site location: in neighbouring sites H-atom parameters const $w = 1/[\sigma^2(F_o^2) + (0.0357F)]$ where $P = (F_o^2 + 2F_c^2)/(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.43$ e Å ⁻³ $\Delta\rho_{min} = -0.31$ e Å ⁻³ Absolute structure: 2194 1983) Absolute structure param
Acta Cryst. (2015). E71, 836-839	

073 Å 5 reflections

ons ions $2\sigma(I)$

nferred from rained $P)^2 + 36.8709P$ 3 Friedel pairs (Flack, eter: 0.08 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against all reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on all data will be even larger.

 $U_{\rm iso} * / U_{\rm eq}$ х v \overline{Z} S1A 0.0509 (5) 0.16203 (9) 0.35562 (3) 0.42989 (17) S2A 0.13888(9)0.37674(3)0.28446 (18) 0.0512(5)S3A 0.05789(9)0.39854(3)0.33839(17)0.0529 (5) N1A 0.1096 (2) 0.33225 (10) 0.4230 (5) 0.0430 (14) 0.42227 (10) N2A 0.0925(3)0.4033(5)0.0460(14)C1A 0.0371(3)0.33682(13)0.4515(6) 0.0555 (19) 0.4809 H1AA 0.0155 0.3222 0.083*H1AB 0.0129 0.3422 0.3794 0.083* H1AC 0.0343 0.3491 0.5133 0.083* C2A 0.1179(4)0.41859(13) 0.5256 (6) 0.063(2)0.095* H2AA 0.1143 0.4334 0.5706 H2AB 0.1665 0.4135 0.5230 0.095* H2AC 0.0899 0.4064 0.095* 0.5649 C3A 0.1249 (3) 0.31310(11) 0.3459 (6) 0.0428 (18) 0.3200 (6) 0.0501 (19) C4A 0.1941 (3) 0.30690(11) H4AA 0.2307 0.3164 0.3502 0.060*0.2096 (4) C5A 0.28734 (13) 0.2520(7) 0.059 (2) H5AA 0.2567 0.2832 0.2383 0.071* C6A 0.1577 (4) 0.27368 (13) 0.2037 (7) 0.056(2)H6AA 0.1684 0.2605 0.1544 0.067* C7A 0.0894(5)0.27962 (12) 0.2284(7)0.063(2)0.076* H7AA 0.0531 0.2699 0.1980 C8A 0.0733(3)0.29903 (12) 0.2953 (7) 0.0514 (19) H8AA 0.0260 0.3030 0.3076 0.062* C9A 0.1215 (3) 0.44089(11) 0.3334(7)0.0408(17)C10A 0.1734(3)0.45591 (12) 0.3798 (6) 0.0458 (19) 0.055* H10A 0.1906 0.4533 0.4584 C11A 0.1992(3)0.47418 (11) 0.3132(7)0.052(2)H11A 0.2340 0.4841 0.3462 0.062*C12A 0.1756 (4) 0.47837 (12) 0.2001 (8) 0.055(2)0.1935 0.1542 0.066* H12A 0.4912 C13A 0.055(2)0.1253 (4) 0.46368 (12) 0.1536(7) H13A 0.0749 0.066* 0.1086 0.4665 C14A 0.0987 (4) 0.44514 (12) 0.2171 (7) 0.0514 (19) H14A 0.0646 0.4352 0.1821 0.062*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

