organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o464-o465

Crystal structure of 16-hy­dr­oxy-4,4,10,13,14-penta­methyl-17-(6-methyl­hept-5-en-2-yl)-4,5,6,9,10,11,12,13,14,15,16,17-dodeca­hydro-1H-cyclo­penta­[a]phenanthren-3(2H)-one

CROSSMARK_Color_square_no_text.svg

aSchool of Pharmacy, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
*Correspondence e-mail: yxx@wmu.edu.cn

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 23 May 2015; accepted 2 June 2015; online 13 June 2015)

The title compound, C30H48O2, contains a fused four-ring triterpenoid system. In the mol­ecule, the two cyclo­hexane rings adopt a chair conformation and a twist boat conformation, respectively, the central cyclo­hexene ring adopts a half-chair conformation whereas the five membered ring adopts an envelope conformation. In the crystal, O—H⋯O hydrogen bonds between the hy­droxy and carbonyl groups of adjacent mol­ecules link the mol­ecules into supra­molecular chains propagating along the b-axis direction.

1. Related literature

For biological applications of triterpenoid compounds, see: Faizi et al. (2002[Faizi, S., Wasi, A., Siddiqui, B. S. & Naz, A. (2002). Aust. J. Chem. 55, 291-296.]); Wang et al. (2011[Wang, J.-S., Zhang, Y., Luo, J. & Kong, L.-Y. (2011). Magn. Reson. Chem. 49, 450-457.]); Dong et al. (2012[Dong, S.-H., He, X.-F., Dong, L., Wu, Y. & Yue, J. (2012). Helv. Chim. Acta, 95, 286-300.]). For isolation of the title compound from the barks of Melia azedarach, see: Chang & Chiang (1969[Chang, F. C. & Chiang, C. (1969). Tetrahedron Lett. 10, 891-894.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C30H48O2

  • Mr = 440.68

  • Orthorhombic, P 21 21 21

  • a = 12.436 (7) Å

  • b = 13.571 (7) Å

  • c = 16.159 (9) Å

  • V = 2727 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 K

  • 0.31 × 0.25 × 0.22 mm

2.2. Data collection

  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Winsonsin, USA.]) Tmin = 0.980, Tmax = 0.986

  • 12873 measured reflections

  • 3000 independent reflections

  • 2320 reflections with I > 2σ(I)

  • Rint = 0.044

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.198

  • S = 1.08

  • 3000 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 2.11 2.894 (4) 160
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2002[Bruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Winsonsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Winsonsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Introduction top

Melia azedarach Linn. (Meliaceae), a high tree, enjoys a broad distribution in the most parts of China. The triterpenoids which isolated from this plant is well known for its pharmacological properties, such as analgesic, anti­cancer, anti­viral, anti­malarial, anti­bacterial and anti­feedant activities (Faizi et al., 2002; Wang et al., 2011; Dong et al., 2012). The title compound, 16-hy­droxy-4,4,10,13,14-penta­methyl -17-(6-methyl­hept-5-en-2-yl)-4,5,6,9,10,11,12,13,14,15,16,17-dodeca­hydro -1H-cyclo­penta [α]phenanthren-3(2H)-one (I) (Fig. 1) was isolated from the barks of Melia azedarach (Chiang & Chang, 1969). In this work, we obtained a single-crystal of (I) and present here its crystal structure.

The title compound contains a fused four-ring triterpenoid system. rings A adopt a chair conformation, while ring B with one double bond adopts a half-chair conformation, ring C adopts a twist boat conformation and ring D adopts an envelope conformation. Inter­molecular O—H···O hydrogen bonds are present in the crystal structure (Table 1).

