

ISSN 2056-9890

CRYSTALLOGRAPHIC

OPEN d ACCESS

Crystal structure of (E)-5-diethylamino-2-({[4-(dimethylamino)phenyl]imino}methyl)phenol

C. Vidva Rani,^a G. Chakkaravarthi^{b*} and G. Rajagopal^{a*}

^aPG & Research Department of Chemistry, Chikkanna Government Arts College, Tiruppur 641 602, India, and ^bDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India. *Correspondence e-mail: chakkaravarthi_2005@yahoo.com, rajagopal18@yahoo.com

Received 15 June 2015; accepted 19 June 2015

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

The title Schiff base compound, $C_{19}H_{25}N_3O$, is approximately planar, with a dihedral angle of $9.03 (13)^\circ$ between the planes of the aromatic rings, and has an E conformation about the N=C bond. The molecular structure is stabilized by an intramolecular $O-H \cdots N$ hydrogen bond, with an S(6) ring motif. In the crystal, molecules are linked by $C-H\cdots\pi$ interactions, forming sheets parallel to the bc plane.

Keywords: crystal structure; Schiff base; intramolecular O-H···N hydrogen bond; C—H··· π interactions.

CCDC reference: 1407678

1. Related literature

For biological activities of Schiff base derivatives, see: Savaliya et al. (2010); Xu et al. (2012). For the structures of similar compounds, see: Manvizhi et al. (2011); Thirugnanasundar et al. (2011).

2. Experimental

2.1. Crystal data

1	
C ₁₉ H ₂₅ N ₃ O	b = 7.8850(7) Å
$M_r = 311.42$	c = 13.0639 (10) Å
Monoclinic, P2 ₁	$\beta = 108.407 \ (3)^{\circ}$
a = 8.8201 (7) Å	$V = 862.06 (12) \text{ Å}^3$

Z = 2Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$

2.2. Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.981, \ T_{\max} = 0.985$

2.3. Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.052$ $wR(F^2) = 0.159$ S = 1.033825 reflections 214 parameters

2438 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.027$

13009 measured reflections

3825 independent reflections

T = 295 K

 $0.26 \times 0.22 \times 0.20 \text{ mm}$

6 restraints H-atom parameters constrained $\Delta \rho_{\rm max} = 0.29 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.16 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of rings C3-C8 and C10-C15, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$01-H1\cdots N2$ $C11-H11\cdots Cg1^{i}$ $C17-H17B\cdots Cg2^{ii}$	0.82 0.93 0.96	1.85 2.71 2.90	2.585 (3) 3.517 (3) 3.743 (5)	148 145 147

Symmetry codes: (i) $-x, y + \frac{1}{2}, -z + 1$; (ii) $-x, y - \frac{1}{2}, -z + 2$.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON.

Acknowledgements

The authors acknowledge the SAIF, IIT, Madras, for the data collection.

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5157).

References

- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
- Manvizhi, K., Chakkaravarthi, G., Anbalagan, G. & Rajagopal, G. (2011). Acta Crvst. E67. 02500.
- Savaliya, M. D., Dobaria, J. G. & Purohit, D. M. (2010). An Indian J. 6, 267-271
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Thirugnanasundar, A., Suresh, J., Ramu, A. & RajaGopal, G. (2011). Acta Cryst E67 02303.
- Xu, R.-B., Zhang, N., Zhou, H.-Y., Yang, S.-P., Li, Y.-Y., Shi, D.-H., Ma, W.-X. & Xu, X.-Y. (2012). J. Chem. Crystallogr. 42, 928-932.

supporting information

Acta Cryst. (2015). E71, o503 [doi:10.1107/S2056989015011779]

Crystal structure of (*E*)-5-diethylamino-2-({[4-(dimethylamino)phenyl]imino}- methyl)phenol

C. Vidya Rani, G. Chakkaravarthi and G. Rajagopal

S1. Structural commentary

Schiff base derivatives are known to exhibit antimicrobial (Savaliya *et al.*, 2010) and antibacterial (Xu *et al.*, 2012) activities. Herein we report on the synthesis and the crystal structure of a new Schiff base compound.

The molecular structure of the title compound is illustrated in Fg. 1. The geometric parameters are comparable to those reported for similar structures (Manvizhi *et al.*, 2011; Thirugnanasundar *et al.*, 2011). The dihedral angle between the benzene rings (C3—C8) and (C10—C15) is 9.03 (13)°. The molecular structure is stabilized by an intramolecular O— $H\cdots$ N hydrogen bond (Table 1 and Fig. 1).