S1B	0.34517 (9)	0.60013 (3)	0.43382 (17)	0.0503 (5)
S2B	0.35517 (9)	0.62207 (3)	0.28572 (18)	0.0504 (5)
S3B	0.44058 (9)	0.64310 (3)	0.32075 (16)	0.0473 (5)
N1B	0.3972 (2)	0.57722 (9)	0.4127 (5)	0.0406 (13)
N2B	0.4133 (3)	0.66599 (9)	0.3995 (5)	0.0410 (14)
C1B	0.4706 (3)	0.58075 (12)	0.4394 (7)	0.056 (2)
H1BA	0.4893	0.5665	0.4775	0.084*
H1BB	0.4758	0.5943	0.4936	0.084*
H1BC	0.4958	0.5839	0.3649	0.084*
C2B	0.3957 (4)	0.66091 (11)	0.5245 (6)	0.0502 (18)
H2BA	0.4010	0.6754	0.5724	0.075*
H2BB	0.4269	0.6486	0.5554	0.075*
H2BC	0.3477	0.6554	0.5293	0.075*
C3B	0.3785 (3)	0.55805 (10)	0.3387 (6)	0.0360 (15)
C4B	0.4264 (3)	0.54146 (11)	0.2998 (6)	0.0470 (18)
H4BA	0.4739	0.5435	0.3201	0.056*
C5B	0.4072 (4)	0.52205 (12)	0.2322 (6)	0.0528 (19)
H5BA	0.4413	0.5108	0.2098	0.063*
C6B	0.3392 (4)	0.51874 (12)	0.1965 (7)	0.052 (2)
H6BA	0.3259	0.5056	0.1486	0.062*
C7B	0.2916 (3)	0.53537 (11)	0.2336 (6)	0.0467 (18)
H7BA	0.2444	0.5335	0.2110	0.056*
C8B	0.3098 (3)	0.55452 (10)	0.3020 (6)	0.0418 (16)
H8BA	0.2753	0.5656	0.3249	0.050*
C9B	0.3837 (3)	0.68621 (10)	0.3444 (7)	0.0369 (16)
C10B	0.3412 (3)	0.70186 (10)	0.4077 (6)	0.0446 (18)
H10B	0.3288	0.6984	0.4881	0.054*
C11B	0.3175 (4)	0.72197 (13)	0.3558 (8)	0.060 (2)
H11B	0.2898	0.7326	0.4015	0.072*
C12B	0.3328 (4)	0.72757 (12)	0.2363 (8)	0.054 (2)
H12B	0.3158	0.7417	0.2003	0.065*
C13B	0.3730 (3)	0.71203 (11)	0.1735 (7)	0.0481 (17)
H13B	0.3840	0.7153	0.0922	0.058*
C14B	0.3981 (3)	0.69158 (11)	0.2259 (7)	0.0436 (17)
H14B	0.4257	0.6810	0.1800	0.052*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1A	0.0414 (11)	0.0603 (11)	0.0510 (14)	0.0036 (8)	-0.0136 (9)	-0.0069 (10)
S2A	0.0612 (11)	0.0511 (10)	0.0414 (12)	-0.0137 (8)	0.0091 (10)	-0.0026 (10)
S3A	0.0373 (10)	0.0635 (11)	0.0577 (14)	-0.0058 (8)	-0.0102 (9)	0.0142 (10)
N1A	0.032 (3)	0.054 (3)	0.043 (4)	0.006 (2)	-0.002 (3)	0.008 (3)
N2A	0.049 (3)	0.054 (4)	0.035 (4)	0.005 (3)	0.000 (3)	0.001 (3)
C1A	0.029 (4)	0.085 (5)	0.053 (5)	0.000 (3)	0.002 (3)	0.019 (4)
C2A	0.070 (5)	0.090 (5)	0.029 (5)	0.029 (4)	-0.007 (4)	-0.003 (4)
C3A	0.033 (4)	0.050 (4)	0.046 (5)	-0.006 (3)	-0.005 (3)	0.017 (4)
C4A	0.038 (4)	0.055 (4)	0.057 (6)	-0.003 (3)	-0.008 (4)	-0.005 (4)