Isolation and crystallization top

The air-dried and powered barks of Melia azedarach L.(10.6kg) were percolated with 95% aqueous ethanol for 7 days at room temperature for three times. After evaporation of the solvent under reduced pressure, the gummy residue was suspended in water and then partitioned with EtOAc. The EtOAc extract (145g) was subjected to CC on silica gel eluting with petroleum ether-EtOAc (from 20:1 to 2:1, v/v) to give fifteen fractions (1-15). Fraction 5 (22g) was further separated on silica gel CC and eluted with petroleum-acetone from 20:1 to 3:1, yielding five sub-fractions (2a-2e). Sub-fraction 2c (3.25g), subjected to a series of purification steps using silica gel CC, Sephadex LH-20 to afford Sub-fraction 2c-b-b-b (120.4mg) , then use semi-preparative HPLC (MeCN/H2O 90:10, flow rate 3.8 mL/min) to afford (I) (16.8mg, t R = 32.5min). The structures of (I) was elucidated by means of NMR. Colourless crystal were obtained in the freezer after one month by slow evaporation from acetone/methanol [10:1 (v/v)] mixture solution.

Refinement top

H-atoms bound to carbon were placed in calculated positions with C—H = 0.93–0.98 Å, and refined in riding mode with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others. Hy­droxy H atoms was placed in calculated position with O—-H = 0.82 Å, and refined in riding mode with Uiso(H) = 1.5Ueq(O). The absolute structure has not been determined as no significant anomalous scattering, equivalent diffractions were merged.

Related literature top

For biological applications of triterpenoid compounds, see: Faizi et al. (2002); Wang et al. (2011); Dong et al. (2012). For isolation of the title compound from the barks of Melia azedarach, see: Chang & Chiang (1969).