In the crystal, molecules are linked by C—H $\cdots\pi$ interactions forming sheets parallel to the bc plane (Table 1 and Fig. 2).

S2. Synthesis and crystallization

To an ethanol solution (10 ml) of 5-(diethylamino)-2-hydroxybenzaldehyde (96.5 mg, 0.5 mol) was added N^{i} , N^{i} -dimethylbenzene-1,4-diamine (68 mg, 0.5 mol). The mixture was stirred and 2 to 3 drops of glacial acetic acid were added. Stirring was continued for 30 mins and then the reaction mixture was refluxed for 2 h. On completion of the reaction, monitored by TLC, the mixture was allowed to cool to room temperature and the solid yellow precipitate that formed was filtered, dried, and recrystallized from DMF, giving colourless block-like crystals.

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned geometrically and refined using riding model: O-H = 0.82 Å, C-H = 0.93 - 0.97 Å with $U_{iso}(H) = 1.5Ueq(O,C)$ for the hydroxyl and methyl H atoms and $1.2U_{eq}(C)$ for other H atoms. The components of the anisotropic displacement parameters of the atoms in bonds N3-C16, N3-C18 and N1-C2 were restrained to be equal within an effective standard deviation of 0.001 using the DELU command, and the C16-C17 bond distance was restrained to 1.54 (1) Å.

Figure 1

The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The intramolecular O—H..N hydrogen bonds is shown as a dashd lines (see Table 1 for details).

Figure 2

A view along the *a* axis of the crystal apcking of the title compound. The O—H..N and C-H… π interactions are illustrated by dashed lines (see Table 1 for details).

(E)-5-Diethylamino-2-({[4-(dimethylamino)phenyl]imino}methyl)phenol

Crystal data	
Crystal data $C_{19}H_{25}N_3O$ $M_r = 311.42$ Monoclinic, $P2_1$ Hall symbol: P 2yb a = 8.8201 (7) Å	F(000) = 336 $D_x = 1.200 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4428 reflections $\theta = 2.4-27.2^{\circ}$
b = 7.8850 (7) Å c = 13.0639 (10) Å $\beta = 108.407 (3)^{\circ}$ $V = 862.06 (12) \text{ Å}^{3}$ Z = 2	$\mu = 0.08 \text{ mm}^{-1}$ T = 295 K Block, colourless 0.26 × 0.22 × 0.20 mm

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scan Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.981, T_{\max} = 0.985$ <i>Refinement</i>	13009 measured reflections 3825 independent reflections 2438 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 27.3^{\circ}, \theta_{min} = 2.4^{\circ}$ $h = -11 \rightarrow 10$ $k = -10 \rightarrow 10$ $l = -16 \rightarrow 16$
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.052$ $wR(F^2) = 0.159$ S = 1.03 3825 reflections 214 parameters 6 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0751P)^2 + 0.1538P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.29$ e Å ⁻³ $\Delta\rho_{min} = -0.16$ e Å ⁻³ Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.014 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.4431 (4)	0.6814 (5)	0.2015 (2)	0.0780 (10)	
H1A	0.3484	0.6253	0.1573	0.117*	
H1B	0.5213	0.6840	0.1644	0.117*	
H1C	0.4171	0.7953	0.2159	0.117*	
C2	0.6641 (4)	0.5264 (6)	0.3287 (3)	0.0902 (12)	
H2A	0.7316	0.5867	0.3901	0.135*	
H2B	0.7039	0.5405	0.2688	0.135*	
H2C	0.6635	0.4081	0.3459	0.135*	
C3	0.4220 (3)	0.5850 (3)	0.3736 (2)	0.0502 (6)	
C4	0.2713 (3)	0.6598 (4)	0.3525 (2)	0.0547 (7)	
H4	0.2275	0.7180	0.2880	0.066*	
C5	0.1861 (3)	0.6502 (4)	0.42371 (19)	0.0512 (6)	
Н5	0.0860	0.7008	0.4067	0.061*	
C6	0.2487 (3)	0.5648 (3)	0.52175 (18)	0.0444 (6)	
C7	0.3965 (3)	0.4922 (3)	0.5425 (2)	0.0508 (6)	