supporting information

C5A	0.058 (5)	0.057 (5)	0.062 (6)	-0.004 (4)	0.001 (4)	0.000 (4)
C6A	0.072 (6)	0.055 (5)	0.041 (5)	-0.008 (4)	-0.002 (4)	0.006 (3)
C7A	0.084 (6)	0.049 (5)	0.056 (6)	-0.024 (4)	-0.029 (4)	0.018 (4)
C8A	0.042 (4)	0.053 (4)	0.060 (6)	-0.010 (3)	-0.015 (4)	0.014 (4)
C9A	0.030 (4)	0.049 (4)	0.043 (5)	0.014 (3)	-0.001 (3)	-0.005 (3)
C10A	0.042 (4)	0.059 (4)	0.037 (5)	0.011 (3)	-0.013 (3)	-0.018 (3)
C11A	0.047 (4)	0.035 (4)	0.074 (7)	0.001 (3)	-0.012 (4)	-0.018 (4)
C12A	0.061 (5)	0.035 (4)	0.069 (6)	0.005 (3)	0.007 (4)	-0.002 (4)
C13A	0.067 (5)	0.050 (4)	0.050 (6)	0.002 (4)	-0.012 (4)	0.000 (4)
C14A	0.052 (4)	0.050 (4)	0.052 (6)	-0.005 (3)	-0.019 (4)	-0.004 (4)
S1B	0.0489 (11)	0.0517 (10)	0.0502 (14)	-0.0096 (8)	0.0123 (10)	-0.0097 (9)
S2B	0.0595 (11)	0.0440 (10)	0.0476 (12)	0.0073 (8)	-0.0123 (10)	-0.0093 (9)
S3B	0.0400 (10)	0.0478 (10)	0.0540 (14)	0.0062 (7)	0.0123 (9)	0.0058 (8)
N1B	0.039 (3)	0.041 (3)	0.041 (4)	-0.011 (2)	-0.004 (3)	0.005 (3)
N2B	0.039 (3)	0.045 (3)	0.039 (4)	-0.004 (2)	-0.002 (3)	-0.002 (3)
C1B	0.045 (4)	0.061 (4)	0.062 (6)	-0.011 (3)	-0.016 (4)	0.009 (4)
C2B	0.057 (4)	0.061 (4)	0.033 (5)	-0.014 (3)	-0.003 (4)	0.002 (4)
C3B	0.039 (4)	0.040 (4)	0.028 (4)	-0.007 (3)	0.004 (3)	0.007 (3)
C4B	0.037 (4)	0.057 (4)	0.047 (5)	0.013 (3)	0.000 (4)	0.009 (4)
C5B	0.050 (5)	0.056 (4)	0.052 (5)	0.016 (3)	0.002 (4)	-0.008 (4)
C6B	0.060 (5)	0.047 (4)	0.049 (6)	0.001 (3)	0.006 (4)	-0.001 (3)
C7B	0.041 (4)	0.050 (4)	0.049 (5)	-0.012 (3)	-0.001 (3)	-0.005 (3)
C8B	0.034 (4)	0.045 (4)	0.047 (5)	0.004 (3)	0.001 (3)	-0.002 (3)
C9B	0.029 (3)	0.037 (4)	0.045 (5)	-0.007 (3)	0.002 (3)	-0.014 (3)
C10B	0.051 (4)	0.045 (4)	0.037 (5)	-0.004 (3)	0.001 (3)	-0.005 (3)
C11B	0.061 (5)	0.048 (5)	0.071 (7)	0.003 (4)	0.000 (5)	-0.015 (4)
C12B	0.051 (4)	0.041 (4)	0.071 (6)	0.004 (3)	-0.013 (4)	-0.007 (4)
C13B	0.042 (4)	0.057 (4)	0.045 (5)	-0.002 (3)	0.005 (4)	0.005 (4)
C14B	0.044 (4)	0.042 (4)	0.044 (5)	0.004 (3)	0.017 (3)	-0.006 (3)

Geometric parameters (Å, °)

S1A—N1A	1.664 (5)	S1B—N1B	1.653 (5)	
S1A—S2A	2.064 (3)	S1B—S2B	2.076 (3)	
S2A—S3A	2.078 (3)	S2B—S3B	2.067 (2)	
S3A—N2A	1.663 (6)	S3B—N2B	1.649 (5)	
N1A—C3A	1.413 (8)	N1B—C3B	1.408 (8)	
N1A—C1A	1.457 (7)	N1B—C1B	1.460 (7)	
N2A—C9A	1.424 (8)	N2B—C9B	1.416 (8)	
N2A—C2A	1.465 (8)	N2B—C2B	1.465 (8)	
C1A—H1AA	0.9800	C1B—H1BA	0.9800	
C1A—H1AB	0.9800	C1B—H1BB	0.9800	
C1A—H1AC	0.9800	C1B—H1BC	0.9800	
C2A—H2AA	0.9800	C2B—H2BA	0.9800	
C2A—H2AB	0.9800	C2B—H2BB	0.9800	
C2A—H2AC	0.9800	C2B—H2BC	0.9800	
C3A—C8A	1.393 (8)	C3B—C4B	1.386 (8)	
C3A—C4A	1.410 (9)	C3B—C8B	1.401 (8)	