Computing details top

Data collection: APEX2 (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom numbering, showing displacement ellipsoids at the 50% probability level.
16-Hydroxy-4,4,10,13,14-pentamethyl-17-(6-methylhept-5-en-2-yl)-4,5,6,9,10,11,12,13,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3(2H)-one top
Crystal data top
C30H48O2F(000) = 976
Mr = 440.68Dx = 1.073 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2467 reflections
a = 12.436 (7) Åθ = 2.5–21.6°
b = 13.571 (7) ŵ = 0.07 mm1
c = 16.159 (9) ÅT = 298 K
V = 2727 (3) Å3Block, colorless
Z = 40.31 × 0.25 × 0.22 mm
Data collection top
Bruker APEXII area-detector
diffractometer
3000 independent reflections
Radiation source: fine-focus sealed tube2320 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1513
Tmin = 0.980, Tmax = 0.986k = 1616
12873 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.198H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.1351P)2 + 0.062P]
where P = (Fo2 + 2Fc2)/3
3000 reflections(Δ/σ)max < 0.001
298 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C30H48O2V = 2727 (3) Å3
Mr = 440.68Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 12.436 (7) ŵ = 0.07 mm1
b = 13.571 (7) ÅT = 298 K
c = 16.159 (9) Å0.31 × 0.25 × 0.22 mm
Data collection top
Bruker APEXII area-detector
diffractometer
3000 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2320 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.986Rint = 0.044
12873 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.198H-atom parameters constrained
S = 1.08Δρmax = 0.38 e Å3
3000 reflectionsΔρmin = 0.30 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2176 (3)1.0719 (2)0.49312 (19)0.0701 (10)
O20.2062 (3)0.7741 (2)0.04929 (17)0.0596 (8)
H20.22570.72000.03240.089*
C10.2070 (3)1.0561 (3)0.2829 (2)0.0491 (10)
H1A0.15531.10800.29380.059*
H1B0.24751.07460.23410.059*
C20.2841 (4)1.0484 (3)0.3565 (3)0.0603 (12)
H2A0.31951.11120.36560.072*
H2B0.33890.99930.34520.072*
C30.2204 (3)1.0194 (3)0.4330 (3)0.0496 (10)
C40.1582 (3)0.9224 (3)0.4286 (3)0.0507 (10)
C50.0913 (3)0.9245 (3)0.3454 (2)0.0403 (8)
H50.03500.97360.35540.048*
C60.0298 (4)0.8278 (3)0.3325 (3)0.0593 (12)
H6A0.02260.82010.37660.071*
H6B0.07980.77310.33610.071*
C70.0274 (3)0.8238 (3)0.2502 (3)0.0498 (10)
H70.07360.77100.24100.060*
C80.0173 (3)0.8893 (2)0.1897 (2)0.0353 (7)
C90.0524 (3)0.9818 (2)0.2036 (2)0.0332 (7)
H90.00591.02950.23180.040*
C100.1457 (3)0.9588 (2)0.2652 (2)0.0383 (8)
C110.0870 (3)1.0312 (3)0.1222 (2)0.0445 (9)
H11A0.11481.09610.13520.053*
H11B0.14580.99320.09900.053*
C120.0017 (3)1.0428 (3)0.0540 (2)0.0440 (9)
H12A0.02991.02770.00060.053*
