

Received 3 June 2015 Accepted 13 June 2015

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; flavonol; hydrogen bonding; fluorescent material

CCDC reference: 1406583 Supporting information: this article has supporting information at journals.iucr.org/e

OPEN d ACCESS

Crystal structure of 2-(4-*tert*-butylphenyl)-3-hydroxy-4*H*-chromen-4-one

Fuka Narita,^a Akihiro Takura^a and Takashi Fujihara^b*

^aDepartment of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakuraku, Saitama 338-8570, Japan, and ^bComprehensive Analysis Center for Science, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan. *Correspondence e-mail: fuji@chem.saitama-u.ac.jp

Yellow–green fluorescent crystals of the title compound, $C_{19}H_{18}O_3$, were obtained by the reaction of hydroxyacetophenone and 4-*tert*-butylbenzaldehyde with hydrogen peroxide as oxidant. The plane of the benzene ring is slightly twisted to the mean plane of the 4*H*-chromene-4-one moiety (r.m.s. deviation = 0.0191 Å) by 10.53 (8)°. In the crystal, molecules are linked by pairs of O– H···O hydrogen bonds, forming inversion dimers with an $R_2^2(10)$ ring motif. The dimers are linked *via* C–H··· π interactions, forming sheets parallel to (101).

1. Chemical context

The flavonol 3-hydroxy-2-phenyl-4H-chromen-4-one (common name: 3-hydroxyflavone) and its derivatives are present in a wide variety of plants as phytochemical compounds (Havsteen, 1983; Aherne & O'Brien, 2002). They have been investigated for many years owing to their chemical, structural, biological and fluorescent properties (Smith et al., 1968; Sengupta & Kasha, 1979; Etter et al., 1986; Klymchenko & Demchenko, 2002; Pivovarenko et al., 2005; Choulier et al., 2010). The phenomenon of dual fluorescence due to excited states intramolecular proton transfer (ESIPT) has attracted much attention (Dick, 1987), as compounds exhibiting such properties can be used as fluorescent probes for sensing and imaging. The fluorescence of flavonols has been shown to be related to the angle between the 4H-chromene-4-one moiety and the attached benzene ring (Klymchenko et al. 2003). The effect of the intramolecular hydrogen bond of flavonols, with an OH group in position 3, for the stabilization of the molecular conformation is also important and this has been confirmed by theoretical calculations reported in a computational study on flavonoids (Aparicio, 2010). As a part of our search for new luminescent materials, we report herein on the synthesis and crystal structure of the title compound, the 4-tert-butylphenyl derivative of 3-hydroxyflavone.

2. Structural commentary

The molecular structure of the title compound is illustrated in Fig. 1. The bond lengths are similar to those reported for other flavonols (Yoo *et al.*, 2014; Serdiuk *et al.*, 2013; Hino *et al.*,

Figure 1

The molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds and short contacts are shown as dashed lines.

2013, 2011; Wera, Pivovarenko *et al.*, 2011; Wera, Serdiuk *et al.*, 2011, Wera *et al.*, 2010). The mean plane of the 4*H*-chromene-4-one moiety (O3/C1–C9; r.m.s. deviation = 0.0191 Å) is twisted by 10.53 (8)° with respect to the benzene ring (C10– C16). This relative planarity typical of the structural features of flavonols is reinforced by two intramolecular (C11– H11···O3 and C15–H15···O2) short contacts (Table 1 and Fig. 1). These intramolecular contacts lead to the molecular planarity and increase the torsional barrier, improving the π -delocalization from the 4*H*-chromene-4-one moiety toward the benzene ring. The molecule also contains an intramolecular O–H···O hydrogen bond (Table 1 and Fig. 1) with an *S*(5) ring motif.

Figure 2

A view of the inversion dimer with an $R_2^2(10)$ ring motif. Dashed lines indicate hydrogen bonds. [Symmetry code: (i) -x + 1, -y + 1, -z + 2.]

Acta Cryst. (2015). E71, 824-826

Table 1	
Hydrogen-bond geometry (Å, $^{\circ}$).	