C4A—C5A	1.373 (9)	C4B—C5B	1.381 (9)
C4A—H4AA	0.9500	C4B—H4BA	0.9500
C5A—C6A	1.373 (9)	C5B—C6B	1.383 (9)
С5А—Н5АА	0.9500	C5B—H5BA	0.9500
C6A—C7A	1.388 (10)	C6B—C7B	1.377 (9)
С6А—Н6АА	0.9500	C6B—H6BA	0.9500
C7A—C8A	1.362 (10)	C7B—C8B	1.369 (8)
С7А—Н7АА	0.9500	C7B—H7BA	0.9500
C8A—H8AA	0.9500	C8B—H8BA	0.9500
C9A—C14A	1.392 (9)	C9B—C14B	1.386 (9)
C9A—C10A	1.410 (9)	C9B—C10B	1.396 (8)
C10A—C11A	1.365 (9)	C10B—C11B	1.354 (9)
C10A—H10A	0.9500	C10B—H10B	0.9500
C11A—C12A	1.363 (10)	C11B—C12B	1,403 (10)
C11A—H11A	0.9500	C11B—H11B	0.9500
C12A - C13A	1 378 (9)	C12B— $C13B$	1 365 (9)
C12A - H12A	0.9500	C12B—H12B	0.9500
C13A - C14A	1 365 (9)	C13B-C14B	1 382 (9)
C13A - H13A	0.9500	C13B—H13B	0.9500
C14A—H14A	0.9500	C14B—H14B	0.9500
	0.7500		0.9500
N1A—S1A—S2A	106 9 (2)	N1B—S1B—S2B	107.3(2)
S1A—S2A—S3A	106.05(11)	S3B—S2B—S1B	107.5(2) 105 41 (11)
N2A—S3A—S2A	107.6(2)	N2B—S3B—S2B	107.2(2)
C_{3A} N1A C_{1A}	107.0(2) 118.0(5)	C_{3B} N_{1B} C_{1B}	107.2(2) 118.2(5)
C_{3A} N1A S_{1A}	1205(4)	C3B $N1B$ $S1B$	110.2(5) 1220(4)
C1A = N1A = S1A	120.5(4) 1156(4)	C1B $N1B$ $S1B$	122.0(4) 116.9(4)
C9A = N2A = C2A	119.0 (4)	C9B = N2B = C2B	110.9(+) 118.6(5)
C94 N24 C2H	119.0(0) 120.9(5)	C9B = N2B = C2B	121.9(5)
C_{2A} N2A S_{3A}	120.9(5) 115.3(5)	$C^{2}B = N^{2}B = S^{3}B$	121.9(5) 1154(4)
N1A—C1A—H1AA	109.5	N1B-C1B-H1BA	109.5
N1A—C1A—H1AB	109.5	NIB—CIB—HIBR	109.5
H1AA—C1A—H1AB	109.5	HIBA—CIB—HIBB	109.5
N1A_C1A_H1AC	109.5	NIB_CIB_HIBC	109.5
$H_{1A} - C_{1A} - H_{1A}C$	109.5	HIBA—CIB—HIBC	109.5
H1AB—C1A—H1AC	109.5	HIBR—CIB—HIBC	109.5
N2A = C2A = H2AA	109.5	N2B—C2B—H2BA	109.5
N2A - C2A - H2AB	109.5	N2B_C2B_H2BB	109.5
$H_{2A} = C_{2A} = H_{2AB}$	109.5	H2BA = C2B = H2BB	109.5
N2A $C2A$ $H2AC$	109.5	N2B C2B H2BC	109.5
$H_{2A} = C_{2A} = H_{2A}C$	109.5	H2BA C2B H2BC	109.5
$H_{2AB} = C_{2A} = H_{2AC}$	109.5	H2DA-C2D-H2DC	109.5
$C_{2A} = C_{2A} = C_{4A}$	109.5	C4P $C2P$ $C9P$	109.5
$C_{0A} = C_{3A} = C_{4A}$	110.7 (7)	$C_{4}D = C_{3}D = C_{0}D$	122.2 (6)
CAA C2A N1A	122.3(0) 120.8(6)	$C_{4D} = C_{3D} = N_{1D}$	122.2(0) 121.5(6)
$C_{+A} = C_{A} = N_{A} = N_{A}$	120.0(0) 121.2(6)	$C_{0}D - C_{3}D - N_{1}D$	121.3(0) 121.9(6)
$C_{A} = C_{A} = C_{A}$	121.2(0)	$C_{3}D - C_{4}D - C_{3}D$	121.8 (0)
C_{A} C_{A	119.4	$\bigcirc JD - \bigcirc C4D - H4BA$	119.1
UJA—U4A—H4AA	119.4	СЭВ—С4В—Н4ВА	119.1