H12B0.02491.11100.05270.053*
C130.1008 (3)0.9767 (2)0.0667 (2)0.0343 (7)
C140.0645 (3)0.8748 (2)0.1044 (2)0.0346 (7)
C150.1679 (3)0.8139 (3)0.0979 (2)0.0435 (9)
H15A0.15170.74400.09760.052*
H15B0.21570.82800.14380.052*
C160.2196 (3)0.8456 (3)0.0147 (2)0.0436 (9)
H160.29640.85850.02310.052*
C170.1624 (3)0.9421 (2)0.0125 (2)0.0362 (7)
H170.10760.92290.05300.043*
C180.1798 (3)1.0301 (3)0.1263 (2)0.0454 (9)
H18A0.20581.08920.10050.068*
H18B0.23930.98740.13840.068*
H18C0.14311.04650.17670.068*
C190.2237 (4)0.8835 (3)0.2255 (3)0.0625 (12)
H19A0.18700.82210.21710.094*
H19B0.24850.90840.17320.094*
H19C0.28410.87330.26150.094*
C200.2391 (3)1.0155 (3)0.0574 (2)0.0470 (9)
H200.29451.03530.01760.056*
C210.2962 (4)0.9630 (4)0.1298 (3)0.0590 (11)
H21A0.24340.93610.16680.089*
H21B0.34030.91070.10860.089*
H21C0.34041.00940.15900.089*
C220.1849 (4)1.1094 (3)0.0890 (3)0.0569 (11)
H22A0.15081.14190.04240.068*
H22B0.24031.15320.10960.068*
C230.1024 (5)1.0964 (3)0.1554 (3)0.0704 (14)
H23A0.05221.04550.13850.085*
H23B0.13801.07390.20540.085*
C240.0405 (6)1.1890 (4)0.1748 (4)0.0844 (17)
H240.02121.22670.12900.101*
C250.0095 (4)1.2247 (4)0.2468 (4)0.0774 (15)
C260.0271 (5)1.1679 (7)0.3249 (4)0.111 (3)
H26A0.06721.10920.31290.166*
H26B0.06661.20770.36350.166*
H26C0.04111.15040.34850.166*
C270.0482 (6)1.3212 (5)0.2542 (6)0.129 (3)
H27A0.05861.34880.20010.193*
H27B0.11681.31090.28010.193*
H27C0.00611.36570.28720.193*
C280.2423 (5)0.8383 (3)0.4348 (3)0.0740 (15)
H28A0.28460.84690.48400.111*
H28B0.20600.77600.43710.111*
H28C0.28850.84000.38720.111*
C290.0838 (5)0.9145 (5)0.5010 (3)0.0841 (17)
H29A0.03790.97130.50280.126*
H29B0.04060.85620.49550.126*
H29C0.12500.91080.55110.126*
C300.0204 (3)0.8237 (3)0.0497 (3)0.0493 (9)
H30A0.04290.76350.07560.074*
H30B0.01020.80940.00350.074*
H30C0.08130.86640.04300.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.106 (3)0.0522 (16)0.0525 (18)0.0022 (17)0.0278 (19)0.0093 (15)
O20.088 (2)0.0471 (14)0.0433 (15)0.0172 (15)0.0117 (15)0.0010 (12)
C10.049 (2)0.051 (2)0.048 (2)0.0132 (18)0.0126 (18)0.0032 (18)
C20.056 (2)0.057 (2)0.069 (3)0.016 (2)0.023 (2)0.003 (2)
C30.057 (2)0.0394 (18)0.052 (2)0.0032 (17)0.0254 (19)0.0021 (18)
C40.064 (2)0.0424 (19)0.046 (2)0.0032 (18)0.018 (2)0.0011 (17)
C50.0451 (19)0.0362 (17)0.0396 (19)0.0001 (16)0.0070 (16)0.0007 (15)
C60.079 (3)0.052 (2)0.048 (2)0.025 (2)0.023 (2)0.0116 (19)
C70.062 (2)0.0406 (18)0.046 (2)0.0200 (18)0.016 (2)0.0088 (17)
C80.0376 (17)0.0309 (15)0.0373 (18)0.0029 (13)0.0015 (15)0.0008 (14)
C90.0349 (16)0.0326 (15)0.0322 (17)0.0033 (13)0.0004 (14)0.0018 (14)
C100.0373 (17)0.0372 (17)0.0403 (19)0.0001 (14)0.0029 (15)0.0025 (15)
