data reports

OPEN access

Crystal structure of N-[(morpholin-4vl)(thiophen-2-vl)methyl]benzamide

S. Arun Prabhu,^a M. Suresh,^b A. Abdul Jameel,^c M. Syed Ali Padusha^b and B. Gunasekaran^d*

^aDepartment of Chemistry, National College, Tiruchirappalli 620 001, Tamil Nadu, India, ^bPG and Research Dept of Chemistry, Jamal Mohamed College (Autonomous), Tiruchirappalli, Tamil Nadu 620 001, India, ^cSri Arumugam Group of Institutions, Tholudhur, Tamil Nadu, India, and ^dDepartment of Physics & Nano Technology, SRM University, SRM Nagar, Kattankulathur, Kancheepuram Dist, Chennai 603 203 Tamil Nadu, India. *Correspondence e-mail: phdguna@gmail.com

Received 14 lune 2015: accepted 16 lune 2015

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

In the title compound, $C_{16}H_{18}N_2O_2S$, the morpholine ring adopts a chair conformation. The thiophene ring makes a dihedral angle of $63.54 (14)^\circ$ with the mean plane of the four C atoms [maximum deviation = 0.010(3) Å] of the morpholine ring. The benzamide ring is disordered, with four C atoms occupying two sets of sites, with a refined occupancy ratio of 0.502 (4):0.498 (4). These two rings are inclined to one another by 85.2 (4)° and to the thiophene ring by 72.7 (3) and 13.0 (3)° for the major and minor components, respectively. In the crystal, molecules are linked via N-H···O hydrogen bonds, forming chains along [001].

Keywords: crystal structure; benzamide; morpholino; thiophene; hydrogen bonding.

CCDC reference: 1406913

1. Related literature

For the biological activity of benzamide derivatives, see: Carbonnelle et al. (2005); Hatzelmann & Schudt (2001); Simonini et al. (2006); Suzuki et al. (2005); Zhou et al. (1999); For related structures see: Muruganandam et al. (2009); Khan et al. (2012).

2. Experimental

2.1. Crystal data

C16H18N2O2S $M_{\rm r} = 302.38$ Monoclinic, $P2_1/c$ a = 16.5283 (11) Åb = 9.9049 (7) Å c = 9.6831 (5) Å $\beta = 99.056 \ (2)^{\circ}$

2.2. Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.920, \ T_{\max} = 0.959$

2.3. Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.182$ S = 1.043836 reflections 227 parameters

Mo $K\alpha$ radiation $\mu = 0.21 \text{ mm}^{-1}$ T = 295 K $0.40 \times 0.30 \times 0.20$ mm

V = 1565.47 (17) Å³

Z = 4

44007

11905 measured reflections
3836 independent reflections
2744 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.024$

1 restraint H-atom parameters constrained $\Delta \rho_{\rm max} = 0.62$ e Å $\Delta \rho_{\rm min} = -0.41$ e Å⁻³

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N1 - H1 \cdots O1^i$	0.86	2.02	2.878 (2)	173
Summatry and a (i)	v v 1 a 1			

Symmetry code: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5156).

References

- Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Carbonnelle, D., Ebstein, F., Rabu, C., Petit, J. Y., Gregoire, M. & Lang, F. (2005). Eur. J. Immunol. 35, 546–556.
- Hatzelmann, A. & Schudt, C. (2001). J. Pharmacol. Exp. Ther. 297, 267–279.Khan, M. R., Khan, A., Tahir, M. N., Adeel, M. & Ahmad, S. (2012). Acta Cryst. E68, 0653.
- Muruganandam, L., Rajeswari, S., Tamilvendan, D., Ramkumar, V. & Prabhu, G. V. (2009). Acta Cryst. E65, 0578.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Simonini, M. V., Camargo, L. M., Dong, E., Maloku, E., Veldic, M., Costa, E. & Guidotti, A. (2006). Proc. Natl Acad. Sci. USA, 103, 1587–1592.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Suzuki, K., Nagasawa, H., Uto, Y., Sugimoto, Y., Noguchi, K., Wakida, M., Wierzba, K., Terada, T., Asao, T., Yamada, Y., Kitazato, K. & Hori, H. (2005). *Bioorg. Med. Chem.* 13, 4014–4021.
- Zhou, Y., Xu, L., Wu, Y. & Liu, B. (1999). Chemom. Intell. Lab. Syst. 45, 95–100.