C4A—C5A—C6A	120.7 (7)	C4B—C5B—C6B	121.3 (6)
С4А—С5А—Н5АА	119.6	C4B—C5B—H5BA	119.3
С6А—С5А—Н5АА	119.6	C6B—C5B—H5BA	119.3
С5А—С6А—С7А	118.6 (8)	C7B—C6B—C5B	116.9 (7)
С5А—С6А—Н6АА	120.7	C7B—C6B—H6BA	121.5
С7А—С6А—Н6АА	120.7	C5B—C6B—H6BA	121.5
C8A—C7A—C6A	121.3 (7)	C8B—C7B—C6B	122.3 (6)
С8А—С7А—Н7АА	119.3	C8B—C7B—H7BA	118.8
C6A - C7A - H7AA	119.3	C6B—C7B—H7BA	118.8
C7A - C8A - C3A	121 2 (7)	C7B - C8B - C3B	121.2 (6)
C7A - C8A - H8AA	119.4	C7B - C8B - H8BA	119.4
C_{3A} C_{8A} H_{8A} A	119.1	C3B = C8B = H8BA	119.1
$C_{14} - C_{9} - C_{10}$	117.7 (6)	C14B-C9B-C10B	117.5 (6)
C14A C9A N2A	121.0 (6)	C14B C9B N2B	117.3(0) 120.7(6)
C10A C0A N2A	121.0(0) 121.4(6)	$C_{14}D = C_{2}D = N_{2}D$	120.7(0) 121.8(7)
$C_{10A} = C_{9A} = N_{2A}$	121.4(0) 120.8(7)	C11P C10P C0P	121.8(7) 120.8(7)
$C_{11A} = C_{10A} = C_{9A}$	120.8 (7)	$C_{11}D = C_{10}D = U_{10}D$	120.8 (7)
CIA = CI0A = HI0A	119.0		119.0
C_{A}	119.0	CIOP CIUB CIOP	119.0
CI2A—CIIA—CI0A	121.0 (7)	CIOB—CIIB—CI2B	121.0(7)
CI2A—CIIA—HIIA	119.5	CIOB—CIIB—HIIB	119.2
CIUA—CIIA—HIIA	119.5	CI2B—CIIB—HIIB	119.2
CIIA—CI2A—CI3A	118.6 (7)	C13B—C12B—C11B	117.6 (7)
C11A—C12A—H12A	120.7	C13B—C12B—H12B	121.2
C13A—C12A—H12A	120.7	C11B—C12B—H12B	121.2
C14A—C13A—C12A	122.1 (7)	C12B—C13B—C14B	121.2 (7)
C14A—C13A—H13A	119.0	C12B—C13B—H13B	119.4
C12A—C13A—H13A	119.0	C14B—C13B—H13B	119.4
C13A—C14A—C9A	119.8 (7)	C13B—C14B—C9B	121.2 (6)
C13A—C14A—H14A	120.1	C13B—C14B—H14B	119.4
C9A—C14A—H14A	120.1	C9B—C14B—H14B	119.4
N1A—S1A—S2A—S3A	86.6 (2)	N1B—S1B—S2B—S3B	-84.6 (2)
S1A—S2A—S3A—N2A	87.0 (2)	S1B—S2B—S3B—N2B	-85.9 (2)
S2A—S1A—N1A—C3A	80.2 (5)	S2B—S1B—N1B—C3B	-79.9 (5)
S2A—S1A—N1A—C1A	-72.2 (5)	S2B—S1B—N1B—C1B	80.3 (5)
S2A—S3A—N2A—C9A	77.9 (5)	S2B—S3B—N2B—C9B	-83.1(5)
S2A—S3A—N2A—C2A	-77.0 (5)	S2B—S3B—N2B—C2B	73.7 (5)
C1A—N1A—C3A—C8A	1.3 (9)	C1B—N1B—C3B—C4B	5.8 (9)
S1A—N1A—C3A—C8A	-150.5 (5)	S1B—N1B—C3B—C4B	165.7 (5)
C1A—N1A—C3A—C4A	-176.4(6)	C1B—N1B—C3B—C8B	-175.2(6)
S1A—N1A—C3A—C4A	31.7 (8)	S1B—N1B—C3B—C8B	-15.3(8)
C8A—C3A—C4A—C5A	-2.5(10)	C8B-C3B-C4B-C5B	-2.3(10)
N1A—C3A—C4A—C5A	175.4 (6)	N1B-C3B-C4B-C5B	176.7 (6)
C3A - C4A - C5A - C6A	2.3(12)	C3B-C4B-C5B-C6B	2.4 (11)
C4A - C5A - C6A - C7A	-2.2(11)	C4B— $C5B$ — $C6B$ — $C7B$	-1.4(11)
C5A-C6A-C7A-C8A	2.5 (11)	C5B-C6B-C7B-C8B	0.5(11)
C6A - C7A - C8A - C3A	-2.8(11)	C6B— $C7B$ — $C8B$ — $C3B$	-0.6(11)
C4A - C3A - C8A - C7A	2.8 (10)	C4B - C3B - C8B - C7B	14(10)
C COM COM C/M			