117	0.4405	0 4252	0 6075	0.061*
П/ С9	0.4403	0.4552	0.0075	0.001°
	0.4820 (5)	0.5005 (4)	0.4715 (2)	0.0537(7)
H8	0.5816	0.4483	0.4889	0.064*
C9	0.0435 (3)	0.6249 (4)	0.59847 (19)	0.0481 (6)
H9	-0.0034	0.6975	0.5411	0.058*
C10	-0.0294 (3)	0.6066 (3)	0.68154 (19)	0.0462 (6)
C11	-0.1669 (3)	0.6947 (3)	0.6784 (2)	0.0537 (7)
H11	-0.2150	0.7626	0.6188	0.064*
C12	-0.2347 (3)	0.6864 (4)	0.7586 (2)	0.0596 (8)
H12	-0.3278	0.7467	0.7524	0.072*
C13	-0.1648 (3)	0.5871 (4)	0.8507 (2)	0.0528 (6)
C14	-0.0279 (3)	0.4940 (3)	0.8547 (2)	0.0523 (7)
H14	0.0198	0.4255	0.9141	0.063*
C15	0.0370 (3)	0.5025 (3)	0.7722 (2)	0.0472 (6)
C16	-0.1784 (4)	0.4511 (5)	1.0194 (3)	0.0834 (10)
H16A	-0.2702	0.4176	1.0403	0.100*
H16B	-0.1393	0.3520	0.9915	0.100*
C17	-0.0541 (5)	0.5166 (6)	1.1125 (3)	0.1089 (14)
H17A	0.0389	0.5432	1.0925	0.163*
H17B	-0.0274	0.4327	1.1686	0.163*
H17C	-0.0917	0.6173	1.1380	0.163*
C18	-0.3507 (4)	0.7080 (5)	0.9409 (3)	0.0835 (10)
H18A	-0.3375	0.7326	1.0160	0.100*
H18B	-0.3372	0.8131	0.9062	0.100*
C19	-0.5106 (4)	0.6420 (8)	0.8890 (4)	0.1178 (15)
H19A	-0.5223	0.6129	0.8156	0.177*
H19B	-0.5881	0.7267	0.8905	0.177*
H19C	-0.5270	0.5428	0.9268	0.177*
N1	0.5063 (3)	0.5915 (4)	0.30117 (18)	0.0693 (7)
N2	0.1707 (2)	0.5451 (3)	0.60028 (16)	0.0495 (5)
N3	-0.2261 (3)	0.5836 (4)	0.9344 (2)	0.0826 (9)
01	0.1678 (2)	0.4075 (3)	0.77919 (17)	0.0695 (6)
H1	0.2010	0.4308	0.7289	0.104*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.097 (2)	0.090 (3)	0.0568 (17)	-0.0042 (19)	0.0384 (16)	0.0063 (17)
C2	0.0743 (17)	0.127 (3)	0.082 (2)	0.0100 (19)	0.0428 (18)	0.012 (2)
C3	0.0561 (14)	0.0511 (15)	0.0454 (13)	-0.0092 (13)	0.0189 (11)	0.0004 (12)
C4	0.0608 (16)	0.0587 (17)	0.0431 (13)	0.0034 (14)	0.0143 (12)	0.0113 (13)
C5	0.0487 (13)	0.0557 (16)	0.0487 (14)	0.0064 (12)	0.0148 (11)	0.0060 (13)
C6	0.0510 (14)	0.0410 (14)	0.0418 (13)	-0.0028 (12)	0.0154 (11)	0.0013 (11)
C7	0.0506 (14)	0.0535 (16)	0.0453 (14)	0.0033 (13)	0.0110 (11)	0.0073 (12)
C8	0.0494 (14)	0.0554 (16)	0.0544 (16)	0.0018 (12)	0.0137 (12)	0.0038 (13)
C9	0.0505 (14)	0.0473 (15)	0.0436 (13)	-0.0018 (13)	0.0107 (11)	0.0001 (11)
C10	0.0455 (13)	0.0444 (14)	0.0467 (13)	-0.0009 (11)	0.0116 (10)	-0.0012 (11)
C11	0.0547 (14)	0.0533 (16)	0.0496 (14)	0.0138 (12)	0.0113 (12)	0.0110 (12)