Cg is the centroid of the C4-C9 ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O2−H2···O1	0.84	2.28	2.7262 (14)	113
C11-H11···O3	0.95	2.32	2.6724 (17)	101
C15-H15···O2	0.95	2.22	2.8508 (18)	123
$O2-H2\cdots O1^i$	0.84	1.96	2.7104 (14)	148
$C7-H7\cdots Cg^{ii}$	0.95	2.59	3.407 (10)	144

Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $-z + \frac{5}{2}$.

3. Supramolecular features

In the crystal of the title compound, molecules are linked *via* pairs of $O-H\cdots O$ hydrogen bonds, forming inversion dimers with an $R_2^2(10)$ ring motif (Table 1 and Fig. 2). The dimers are linked by $C-H\cdots \pi$ interactions between neighbouring molecules, forming sheets parallel to $(10\overline{1})$; see Table 1 and Fig. 3.

4. Database survey

A search of the Cambridge Structural Database (Version 5.36, February 2015; Groom & Allen, 2014) for 3-hydoxyflavone gave 15 hits. These include 3-hydroxyflavone itself (DUMFAS; Etter et al., 1986) and a number of para-substituted phenyl derivatives, such as the 4-aminophenyl derivative (LUBBIV: Sun, 2015), two polymorphs of the 4-(dimethylamino)phenyl derivative (BANJEH; BANJEH01: Hino et al., 2011) and two polymorphs of the 4-(diethylamino)phenyl derivative (CEZDOC; CEZDOC01: Hino et al., 2013). Two polymorphs of the 4-hydroxphenyl derivative have also been reported (IJUCAS; Wera, Pivovarenko et al., 2011; IKAHIM: Wera, Serdiuk et al., 2011). Apart from 3-hydroxyflavone itself (DUMFAS) and the 4-aminophenyl derivative (LUBBIV), in which the phenyl ring is inclined to the mean plane of the chromen-4-one moiety by 5.5 and 4.5° , respectively, this dihedral angle in the other compounds varies from 12.3 to

View of the crystal packing of the title compound. Dashed lines indicate the C-H··· π interactions (ring centroids are shown as coloured spheres; see Table 1 for details). H atoms that do not participate in these interactions have been omitted for clarity.

research communications

Table 2Experimental details.

Crystal data	
Chemical formula	$C_{19}H_{18}O_3$
$M_{ m r}$	294.33
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	200
<i>a</i> , <i>b</i> , <i>c</i> (Å)	15.9735 (19), 6.1467 (7), 16.963 (2)
β (°)	113.730 (1)
$V(Å^3)$	1524.7 (3)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.09
Crystal size (mm)	$0.20 \times 0.19 \times 0.06$
Data collection	
Diffractometer	Bruker APEXII CCD area detector
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker 2014)
T _{min} , T _{mm}	0.849, 0.928
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	15995, 3231, 2820
$R_{\rm e}$	0.026
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.633
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.043, 0.127, 1.04
No. of reflections	3231
No. of parameters	203
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.29, -0.23

Computer programs: APEX2, SAINT and XPREP (Bruker 2014), SHELXS2014 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009).

31.2°. Hence, in DUMFAS and LUBBIV there are also short intramolecular C-H···O interactions, similar to those in the title compound. In the crystals of these two compounds, molecules are also linked *via* O-H···O hydrogen bonds, but form chains. along [001] for DUMFAS and along [100] for LUBBIV, rather than inversion dimers as in the crystal of the title compound.