C110.049 (2)0.048 (2)0.0363 (19)0.0168 (17)0.0024 (16)0.0032 (16)
C120.051 (2)0.0444 (18)0.0362 (18)0.0123 (16)0.0010 (17)0.0016 (16)
C130.0387 (16)0.0327 (15)0.0316 (17)0.0019 (13)0.0055 (14)0.0021 (14)
C140.0376 (17)0.0313 (15)0.0348 (18)0.0023 (13)0.0033 (15)0.0006 (14)
C150.054 (2)0.0378 (17)0.039 (2)0.0103 (16)0.0049 (17)0.0046 (15)
C160.046 (2)0.0493 (19)0.0354 (19)0.0110 (16)0.0054 (16)0.0016 (16)
C170.0380 (17)0.0413 (17)0.0292 (16)0.0009 (14)0.0023 (14)0.0015 (14)
C180.046 (2)0.050 (2)0.040 (2)0.0088 (17)0.0043 (16)0.0036 (17)
C190.051 (2)0.067 (3)0.069 (3)0.020 (2)0.009 (2)0.015 (2)
C200.052 (2)0.0485 (19)0.040 (2)0.0078 (17)0.0036 (17)0.0050 (17)
C210.054 (2)0.073 (3)0.050 (2)0.004 (2)0.017 (2)0.014 (2)
C220.074 (3)0.045 (2)0.052 (2)0.0038 (19)0.010 (2)0.0076 (19)
C230.103 (4)0.056 (2)0.053 (3)0.004 (3)0.001 (3)0.005 (2)
C240.114 (4)0.069 (3)0.071 (3)0.019 (3)0.017 (3)0.000 (3)
C250.063 (3)0.082 (3)0.087 (4)0.008 (3)0.011 (3)0.034 (3)
C260.085 (4)0.187 (8)0.060 (3)0.028 (5)0.001 (3)0.027 (4)
C270.099 (5)0.088 (4)0.199 (8)0.003 (4)0.048 (6)0.060 (5)
C280.103 (4)0.045 (2)0.074 (3)0.007 (2)0.044 (3)0.007 (2)
C290.101 (4)0.115 (4)0.036 (2)0.026 (4)0.017 (3)0.006 (3)
C300.052 (2)0.0454 (19)0.050 (2)0.0099 (17)0.0067 (19)0.0096 (18)
Geometric parameters (Å, º) top
O1—C31.206 (5)C16—C171.553 (5)
O2—C161.428 (4)C16—H160.9800
O2—H20.8200C17—C201.558 (5)
C1—C21.531 (5)C17—H170.9800
C1—C101.552 (5)C18—H18A0.9600
C1—H1A0.9700C18—H18B0.9600
C1—H1B0.9700C18—H18C0.9600
C2—C31.521 (6)C19—H19A0.9600
C2—H2A0.9700C19—H19B0.9600
C2—H2B0.9700C19—H19C0.9600
C3—C41.528 (5)C20—C221.529 (6)
C4—C291.495 (7)C20—C211.543 (6)
C4—C281.552 (6)C20—H200.9800
C4—C51.581 (5)C21—H21A0.9600
C5—C61.533 (5)C21—H21B0.9600
C5—C101.535 (5)C21—H21C0.9600
C5—H50.9800C22—C231.495 (7)
C6—C71.510 (6)C22—H22A0.9700
C6—H6A0.9700C22—H22B0.9700
C6—H6B0.9700C23—C241.507 (7)
C7—C81.327 (5)C23—H23A0.9700
C7—H70.9300C23—H23B0.9700
C8—C141.510 (5)C24—C251.318 (8)
C8—C91.541 (4)C24—H240.9300
C9—C111.537 (5)C25—C261.495 (10)
C9—C101.560 (5)C25—C271.498 (8)
C9—H90.9800C26—H26A0.9600
C10—C191.549 (5)C26—H26B0.9600
C11—C121.568 (5)C26—H26C0.9600
C11—H11A0.9700C27—H27A0.9600
C11—H11B0.9700C27—H27B0.9600
C12—C131.537 (5)C27—H27C0.9600
C12—H12A0.9700C28—H28A0.9600
C12—H12B0.9700C28—H28B0.9600
C13—C181.554 (5)C28—H28C0.9600
C13—C171.564 (5)C29—H29A0.9600
C13—C141.577 (5)C29—H29B0.9600
C14—C151.532 (5)C29—H29C0.9600
C14—C301.542 (5)C30—H30A0.9600
C15—C161.550 (5)C30—H30B0.9600
C15—H15A0.9700C30—H30C0.9600
C15—H15B0.9700
C16—O2—H2109.5O2—C16—C17108.3 (3)
C2—C1—C10113.1 (3)C15—C16—C17106.8 (3)