C12	0.0529 (14)	0.066 (2)	0.0604 (16)	0.0188 (13)	0.0188 (13)	0.0095 (14)	
C13	0.0533 (14)	0.0548 (16)	0.0530 (14)	0.0039 (13)	0.0207 (11)	0.0075 (13)	
C14	0.0543 (15)	0.0523 (16)	0.0506 (15)	0.0101 (13)	0.0167 (12)	0.0147 (13)	
C15	0.0403 (12)	0.0443 (14)	0.0554 (15)	0.0053 (11)	0.0129 (11)	0.0050 (12)	
C16	0.086 (2)	0.093 (3)	0.081 (2)	0.0042 (18)	0.0414 (19)	0.0168 (16)	
C17	0.126 (3)	0.098 (3)	0.097 (3)	0.010 (3)	0.028 (3)	-0.008 (3)	
C18	0.080(2)	0.107 (3)	0.075 (2)	0.0190 (17)	0.0400 (18)	0.0039 (19)	
C19	0.094 (3)	0.134 (4)	0.131 (4)	0.014 (3)	0.043 (3)	-0.015 (3)	
N1	0.0737 (14)	0.083 (2)	0.0611 (15)	0.0044 (13)	0.0357 (13)	0.0146 (14)	
N2	0.0530 (12)	0.0515 (14)	0.0459 (11)	0.0007 (10)	0.0184 (9)	0.0030 (10)	
N3	0.0769 (16)	0.112 (2)	0.0696 (16)	0.0288 (15)	0.0381 (13)	0.0210 (15)	
01	0.0666 (12)	0.0777 (14)	0.0737 (14)	0.0302 (11)	0.0356 (10)	0.0283 (11)	

Geometric parameters (Å, °)

C1—N1	1.432 (4)	C11—C12	1.363 (4)	
C1—H1A	0.9600	C11—H11	0.9300	
C1—H1B	0.9600	C12—C13	1.404 (4)	
C1—H1C	0.9600	C12—H12	0.9300	
C2—N1	1.419 (4)	C13—N3	1.364 (3)	
C2—H2A	0.9600	C13—C14	1.400 (3)	
C2—H2B	0.9600	C14—C15	1.373 (4)	
C2—H2C	0.9600	C14—H14	0.9300	
C3—N1	1.377 (3)	C15—O1	1.354 (3)	
C3—C8	1.390 (4)	C16—C17	1.451 (5)	
C3—C4	1.400 (4)	C16—N3	1.485 (4)	
C4—C5	1.370 (4)	C16—H16A	0.9700	
C4—H4	0.9300	C16—H16B	0.9700	
C5—C6	1.397 (3)	C17—H17A	0.9600	
С5—Н5	0.9300	C17—H17B	0.9600	
С6—С7	1.370 (3)	C17—H17C	0.9600	
C6—N2	1.413 (3)	C18—C19	1.454 (5)	
С7—С8	1.370 (4)	C18—N3	1.495 (4)	
С7—Н7	0.9300	C18—H18A	0.9700	
С8—Н8	0.9300	C18—H18B	0.9700	
C9—N2	1.280 (3)	C19—H19A	0.9600	
C9—C10	1.433 (3)	C19—H19B	0.9600	
С9—Н9	0.9300	C19—H19C	0.9600	
C10-C11	1.386 (3)	O1—H1	0.8200	
C10—C15	1.407 (3)			
N1—C1—H1A	109.5	N3—C13—C14	121.0 (2)	
N1—C1—H1B	109.5	N3—C13—C12	121.3 (2)	
H1A—C1—H1B	109.5	C14—C13—C12	117.7 (2)	
N1—C1—H1C	109.5	C15—C14—C13	120.9 (2)	
H1A—C1—H1C	109.5	C15—C14—H14	119.5	
H1B—C1—H1C	109.5	C13—C14—H14	119.5	
N1—C2—H2A	109.5	O1-C15-C14	118.5 (2)	