5. Synthesis and crystallization

The title compound was prepared by a modification of the procedure described by Qin et al. (2008). 2-Hydroxyacetophenone (1 mmol) was added to a suspension of the 4-tertbutylbenzaldehyde (1 mmol) in ethanol (2 ml) and aqueous NaOH (6 M, 1 ml). The mixture was stirred at room temperature overnight. Then dilute acetic acid (30%) was added to the reaction mixture with stirring until the mixture was acidic and was cooled with an ice bath. The mixture was stirred for an additional 30 min at 273 K, and the solid precipitate obtained was collected by filtration. Hydrogen peroxide (30%, 2.6 mmol) was then added to an ice-cold suspension of the precipitate in ethanol (5 ml) and aqueous NaOH (2 M, 1 ml). The mixture was allowed to warm to room temperature and stirred for 4 h. The mixture was then acidified with dilute HCl (5%, 7 ml), and the precipitate formed was collected by filtration. Recrystallization from methanol gave yellow–green fluorescing crystals. Plate-like crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a solution in dichloromethane. ¹H NMR (400MHz, DMSO-*d*₆): δ 1.33 [*s*, 9H, C(CH₃)₃], 7.46 (*t*, 1H), 7.50 (*d*,2H), 7.79 (*dd*,2H), 8.13 (*dt*,3H), 9.50 (*s*,1H). ¹³C NMR (100MHz, DMSO-*d*₆) δ 31.4, 35.1, 118.8, 121.8, 125.1, 125.8, 128.0, 129.0, 134.1, 139.3, 146.0, 153.2, 155.0, 173.3. Fluorescent emission maxima (CH₃Cl, $\lambda_{ex} = 365$ nm): $\lambda_{em} = 525$ nm.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The hydroxyl and C-bound H atoms were included in calculated positions and treated as riding atoms: O-H = 0.84 Å, C-H = 0.95-0.98 Å with $U_{iso}(H) = 1.5U_{eq}(C,O)$ for the methyl and hydroxyl H atoms and $1.2U_{eq}(C)$ for other H atoms.

References

- Aherne, S. A. & O'Brien, N. M. (2002). Nutrition, 18, 75-81.
- Aparicio, S. (2010). Int. J. Mol. Sci. 11, 2017-2038.
- Bruker (2014). *APEX2, SAINT, XPREP* and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Choulier, L., Shvadchak, V. V., Naidoo, A., Klymchenko, A. S., Mély, Y. & Altschuh, D. (2010). *Anal. Biochem.* 401, 188–195.
- Dick, B. (1987). Ber. Bunsenges. Phys. Chem. 91, 1205-1209.
- Etter, M. C., Urbańczyk-Lipkowska, Z., Baer, S. & Barbara, P. F. (1986). J. Mol. Struct. 144, 155–167.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.
- Havsteen, B. (1983). Biochem. Pharmacol. 32, 1141-1148.
- Hino, K., Nakajima, K., Kawahara, M., Furukawa, K. & Sekiya, H. (2013). Bull. Chem. Soc. Jpn, 86, 721–723.
- Hino, K., Nakajima, K., Kawahara, M., Kiyota, I. & Sekiya, H. (2011). Bull. Chem. Soc. Jpn, 84, 1234–1236.
- Klymchenko, A. S. & Demchenko, A. P. (2002). J. Am. Chem. Soc. **124**, 12372–12379.
- Klymchenko, A. S., Pivovarenko, V. G. & Demchenko, A. P. (2003). Spectrochim. Acta Part A, 59, 787–792.
- Pivovarenko, V. G., Wróblewska, A. & Błażejowski, J. (2005). Anal. Chim. Acta, 545, 74–78.
- Qin, C. X., Chen, X., Hughes, R. A., Williams, S. J. & Woodman, O. L. (2008). J. Med. Chem. 51, 1874–1884.
- Sengupta, P. K. & Kasha, M. (1979). Chem. Phys. Lett. 68, 382-385.
- Serdiuk, I. E., Wera, M., Roshal, A. D. & Błażejowski, J. (2013). Acta Cryst. E69, 0895.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Smith, M. A., Neumann, R. M. & Webb, R. A. (1968). J. Heterocycl. Chem. 5, 425–426.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Sun, X. (2015). Private communication (refcode LUBBIV). CCDC, Cambridge, England.
- Wera, M., Pivovarenko, V. G. & Błażejowski, J. (2011). Acta Cryst. E**67**, 0264–0265.
- Wera, M., Serdiuk, I. E., Roshal, A. D. & Błażejowski, J. (2010). Acta Cryst. E66, 03122.
- Wera, M., Serdiuk, I. E., Roshal, A. D. & Błażejowski, J. (2011). *Acta Cryst.* E67, 0440.
- Yoo, J. S., Lim, Y. & Koh, D. (2014). Acta Cryst. E70, 0999-01000.

supporting information

Acta Cryst. (2015). E71, 824-826 [doi:10.1107/S2056989015011482]

Crystal structure of 2-(4-tert-butylphenyl)-3-hydroxy-4H-chromen-4-one

Fuka Narita, Akihiro Takura and Takashi Fujihara

Computing details

Data collection: *APEX2* (Bruker 2014); cell refinement: *SAINT* (Bruker 2014); data reduction: *SAINT* and *XPREP* (Bruker 2014); program(s) used to solve structure: *SHELXS2014* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *SHELXL2014* (Sheldrick, 2015) and *PLATON* (Spek, 2009).