C2—C1—H1A108.9O2—C16—H16109.5
C10—C1—H1A109.0C15—C16—H16109.5
C2—C1—H1B109.0C17—C16—H16109.5
C10—C1—H1B108.9C16—C17—C20113.0 (3)
H1A—C1—H1B107.8C16—C17—C13104.2 (3)
C3—C2—C1108.8 (3)C20—C17—C13119.2 (3)
C3—C2—H2A109.9C16—C17—H17106.5
C1—C2—H2A109.9C20—C17—H17106.5
C3—C2—H2B109.9C13—C17—H17106.5
C1—C2—H2B109.9C13—C18—H18A109.5
H2A—C2—H2B108.3C13—C18—H18B109.5
O1—C3—C2121.1 (4)H18A—C18—H18B109.5
O1—C3—C4122.2 (4)C13—C18—H18C109.5
C2—C3—C4116.7 (3)H18A—C18—H18C109.5
C29—C4—C3109.8 (4)H18B—C18—H18C109.5
C29—C4—C28108.3 (4)C10—C19—H19A109.5
C3—C4—C28106.9 (3)C10—C19—H19B109.5
C29—C4—C5109.9 (3)H19A—C19—H19B109.5
C3—C4—C5106.9 (3)C10—C19—H19C109.5
C28—C4—C5115.0 (3)H19A—C19—H19C109.5
C6—C5—C10111.4 (3)H19B—C19—H19C109.5
C6—C5—C4111.3 (3)C22—C20—C21109.5 (3)
C10—C5—C4119.4 (3)C22—C20—C17114.7 (3)
C6—C5—H5104.3C21—C20—C17109.8 (3)
C10—C5—H5104.3C22—C20—H20107.5
C4—C5—H5104.3C21—C20—H20107.5
C7—C6—C5112.7 (3)C17—C20—H20107.5
C7—C6—H6A109.1C20—C21—H21A109.5
C5—C6—H6A109.1C20—C21—H21B109.5
C7—C6—H6B109.1H21A—C21—H21B109.5
C5—C6—H6B109.1C20—C21—H21C109.5
H6A—C6—H6B107.8H21A—C21—H21C109.5
C8—C7—C6125.5 (3)H21B—C21—H21C109.5
C8—C7—H7117.2C23—C22—C20116.4 (4)
C6—C7—H7117.2C23—C22—H22A108.2
C7—C8—C14123.2 (3)C20—C22—H22A108.2
C7—C8—C9119.4 (3)C23—C22—H22B108.2
C14—C8—C9117.2 (3)C20—C22—H22B108.2
C11—C9—C8112.8 (3)H22A—C22—H22B107.3
C11—C9—C10115.1 (3)C22—C23—C24113.7 (4)
C8—C9—C10110.4 (3)C22—C23—H23A108.8
C11—C9—H9105.9C24—C23—H23A108.8
C8—C9—H9105.9C22—C23—H23B108.8
C10—C9—H9105.9C24—C23—H23B108.8
C5—C10—C19115.2 (3)H23A—C23—H23B107.7
C5—C10—C1108.6 (3)C25—C24—C23129.7 (6)
C19—C10—C1109.3 (3)C25—C24—H24115.1
C5—C10—C9105.8 (3)C23—C24—H24115.1
C19—C10—C9109.5 (3)C24—C25—C26120.9 (5)
C1—C10—C9108.3 (3)C24—C25—C27122.1 (6)
C9—C11—C12116.6 (3)C26—C25—C27116.9 (6)
C9—C11—H11A108.1C25—C26—H26A109.5
C12—C11—H11A108.1C25—C26—H26B109.5
C9—C11—H11B108.1H26A—C26—H26B109.5
C12—C11—H11B108.1C25—C26—H26C109.5
H11A—C11—H11B107.3H26A—C26—H26C109.5
C13—C12—C11114.3 (3)H26B—C26—H26C109.5
C13—C12—H12A108.7C25—C27—H27A109.5
C11—C12—H12A108.7C25—C27—H27B109.5
C13—C12—H12B108.7H27A—C27—H27B109.5
C11—C12—H12B108.7C25—C27—H27C109.5
H12A—C12—H12B107.6H27A—C27—H27C109.5
C12—C13—C18108.6 (3)H27B—C27—H27C109.5
C12—C13—C17117.3 (3)C4—C28—H28A109.5
C18—C13—C17109.7 (3)C4—C28—H28B109.5
C12—C13—C14109.5 (3)H28A—C28—H28B109.5
C18—C13—C14110.4 (3)C4—C28—H28C109.5
C17—C13—C14101.1 (2)H28A—C28—H28C109.5
C8—C14—C15117.4 (3)H28B—C28—H28C109.5
C8—C14—C30108.4 (3)C4—C29—H29A109.5
C15—C14—C30107.0 (3)C4—C29—H29B109.5
C8—C14—C13110.5 (3)H29A—C29—H29B109.5
C15—C14—C13101.9 (3)C4—C29—H29C109.5
C30—C14—C13111.6 (3)H29A—C29—H29C109.5