N1—C2—H2B	109.5	O1—C15—C10	119.9 (2)
H2A—C2—H2B	109.5	C14—C15—C10	121.6 (2)
N1—C2—H2C	109.5	C17—C16—N3	109.7 (3)
H2A—C2—H2C	109.5	С17—С16—Н16А	109.7
H2B—C2—H2C	109.5	N3—C16—H16A	109.7
N1—C3—C8	121.2 (2)	C17—C16—H16B	109.7
N1—C3—C4	122.3 (2)	N3—C16—H16B	109.7
C8—C3—C4	116.4 (2)	H16A—C16—H16B	108.2
C5—C4—C3	122.2 (2)	С16—С17—Н17А	109.5
C5—C4—H4	118.9	C16—C17—H17B	109.5
C3—C4—H4	118.9	H17A—C17—H17B	109.5
C4-C5-C6	120.4 (2)	C16—C17—H17C	109.5
C4—C5—H5	119.8	H17A - C17 - H17C	109.5
C6-C5-H5	119.8	H17B-C17-H17C	109.5
C7-C6-C5	117.3 (2)	C19-C18-N3	107.0
C7 - C6 - N2	117.5(2) 117.5(2)	C19 - C18 - H18A	109.4
C_{5} C_{6} N_{2}	117.3(2) 125.2(2)	N3_C18_H18A	109.4
$C_3 = C_0 = N_2$	123.2(2) 122.6(2)	C_{10} C_{18} H_{18B}	109.4
$C_8 = C_7 = H_7$	122.0 (2)	N3 C18 H18B	109.4
C6 C7 H7	118.7	H18A C18 H18B	109.4
$C_{0} - C_{1} - C_{1}$	110.7 1210(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	108.0
$C_7 C_8 H_8$	121.0 (2)	C_{18} C_{19} H_{10R}	109.5
$C_{1} = C_{0} = H_{0}$	119.5	$H_{10A} = C_{10} = H_{10B}$	109.5
$N_2 = C_0 = C_{10}$	119.5	$\begin{array}{cccc} 1117 \\$	109.5
$N_2 = C_3 = C_{10}$	122.5 (2)		109.5
$N_2 = C_9 = H_9$	110.0	H19A - C19 - H19C	109.5
$C_{10} - C_{9} - H_{9}$	116.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.3
$C_{11} = C_{10} = C_{13}$	110.4(2) 121.6(2)	$C_3 = N_1 = C_2$	120.8(2)
C15 C10 C0	121.0(2)	$C_2 N_1 - C_1$	120.2(2)
C12 - C10 - C9	121.9(2) 122.1(2)	C_2 N1 $-C_1$	118.0(2)
C_{12} C_{11} U_{11}	123.1 (2)	C_{9} N2 C_{16}	123.9(2)
	118.5	C12 N2 C18	121.3(3)
	118.5	C13 - N3 - C18	121.1(3)
CII = CI2 = CI3	120.5 (2)	C16 $N3$ $C18$	117.4 (2)
C11—C12—H12	119.8	C15—01—H1	109.5
C13—C12—H12	119.8		
N1 C2 C4 C5	179 ((2)	C12 C14 C15 C10	1 1 (4)
$NI = C_3 = C_4 = C_5$	1/8.0(3)	C13 - C14 - C13 - C10	1.1(4)
$C_{3} = C_{4} = C_{5}$	-0.3(4)	CII = CI0 = CI5 = OI	1/7.5(3)
$C_3 - C_4 - C_5 - C_6$	0.5(4)		-4.4 (4)
C4 - C5 - C6 - C7	-0.2(4)		-2.3(4)
C4 - C5 - C6 - N2	-1/9.1(3)	C9 - C10 - C15 - C14	1/5.8 (3)
$C_{5} - C_{6} - C_{7} - C_{8}$	-0.3(4)	C_{3} C_{3} N_{1} C_{2}	-6.4 (5)
N2-C6-C7-C8	178.7 (2)	C4 - C3 - N1 - C2	174.8 (3)
$C_0 - C_1 - C_8 - C_3$	0.5 (4)	C_{4} C_{2} N_{1} C_{1}	-1/9.2(3)
N1 - C3 - C8 - C7	-1/9.0(3)	C4 - C3 - NI - CI	2.1 (4)
C4 - C3 - C8 - C7	-0.2 (4)	C10 - C9 - N2 - C6	-1/7.7(2)
N2-C9-C10-C11	1/9.7 (2)	C/-C6-N2-C9	1/0.0 (2)
N2—C9—C10—C15	1.7 (4)	C5—C6—N2—C9	-11.0 (4)

supporting information

C15—C10—C11—C12 C9—C10—C11—C12	1.4 (4) -176.7 (3)	C14—C13—N3—C16 C12—C13—N3—C16	-15.8(5) 165.5(3)
C10—C11—C12—C13	0.8 (4)	C14—C13—N3—C18	167.5 (3)
C11—C12—C13—N3	176.7 (3)	C12—C13—N3—C18	-11.3 (5)
C11-C12-C13-C14	-2.1 (4)	C17—C16—N3—C13	97.4 (4)
N3-C13-C14-C15	-177.6 (3)	C17—C16—N3—C18	-85.7 (4)
C12-C13-C14-C15	1.2 (4)	C19—C18—N3—C13	91.4 (4)
C13—C14—C15—O1	-178.8 (3)	C19—C18—N3—C16	-85.5 (4)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of rings C3-C8 and C10-C15, respectively.

D—H···A	<i>D</i> —Н	H···A	D··· A	D—H··· A	
01—H1…N2	0.82	1.85	2.585 (3)	148	
C11—H11··· $Cg1^i$	0.93	2.71	3.517 (3)	145	
C17—H17 <i>B</i> ··· <i>C</i> g2 ⁱⁱ	0.96	2.90	3.743 (5)	147	

Symmetry codes: (i) -*x*, *y*+1/2, -*z*+1; (ii) -*x*, *y*-1/2, -*z*+2.