2-(4-tert-Butylphenyl)-3-hydroxy-4H-chromen-4-one

Crystal data	
C ₁₉ H ₁₈ O ₃ $M_r = 294.33$ Monoclinic, $P2_1/n$ a = 15.9735 (19) Å b = 6.1467 (7) Å c = 16.963 (2) Å $\beta = 113.730$ (1)° V = 1524.7 (3) Å ³ Z = 4	F(000) = 624 $D_x = 1.282 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7083 reflections $\theta = 2.6-28.2^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 200 K Plate, yellow $0.20 \times 0.19 \times 0.06 \text{ mm}$
Data collection	
Bruker APEXII CCD area-detector diffractometer Radiation source: Bruker TXS fine-focus rotating anode Bruker Helios multilayer confocal mirror monochromator Detector resolution: 8.333 pixels mm ⁻¹ φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker 2014)	$T_{\min} = 0.849, T_{\max} = 0.928$ 15995 measured reflections 3231 independent reflections 2820 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.026$ $\theta_{\text{max}} = 26.7^{\circ}, \theta_{\text{min}} = 1.5^{\circ}$ $h = -20 \rightarrow 20$ $k = -7 \rightarrow 7$ $l = -21 \rightarrow 21$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.127$ S = 1.04 3231 reflections 203 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0646P)^2 + 0.6235P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.29 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{max} = -0.23 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) 4.7085 (0.0060) x + 3.2010 (0.0016) y + 10.4295 (0.0043) z = 14.3715 (0.0031)

* 0.0005 (0.0010) C1 * -0.0361 (0.0011) C2 * -0.0027 (0.0010) C3 * 0.0247 (0.0012) C4 * 0.0176 (0.0011) C5 * -0.0080 (0.0012) C6 * -0.0234 (0.0011) C7 * -0.0098 (0.0011) C8 * 0.0146 (0.0012) C9 * 0.0226 (0.0009) O3

Rms deviation of fitted atoms = 0.0191

 $6.5320\ (0.0088)\ x + 2.3353\ (0.0039)\ y + 10.0931\ (0.0080)\ z = 15.2731\ (0.0036)$

Angle to previous plane (with approximate esd) = 10.53 (0.08)

* -0.0146 (0.0010) C10 * 0.0082 (0.0011) C11 * 0.0057 (0.0011) C12 * -0.0134 (0.0011) C13 * 0.0071 (0.0011) C14 * 0.0068 (0.0011) C15

Rms deviation of fitted atoms = 0.0099

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.71865 (9)	0.1616 (2)	1.00398 (8)	0.0265 (3)
C2	0.64236 (9)	0.2637 (2)	1.00356 (8)	0.0276 (3)
C3	0.59399 (9)	0.1820 (2)	1.05367 (8)	0.0281 (3)
C4	0.62989 (9)	-0.0175 (2)	1.10134 (8)	0.0278 (3)
C5	0.58831 (10)	-0.1190 (3)	1.15059 (9)	0.0346 (3)
Н5	0.5365	-0.0539	1.1552	0.041*
C6	0.62214 (11)	-0.3121 (3)	1.19211 (10)	0.0381 (3)
H6	0.5937	-0.3802	1.2252	0.046*
C7	0.69847 (10)	-0.4080(2)	1.18560 (9)	0.0351 (3)
H7	0.7214	-0.5416	1.2143	0.042*
C8	0.74088 (10)	-0.3116 (2)	1.13819 (9)	0.0324 (3)
H8	0.7929	-0.3770	1.1341	0.039*
С9	0.70584 (9)	-0.1159 (2)	1.09627 (8)	0.0271 (3)
C10	0.77563 (9)	0.2243 (2)	0.95792 (8)	0.0274 (3)
C11	0.83993 (10)	0.0782 (2)	0.95235 (9)	0.0340 (3)
H11	0.8481	-0.0587	0.9805	0.041*
C12	0.89195 (10)	0.1298 (3)	0.90651 (10)	0.0362 (3)
H12	0.9349	0.0266	0.9037	0.043*
C13	0.88329 (9)	0.3279 (2)	0.86439 (9)	0.0307 (3)
C14	0.82088 (11)	0.4750 (3)	0.87277 (11)	0.0398 (4)
H14	0.8143	0.6138	0.8463	0.048*
C15	0.76821 (10)	0.4262 (2)	0.91811 (10)	0.0372 (3)
H15	0.7265	0.5313	0.9222	0.045*
C16	0.94007 (10)	0.3875 (3)	0.81313 (9)	0.0347 (3)
C17	0.98436 (16)	0.1886 (3)	0.79140 (15)	0.0626 (6)
H17A	1.0163	0.2333	0.7554	0.094*
H17B	0.9370	0.0819	0.7602	0.094*
H17C	1.0282	0.1231	0.8447	0.094*
C18	1.01612 (14)	0.5414 (3)	0.86712 (15)	0.0606 (5)
H18A	0.9894	0.6719	0.8808	0.091*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