supporting information

Acta Cryst. (2015). E71, o498-o499 [doi:10.1107/S2056989015011639]

Crystal structure of *N*-[(morpholin-4-yl)(thiophen-2-yl)methyl]benzamide

S. Arun Prabhu, M. Suresh, A. Abdul Jameel, M. Syed Ali Padusha and B. Gunasekaran

S1. Synthesis and crystallization

To an alkaline solution of benzamide (0.025 mol, 3.03 g), morpholine (0.025 mol, 2.2 ml) was added drop wise in ice cold conditions and the contents were stirred for 5 min. Thiophene-2-aldehyde (0.025 mol, 2.3 ml) was then added drop wise and stirring was continued for 1 h. The Mannich base product formed was filtered, washed with water and recrystallized with ethanol (yield: 75%; m.p.: 433 K) giving colourless block-like crystals.

S2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Four C atoms in the benzamide ring (C2/C2A, C3/C3A, C5/C5A, and C6/C6A) are disordered over two positions with a refined occupany ratio of 0.502 (5):0.48 (5). All of the H atoms were positioned geometrically and refined using a riding model: N—H = 0.86 Å, C —H = 0.93 - 0.98 Å with $U_{iso}(H) = 1.2U_{eq}(N,C)$.

S3. Comment

Benzamide and its derivatives, have recently received great attention because of their wide range of pharmacological activities, such as anti-inflammatory, immunomodulatory (Hatzelmann & Schudt, 2001; Carbonnelle *et al.*, 2005), anti-tumoral (Suzuki *et al.*, 2005), antipsychotic (Simonini *et al.*, 2006), and antiallergic (Zhou *et al.*, 1999).

The geometric parameters of the title compound (Fig. 1) agree well with those reported for similar structures (Muruganandam *et al.*, 2009; Khan *et al.*, 2012). The morpholine ring adopts a chair conformation. The thiophene ring makes a dihedral angle of 63.54 (14) $^{\circ}$ with the mean plane of the four C atoms (maximum deviation 0.010 (3) Å) of the morpholine ring. The benzamide ring is disordered with four C atoms occupying two positions, with a refined occupancy ratio of 0.502 (5):0.498 (5). These two rings are inclined to one another by 85.2 (4) $^{\circ}$ and to the thiophene ring by 72.7 (3) and 13.0 (3) $^{\circ}$, for the major and minor component, respectively.

In the crystal, molecules are linked via N-H···O hydrogen bonds forming chains along [001]; see Table 1 and Fig. 2

Figure 1

The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The minor component of the disordered benzamide ring is shown with dashed lines.

Figure 2

A view along the *b* axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1 for details). The C-bound H atoms and the minor component of the disordered benzamide ring have been omitted for clarity.

N-[(Morpholin-4-yl)(thiophen-2-yl)methyl]benzamide

Crystal data

C₁₆H₁₈N₂O₂S $M_r = 302.38$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 16.5283 (11) Å b = 9.9049 (7) Å c = 9.6831 (5) Å $\beta = 99.056$ (2)° V = 1565.47 (17) Å³ Z = 4

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 0 pixels mm⁻¹ ω and φ scans F(000) = 640 $D_x = 1.283 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3836 reflections $\theta = 2.4-28.3^{\circ}$ $\mu = 0.21 \text{ mm}^{-1}$ T = 295 KBlock, colourless $0.40 \times 0.30 \times 0.20 \text{ mm}$

Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.920, T_{max} = 0.959$ 11905 measured reflections 3836 independent reflections 2744 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.024$	$k = -13 \rightarrow 13$
$\theta_{\rm max} = 28.3^{\circ}, \theta_{\rm min} = 2.4^{\circ}$	$l = -12 \rightarrow 7$
$h = -21 \rightarrow 21$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.054$	Hydrogen site location: inferred from
$wR(F^2) = 0.182$	neighbouring sites
S = 1.04	H-atom parameters constrained
3836 reflections	$w = 1/[\sigma^2(F_o^2) + (0.097P)^2 + 0.5504P]$
227 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
1 restraint	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.62 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta ho_{\min} = -0.41 \text{ e} \text{ Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
<u>S1</u>	0.94818 (4)	0.28631 (7)	0.23066 (8)	0.0622 (3)	
N2	0.81748 (10)	0.05848 (16)	0.16552 (16)	0.0345 (4)	
O2	0.81001 (12)	-0.19318 (16)	0.0245 (2)	0.0610 (5)	
01	0.66536 (11)	0.2032 (3)	0.37090 (16)	0.0734 (7)	
N1	0.70424 (10)	0.21935 (18)	0.16023 (16)	0.0365 (4)	
H1	0.6897	0.2365	0.0728	0.044*	
C14	0.82300 (13)	0.4243 (2)	0.1121 (2)	0.0406 (5)	
H14	0.7698	0.4523	0.0784	0.049*	
C7	0.64812 (12)	0.2222 (2)	0.2448 (2)	0.0402 (5)	
C1	0.56136 (13)	0.2450 (2)	0.1788 (2)	0.0450 (5)	
C2	0.5166 (4)	0.3348 (8)	0.2408 (8)	0.087 (2)	0.502 (4)
H2	0.5404	0.3854	0.3174	0.105*	0.502 (4)
C6	0.5297 (3)	0.1744 (7)	0.0642 (6)	0.0662 (16)	0.502 (4)
H6	0.5626	0.1187	0.0192	0.079*	0.502 (4)
C2A	0.5393 (3)	0.3477 (7)	0.0839 (7)	0.0745 (18)	0.498 (4)
H2A	0.5798	0.4024	0.0570	0.089*	0.498 (4)
C6A	0.4971 (4)	0.1642 (9)	0.2132 (8)	0.093 (3)	0.498 (4)
H6A	0.5096	0.0944	0.2772	0.112*	0.498 (4)
C15	0.89612 (15)	0.5008 (2)	0.1046 (3)	0.0502 (5)	
H15	0.8954	0.5852	0.0624	0.060*	
C13	0.84490 (11)	0.29981 (19)	0.1788 (2)	0.0342 (4)	
C8	0.79002 (11)	0.1877 (2)	0.21266 (19)	0.0329 (4)	
H8	0.7955	0.1831	0.3148	0.039*	
C16	0.96545 (15)	0.4401 (2)	0.1637 (3)	0.0570 (6)	
H16	1.0172	0.4781	0.1676	0.068*	
C9	0.81880 (14)	0.0498 (2)	0.0153 (2)	0.0432 (5)	
H9A	0.8509	0.1235	-0.0138	0.052*	
H9B	0.7635	0.0569	-0.0355	0.052*	
C10	0.85569 (17)	-0.0830 (2)	-0.0167 (3)	0.0549 (6)	
H10A	0.8572	-0.0888	-0.1163	0.066*	
H10B	0.9116	-0.0881	0.0319	0.066*	