N1A—C3A—C8A—C7A C2A—N2A—C9A—C14A S3A—N2A—C9A—C14A C2A—N2A—C9A—C10A S3A—N2A—C9A—C10A C14A—C9A—C10A—C11A N2A—C9A—C10A—C11A C9A—C10A—C11A—C12A C10A—C11A—C12A—C13A C11A—C12A—C13A—C14A C12A—C13A—C14A—C9A C10A—C9A—C14A—C9A	-175.1 (6) -179.5 (6) 26.5 (8) -0.7 (8) -154.7 (5) 1.1 (9) -177.8 (6) -0.1 (10) -0.3 (10) -0.2 (11) 1.1 (11) -1.5 (10)	N1B—C3B—C8B—C7B C2B—N2B—C9B—C14B S3B—N2B—C9B—C14B C2B—N2B—C9B—C10B S3B—N2B—C9B—C10B C14B—C9B—C10B—C11B N2B—C9B—C10B—C11B C9B—C10B—C11B—C12B C10B—C11B—C12B—C13B C11B—C12B—C13B—C14B C12B—C13B—C14B—C9B C10B—C9B—C14B—C13B	-177.6 (6) -179.3 (5) -23.2 (8) 3.1 (9) 159.1 (5) -2.5 (10) 175.2 (6) 1.8 (11) -0.3 (10) -0.4 (10) 1.8 (9)
C10A—C9A—C14A—C13A	-1.5 (10)	C10B—C9B—C14B—C13B	1.8 (9)
N2A—C9A—C14A—C13A	177.4 (6)	N2B—C9B—C14B—C13B	-175.9 (6)

Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3, and Cg4 are the centroids of rings C3A-C8A, C9A-C14A, C3B-C8B, and C9B-C14B, respectively.

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	D—H···A
$C1A$ —H1 AA ··· $Cg2^i$	0.98	2.91	3.810 (7)	153
C2A—H2AA···Cg3 ⁱⁱ	0.98	2.76	3.658 (8)	153
C1B— $H1BA$ ···Cg4 ⁱⁱⁱ	0.98	2.73	3.575 (7)	145
C2B—H2BA····Cg1 ⁱⁱ	0.98	2.98	3.870 (7)	151

Symmetry codes: (i) x-1/4, -y+3/4, z+1/4; (ii) -x+1/2, -y+1, z+1/2; (iii) x+1/4, -y+5/4, z+1/4.