H18B	1.0524	0.5828	0.8347	0.091*
H18C	1.0555	0.4686	0.9206	0.091*
C19	0.87973 (14)	0.4987 (5)	0.72920 (14)	0.0809 (8)
H19A	0.8553	0.6342	0.7420	0.121*
H19B	0.8290	0.4021	0.6958	0.121*
H19C	0.9160	0.5316	0.6958	0.121*
01	0.52607 (7)	0.27779 (17)	1.05437 (7)	0.0367 (3)
O2	0.60997 (7)	0.44503 (17)	0.95608 (7)	0.0359 (3)
H2	0.5649	0.4923	0.9644	0.054*
O3	0.74981 (6)	-0.02683 (15)	1.04986 (6)	0.0306 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0279 (6)	0.0263 (6)	0.0258 (6)	0.0013 (5)	0.0114 (5)	0.0006 (5)
C2	0.0276 (6)	0.0279 (7)	0.0272 (6)	0.0021 (5)	0.0108 (5)	0.0009 (5)
C3	0.0250 (6)	0.0311 (7)	0.0282 (6)	-0.0002 (5)	0.0107 (5)	-0.0031 (5)
C4	0.0279 (6)	0.0288 (7)	0.0268 (6)	-0.0025 (5)	0.0112 (5)	-0.0027 (5)
C5	0.0328 (7)	0.0386 (8)	0.0373 (7)	-0.0024 (6)	0.0193 (6)	-0.0004 (6)
C6	0.0441 (8)	0.0371 (8)	0.0385 (8)	-0.0071 (6)	0.0222 (7)	0.0025 (6)
C7	0.0447 (8)	0.0273 (7)	0.0319 (7)	-0.0016 (6)	0.0141 (6)	0.0016 (6)
C8	0.0372 (7)	0.0287 (7)	0.0326 (7)	0.0032 (6)	0.0154 (6)	0.0001 (5)
C9	0.0297 (6)	0.0283 (7)	0.0251 (6)	-0.0017 (5)	0.0128 (5)	-0.0017 (5)
C10	0.0270 (6)	0.0298 (7)	0.0265 (6)	0.0004 (5)	0.0120 (5)	-0.0009 (5)
C11	0.0368 (7)	0.0314 (7)	0.0384 (7)	0.0077 (6)	0.0199 (6)	0.0082 (6)
C12	0.0359 (7)	0.0367 (8)	0.0432 (8)	0.0100 (6)	0.0235 (7)	0.0067 (6)
C13	0.0281 (6)	0.0354 (7)	0.0307 (7)	-0.0009 (5)	0.0140 (5)	0.0006 (5)
C14	0.0456 (9)	0.0312 (8)	0.0525 (9)	0.0067 (6)	0.0300 (8)	0.0113 (7)
C15	0.0411 (8)	0.0300 (7)	0.0508 (9)	0.0080 (6)	0.0291 (7)	0.0060 (6)
C16	0.0321 (7)	0.0395 (8)	0.0376 (7)	0.0019 (6)	0.0195 (6)	0.0062 (6)
C17	0.0852 (14)	0.0522 (11)	0.0822 (14)	0.0007 (10)	0.0668 (13)	-0.0014 (10)
C18	0.0534 (11)	0.0642 (12)	0.0782 (13)	-0.0170 (9)	0.0411 (10)	-0.0115 (10)
C19	0.0521 (11)	0.144 (2)	0.0597 (12)	0.0286 (13)	0.0358 (10)	0.0514 (14)
01	0.0309 (5)	0.0397 (6)	0.0455 (6)	0.0085 (4)	0.0214 (5)	0.0056 (5)
O2	0.0327 (5)	0.0376 (6)	0.0433 (6)	0.0125 (4)	0.0215 (5)	0.0132 (5)
O3	0.0333 (5)	0.0289 (5)	0.0352 (5)	0.0068 (4)	0.0198 (4)	0.0062 (4)