C12	0.77106 (14)	-0.0547 (2)	0.2094 (2)	0.0463 (5)	
H12A	0.7143	-0.0484	0.1649	0.056*	
H12B	0.7725	-0.0516	0.3098	0.056*	
C11	0.80761 (16)	-0.1865 (2)	0.1691 (3)	0.0557 (6)	
H11A	0.8628	-0.1956	0.2200	0.067*	
H11B	0.7753	-0.2612	0.1955	0.067*	
C4	0.3980 (2)	0.2798 (6)	0.0732 (5)	0.1096 (16)	
H4	0.3428	0.2933	0.0388	0.132*	
C3	0.4339 (4)	0.3488 (11)	0.1858 (11)	0.114 (3)	0.502 (4)
H3	0.4023	0.4084	0.2289	0.137*	0.502 (4)
C5	0.4464 (4)	0.1872 (11)	0.0152 (8)	0.106 (3)	0.502 (4)
Н5	0.4224	0.1326	-0.0580	0.127*	0.502 (4)
C3A	0.4572 (4)	0.3710 (10)	0.0275 (8)	0.101 (3)	0.498 (4)
H3A	0.4416	0.4407	-0.0354	0.121*	0.498 (4)
C5A	0.4167 (4)	0.1852 (13)	0.1551 (11)	0.114 (3)	0.498 (4)
H5A	0.3762	0.1279	0.1777	0.136*	0.498 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0364 (3)	0.0508 (4)	0.0969 (6)	-0.0011 (2)	0.0025 (3)	0.0151 (3)
N2	0.0359 (8)	0.0349 (8)	0.0319 (8)	-0.0025 (6)	0.0033 (6)	0.0022 (6)
O2	0.0749 (12)	0.0380 (9)	0.0652 (11)	0.0012 (8)	-0.0042 (9)	-0.0067 (7)
01	0.0502 (10)	0.142 (2)	0.0284 (8)	0.0135 (11)	0.0070 (7)	-0.0040 (9)
N1	0.0306 (8)	0.0520 (10)	0.0258 (7)	0.0022 (7)	0.0014 (6)	0.0014 (7)
C14	0.0478 (10)	0.0426 (11)	0.0307 (9)	-0.0071 (8)	0.0041 (8)	-0.0024 (8)
C7	0.0352 (10)	0.0549 (12)	0.0300 (9)	-0.0002 (8)	0.0039 (7)	-0.0081 (8)
C1	0.0327 (10)	0.0642 (14)	0.0385 (10)	0.0004 (9)	0.0069 (8)	-0.0069 (10)
C2	0.046 (3)	0.120 (6)	0.096 (5)	0.021 (3)	0.013 (3)	-0.035 (4)
C6	0.038 (2)	0.097 (4)	0.062 (3)	-0.006(2)	0.000 (2)	-0.020(3)
C2A	0.050 (3)	0.085 (4)	0.086 (4)	0.016 (3)	0.004 (3)	0.003 (3)
C6A	0.046 (3)	0.141 (7)	0.091 (5)	-0.020 (4)	0.006 (3)	0.019 (5)
C15	0.0563 (12)	0.0358 (11)	0.0592 (13)	-0.0036 (9)	0.0115 (11)	0.0041 (10)
C13	0.0313 (9)	0.0365 (10)	0.0339 (9)	0.0006 (7)	0.0029 (7)	-0.0036 (7)
C8	0.0297 (8)	0.0420 (10)	0.0261 (8)	0.0008 (7)	0.0019 (7)	0.0001 (7)
C16	0.0446 (12)	0.0454 (13)	0.0821 (18)	-0.0088 (10)	0.0136 (11)	0.0029 (12)
C9	0.0565 (12)	0.0396 (11)	0.0332 (10)	0.0059 (9)	0.0061 (9)	0.0000 (8)
C10	0.0717 (16)	0.0452 (13)	0.0471 (12)	0.0089 (11)	0.0072 (11)	-0.0057 (10)
C12	0.0441 (11)	0.0448 (12)	0.0488 (12)	-0.0082 (9)	0.0039 (9)	0.0100 (9)
C11	0.0565 (14)	0.0397 (12)	0.0677 (16)	-0.0052 (10)	-0.0004 (12)	0.0114 (11)
C4	0.0342 (15)	0.188 (5)	0.102 (3)	0.011 (2)	-0.0034 (17)	-0.028 (3)
C3	0.050 (4)	0.155 (9)	0.141 (8)	0.040 (5)	0.027 (4)	-0.010 (6)
C5	0.048 (3)	0.179 (9)	0.082 (5)	-0.027 (4)	-0.018 (3)	-0.008(5)
C3A	0.072 (4)	0.129 (7)	0.094 (5)	0.047 (5)	-0.010 (4)	0.002 (5)
C5A	0.039 (3)	0.176 (10)	0.122 (7)	-0.020(5)	0.000 (4)	0.008 (7)

Geometric parameters (Å, °)