Geometric parameters (Å, °)

C1—C2	1.3682 (18)	C11—H11	0.9500
C1—O3	1.3723 (16)	C12—C13	1.390 (2)
C1-C10	1.4695 (18)	C12—H12	0.9500
C2—O2	1.3502 (16)	C13—C14	1.395 (2)
C2—C3	1.4493 (18)	C13—C16	1.5323 (18)
C3—O1	1.2386 (16)	C14—C15	1.382 (2)
C3—C4	1.4537 (19)	C14—H14	0.9500
C4—C9	1.3888 (19)	C15—H15	0.9500
C4—C5	1.4056 (19)	C16—C18	1.521 (2)

C5—C6	1.375 (2)	C16—C19	1.523 (2)
С5—Н5	0.9500	C16—C17	1.530 (2)
C6—C7	1.398 (2)	C17—H17A	0.9800
С6—Н6	0.9500	С17—Н17В	0.9800
C7—C8	1.376 (2)	С17—Н17С	0.9800
C7—H7	0.9500	C18—H18A	0.9800
C_{8}	1 3952 (19)	C18—H18B	0.9800
C8—H8	0.9500	C18 - H18C	0.9800
C_{9}	1 3629 (16)	C10 H10C	0.9800
$C_{10} = C_{15}$	1.3027(10) 1.305(2)	C10 H10R	0.9800
$C_{10} = C_{13}$	1.395(2) 1.2056(10)	C10_U10C	0.9800
	1.3930 (19)		0.9800
CII—CI2	1.3840 (19)	02—H2	0.8400
C2-C1-O3	120.60 (12)	C12—C13—C14	116.28 (13)
C_{2}^{-} C_{1}^{-} C_{10}^{-}	128.16(12)	C12 - C13 - C16	122 81 (13)
03-C1-C10	111 22 (11)	C12 - C13 - C16	122.01(13) 120.89(13)
02 $C2$ $C1$	120.56(12)	$C_{15} = C_{14} = C_{13}$	120.09(13) 122.42(14)
02 - 02 - 01	120.30(12) 117.07(11)	$C_{15} = C_{14} = C_{15}$	122.42 (14)
$C_2 = C_2 = C_3$	117.97(11) 121.47(12)	$C_{13} = C_{14} = H_{14}$	110.0
C1 = C2 = C3	121.47(12) 121.12(12)	C13 - C14 - H14	110.0
01 - 02 - 01	121.12(13)	C14 - C15 - C10	120.67 (13)
01 - 03 - 04	123.13 (12)	C14—C15—H15	119.7
$C_2 - C_3 - C_4$	115.74 (11)	С10—С15—Н15	119.7
C9—C4—C5	118.49 (13)	C18—C16—C19	109.58 (17)
C9—C4—C3	119.46 (12)	C18—C16—C17	107.91 (15)
C5—C4—C3	122.02 (12)	C19—C16—C17	108.29 (17)
C6—C5—C4	120.36 (13)	C18—C16—C13	108.58 (13)
С6—С5—Н5	119.8	C19—C16—C13	109.96 (12)
С4—С5—Н5	119.8	C17—C16—C13	112.48 (13)
C5—C6—C7	119.94 (13)	C16—C17—H17A	109.5
С5—С6—Н6	120.0	C16—C17—H17B	109.5
С7—С6—Н6	120.0	H17A—C17—H17B	109.5
C8—C7—C6	120.97 (14)	C16—C17—H17C	109.5
С8—С7—Н7	119.5	H17A—C17—H17C	109.5
С6—С7—Н7	119.5	H17B—C17—H17C	109.5
C7—C8—C9	118.55 (13)	C16—C18—H18A	109.5
C7—C8—H8	120.7	C16—C18—H18B	109.5
C9-C8-H8	120.7	H18A - C18 - H18B	109.5
03-09-04	120.7 121.80(12)	C16-C18-H18C	109.5
03 - C9 - C8	121.00(12) 116 51 (12)	$H_{18} - C_{18} - H_{18} C_{18}$	109.5
C_{1}	110.51(12) 121.60(12)		109.5
$C_{4} - C_{5} - C_{6}$	121.09(12) 117.45(12)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
C15 - C10 - C11	117.43(12) 122.70(12)	C16 C19 - H19A	109.5
$C_{13} = C_{10} = C_{1}$	122.70(12) 110.94(12)	$U_{10} = U_{17} = \Pi_{17} D$	109.5
$C_{11} = C_{10} = C_{10}$	119.84 (12)		109.5
	121.02 (13)		109.5
CI2—CII—HII	119.5	HIYA—UIY—HIYU	109.5
C10—C11—H11	119.5	H19B—C19—H19C	109.5
C11—C12—C13	122.10 (13)	C2—O2—H2	109.5
C11—C12—H12	119.0	C9—O3—C1	120.86 (10)