S1—C16	1.697 (2)	С6А—Н6А	0.9300	
S1—C13	1.7071 (19)	C15—C16	1.340 (3)	
N2—C8	1.455 (2)	C15—H15	0.9300	
N2-C12	1.459 (2)	C13—C8	1.502 (3)	
N2—C9	1.461 (2)	C8—H8	0.9800	
O2—C11	1.408 (3)	C16—H16	0.9300	
O2—C10	1.420 (3)	C9—C10	1.503 (3)	
O1—C7	1.223 (3)	С9—Н9А	0.9700	
N1—C7	1.331 (3)	C9—H9B	0.9700	
N1—C8	1.463 (2)	C10—H10A	0.9700	
N1—H1	0.8600	C10—H10B	0.9700	
C14—C13	1.413 (3)	C12—C11	1.516 (3)	
C14—C15	1.438 (3)	C12—H12A	0.9700	
C14—H14	0.9300	C12—H12B	0.9700	
C7—C1	1.493 (3)	C11—H11A	0.9700	
C1—C6	1.345 (6)	C11—H11B	0.9700	
C1—C2	1.356 (6)	C4—C5A	1.235 (11)	
C1—C2A	1.380(7)	C4—C3	1.344 (11)	
C1—C6A	1.411 (7)	C4—C5	1.392 (10)	
С2—С3	1.394 (9)	C4—C3A	1.451 (11)	
С2—Н2	0.9300	C4—H4	0.9300	
C6—C5	1.391 (7)	С3—Н3	0.9300	
С6—Н6	0.9300	С5—Н5	0.9300	
C2A—C3A	1.400 (8)	СЗА—НЗА	0.9300	
C2A—H2A	0.9300	C5A—H5A	0.9300	
C6A—C5A	1.375 (10)			
C16—S1—C13	92.16 (11)	C15—C16—H16	123.8	
C8—N2—C12	112.35 (15)	S1—C16—H16	123.8	
C8—N2—C9	114.73 (15)	N2—C9—C10	109.09 (17)	
C12—N2—C9	109.61 (16)	N2—C9—H9A	109.9	
C11—O2—C10	110.06 (18)	С10—С9—Н9А	109.9	
C7—N1—C8	121.48 (15)	N2—C9—H9B	109.9	
C7—N1—H1	119.3	C10—C9—H9B	109.9	
C8—N1—H1	119.3	H9A—C9—H9B	108.3	
C13—C14—C15	109.02 (19)	O2—C10—C9	111.3 (2)	
C13—C14—H14	125.5	O2—C10—H10A	109.4	
C15—C14—H14	125.5	C9—C10—H10A	109.4	
01—C7—N1	122.37 (19)	O2—C10—H10B	109.4	
01—C7—C1	120.54 (19)	C9—C10—H10B	109.4	
N1—C7—C1	117.06 (17)	H10A—C10—H10B	108.0	
C6—C1—C2	122.5 (4)	N2—C12—C11	109.75 (18)	
C6-C1-C2A	78.9 (4)	N2—C12—H12A	109.7	
C2C1C2A	72.9 (5)	C11—C12—H12A	109.7	
C6-C1-C6A	72.0 (4)	N2—C12—H12B	109.7	
C2—C1—C6A	77.6 (5)	C11—C12—H12B	109.7	