C13—C12—H12	119.0		
03-C1-C2-02	-17775(11)	Q3-C1-C10-C15	-169 26 (13)
$C_{10} - C_{1} - C_{2} - O_{2}$	0.6 (2)	C_{2} C_{1} C_{10} C_{11}	-167.35(14)
03-C1-C2-C3	2.3 (2)	03—C1—C10—C11	11.16 (18)
C10-C1-C2-C3	-179.29(12)	C15—C10—C11—C12	-2.2(2)
02-C2-C3-01	-1.4 (2)	C1-C10-C11-C12	177.44 (13)
C1—C2—C3—O1	178.52 (13)	C10-C11-C12-C13	0.3 (2)
O2—C2—C3—C4	178.03 (11)	C11—C12—C13—C14	1.7 (2)
C1—C2—C3—C4	-2.04 (19)	C11—C12—C13—C16	-179.81 (14)
O1—C3—C4—C9	179.28 (13)	C12—C13—C14—C15	-1.8 (2)
C2—C3—C4—C9	-0.15 (18)	C16—C13—C14—C15	179.63 (14)
O1—C3—C4—C5	1.4 (2)	C13-C14-C15-C10	0.0 (3)
C2—C3—C4—C5	-178.04 (12)	C11-C10-C15-C14	2.0 (2)
C9—C4—C5—C6	-0.4 (2)	C1-C10-C15-C14	-177.57 (14)
C3—C4—C5—C6	177.48 (13)	C12-C13-C16-C18	-102.50 (18)
C4—C5—C6—C7	0.2 (2)	C14—C13—C16—C18	75.92 (19)
C5—C6—C7—C8	0.2 (2)	C12-C13-C16-C19	137.61 (19)
C6—C7—C8—C9	-0.2 (2)	C14—C13—C16—C19	-44.0 (2)
C5—C4—C9—O3	-179.91 (12)	C12-C13-C16-C17	16.8 (2)
C3—C4—C9—O3	2.13 (19)	C14-C13-C16-C17	-164.73 (16)
C5—C4—C9—C8	0.4 (2)	C4—C9—O3—C1	-1.97 (19)
C3—C4—C9—C8	-177.60 (12)	C8—C9—O3—C1	177.77 (11)
C7—C8—C9—O3	-179.77 (12)	C2-C1-O3-C9	-0.30 (19)
C7—C8—C9—C4	0.0 (2)	C10—C1—O3—C9	-178.94 (11)
C2-C1-C10-C15	12.2 (2)		

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C4–C9 ring.

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H···A
O2—H2…O1	0.84	2.28	2.7262 (14)	113
С11—Н11…ОЗ	0.95	2.32	2.6724 (17)	101
C15—H15…O2	0.95	2.22	2.8508 (18)	123
O2—H2···O1 ⁱ	0.84	1.96	2.7104 (14)	148
C7—H7····Cg ⁱⁱ	0.95	2.59	3.407 (10)	144

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+2; (ii) -*x*+3/2, *y*-1/2, -*z*+5/2.