C2A—C1—C6A	116.5 (4)	H12A—C12—H12B	108.2
C6—C1—C7	119.8 (3)	O2—C11—C12	111.78 (19)
C2—C1—C7	117.6 (3)	O2—C11—H11A	109.3
C2A—C1—C7	122.2 (3)	C12—C11—H11A	109.3
C6A—C1—C7	121.4 (4)	O2—C11—H11B	109.3
C1—C2—C3	117.8 (7)	C12—C11—H11B	109.3
C1—C2—H2	121.1	H11A—C11—H11B	107.9
С3—С2—Н2	121.1	C5A—C4—C3	80.2 (7)
C1—C6—C5	118.0 (6)	C5A—C4—C5	70.0 (7)
С1—С6—Н6	121.0	C3—C4—C5	117.0 (5)
С5—С6—Н6	121.0	C5A—C4—C3A	123.7 (5)
C1—C2A—C3A	121.3 (6)	C3—C4—C3A	72.4 (6)
C1—C2A—H2A	119.4	C5—C4—C3A	80.2 (5)
СЗА—С2А—Н2А	119.4	C5A—C4—H4	118.1
C5A—C6A—C1	122.2 (7)	C3—C4—H4	120.1
С5А—С6А—Н6А	118.9	С5—С4—Н4	123.0
С1—С6А—Н6А	118.9	C3A—C4—H4	118.1
C16—C15—C14	114.3 (2)	C4—C3—C2	122.8 (7)
C16—C15—H15	122.8	C4—C3—H3	118.6
C14—C15—H15	122.8	С2—С3—Н3	118.6
C14—C13—C8	128.68 (17)	C6-C5-C4	121.6 (6)
C14—C13—S1	112.05 (15)	С6—С5—Н5	119.2
C8—C13—S1	119.20 (14)	C4—C5—H5	119.2
N2-C8-N1	114.37 (15)	C2A—C3A—C4	115.9 (7)
N2-C8-C13	110.65 (14)	C2A—C3A—H3A	122.0
N1-C8-C13	110.57 (16)	C4—C3A—H3A	122.0
N2—C8—H8	106.9	C4—C5A—C6A	120.4 (8)
N1—C8—H8	106.9	C4—C5A—H5A	119.8
С13—С8—Н8	106.9	С6А—С5А—Н5А	119.8
C15—C16—S1	112.44 (18)		
C8—N1—C7—O1	2.6 (3)	C9—N2—C8—C13	-59.9(2)
C8—N1—C7—C1	-175.38(18)	C7—N1—C8—N2	111.0 (2)
O1—C7—C1—C6	-130.9 (4)	C7—N1—C8—C13	-123.3(2)
N1—C7—C1—C6	47.1 (4)	C14—C13—C8—N2	130.5 (2)
O1—C7—C1—C2	47.1 (5)	S1—C13—C8—N2	-52.7 (2)
N1—C7—C1—C2	-134.9 (5)	C14—C13—C8—N1	2.7 (3)
01—C7—C1—C2A	133.5 (4)	S1—C13—C8—N1	179.57 (13)
N1—C7—C1—C2A	-48.5 (4)	C14—C15—C16—S1	0.7 (3)
O1—C7—C1—C6A	-44.8 (5)	C13—S1—C16—C15	0.3 (2)
N1-C7-C1-C6A	133.1 (5)	C8—N2—C9—C10	174.63 (17)
C6—C1—C2—C3	2.8 (10)	C12—N2—C9—C10	-57.9 (2)
C2A—C1—C2—C3	67.0 (8)	C11—O2—C10—C9	-59.3 (3)
C6A—C1—C2—C3	-56.0 (8)	N2-C9-C10-O2	59.6 (3)
C7—C1—C2—C3	-175.2 (6)	C8—N2—C12—C11	-174.71 (17)
C2—C1—C6—C5	-5.1 (9)	C9—N2—C12—C11	56.5 (2)
C2A—C1—C6—C5	-66.4 (7)	C10-02-C11-C12	57.7 (3)
C6A—C1—C6—C5	56.4 (7)	N2—C12—C11—O2	-56.9 (2)

C7-C1-C6-C5 C6-C1-C2A-C3A C2-C1-C2A-C3A C6A-C1-C2A-C3A C7-C1-C2A-C3A C6-C1-C6A-C5A C2-C1-C6A-C5A C2-C1-C6A-C5A	172.8 (5) 64.4 (7) -65.0 (7) 1.1 (9) -177.3 (5) -66.7 (8) 63.9 (9)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	64.2 (10) 2.7 (14) -66.0 (10) -1.6 (14) 6.3 (11) -72.3 (9) -5.1 (12)
C13—C14—C15—C16 C15—C14—C13—C8 C15—C14—C13—S1 C16—S1—C13—C14 C16—S1—C13—C8 C12—N2—C8—N1 C9—N2—C8—N1 C12—N2—C8—C13	-1.6 (3) 178.82 (19) 1.8 (2) -1.24 (17) -178.59 (17) -60.4 (2) 65.7 (2) 173.99 (15)	C5A—C4—C3A—C2A C3—C4—C3A—C2A C5—C4—C3A—C2A C3—C4—C5A—C6A C5—C4—C5A—C6A C3A—C4—C5A—C6A C1—C6A—C5A—C4	-1.0 (11) 63.8 (7) -58.7 (7) -58.5 (9) 65.1 (9) 2.6 (14) -2.3 (14)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D···A	<i>D</i> —H··· <i>A</i>
N1—H1···O1 ⁱ	0.86	2.02	2.878 (2)	173

Symmetry code: (i) x, -y+1/2, z-1/2.