C14—C15—C16105.0 (3)H29B—C29—H29C109.5
C14—C15—H15A110.8C14—C30—H30A109.5
C16—C15—H15A110.8C14—C30—H30B109.5
C14—C15—H15B110.8H30A—C30—H30B109.5
C16—C15—H15B110.8C14—C30—H30C109.5
H15A—C15—H15B108.8H30A—C30—H30C109.5
O2—C16—C15113.0 (3)H30B—C30—H30C109.5
C10—C1—C2—C358.6 (5)C11—C12—C13—C17150.0 (3)
C1—C2—C3—O1119.7 (4)C11—C12—C13—C1435.6 (4)
C1—C2—C3—C458.8 (5)C7—C8—C14—C1530.3 (5)
O1—C3—C4—C299.4 (5)C9—C8—C14—C15154.2 (3)
C2—C3—C4—C29169.0 (4)C7—C8—C14—C3090.9 (4)
O1—C3—C4—C28107.8 (5)C9—C8—C14—C3084.6 (4)
C2—C3—C4—C2873.8 (4)C7—C8—C14—C13146.5 (4)
O1—C3—C4—C5128.6 (4)C9—C8—C14—C1338.0 (4)
C2—C3—C4—C549.8 (4)C12—C13—C14—C864.4 (3)
C29—C4—C5—C663.7 (5)C18—C13—C14—C855.1 (4)
C3—C4—C5—C6177.2 (4)C17—C13—C14—C8171.2 (3)
C28—C4—C5—C658.7 (5)C12—C13—C14—C15170.2 (3)
C29—C4—C5—C10164.2 (4)C18—C13—C14—C1570.3 (3)
C3—C4—C5—C1045.1 (4)C17—C13—C14—C1545.7 (3)
C28—C4—C5—C1073.3 (4)C12—C13—C14—C3056.3 (4)
C10—C5—C6—C739.1 (5)C18—C13—C14—C30175.8 (3)
C4—C5—C6—C7175.1 (4)C17—C13—C14—C3068.1 (3)
C5—C6—C7—C87.9 (7)C8—C14—C15—C16158.2 (3)
C6—C7—C8—C14171.4 (4)C30—C14—C15—C1679.8 (3)
C6—C7—C8—C93.9 (7)C13—C14—C15—C1637.4 (3)
C7—C8—C9—C11160.7 (4)C14—C15—C16—O2104.2 (3)
C14—C8—C9—C1115.0 (4)C14—C15—C16—C1714.8 (4)
C7—C8—C9—C1030.4 (5)O2—C16—C17—C2093.0 (4)
C14—C8—C9—C10145.3 (3)C15—C16—C17—C20145.0 (3)
C6—C5—C10—C1956.6 (4)O2—C16—C17—C13136.1 (3)
C4—C5—C10—C1975.4 (4)C15—C16—C17—C1314.1 (4)
C6—C5—C10—C1179.5 (3)C12—C13—C17—C16155.4 (3)
C4—C5—C10—C147.5 (4)C18—C13—C17—C1680.2 (3)
C6—C5—C10—C964.5 (4)C14—C13—C17—C1636.4 (3)
C4—C5—C10—C9163.5 (3)C12—C13—C17—C2077.4 (4)
C2—C1—C10—C552.9 (4)C18—C13—C17—C2047.0 (4)
C2—C1—C10—C1973.6 (5)C14—C13—C17—C20163.6 (3)
C2—C1—C10—C9167.3 (3)C16—C17—C20—C22177.2 (3)
C11—C9—C10—C5172.0 (3)C13—C17—C20—C2259.9 (4)
C8—C9—C10—C558.8 (3)C16—C17—C20—C2153.3 (4)
C11—C9—C10—C1963.3 (4)C13—C17—C20—C21176.3 (3)
C8—C9—C10—C1965.8 (4)C21—C20—C22—C2359.2 (5)
C11—C9—C10—C155.8 (4)C17—C20—C22—C2364.8 (5)
C8—C9—C10—C1175.1 (3)C20—C22—C23—C24171.4 (4)
C8—C9—C11—C1244.3 (4)C22—C23—C24—C25139.4 (7)
C10—C9—C11—C12172.2 (3)C23—C24—C25—C265.0 (11)
C9—C11—C12—C1317.4 (5)C23—C24—C25—C27177.4 (6)
C11—C12—C13—C1885.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.822.112.894 (4)160
Symmetry code: (i) x, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.822.112.894 (4)160
Symmetry code: (i) x, y1/2, z+1/2.
 

Acknowledgements

This work was supported financially by a grant from the Natural Sciences Foundation of Zhejiang, China (No. LY12B02007).

References

First citationBruker (2002). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Winsonsin, USA.  Google Scholar
First citationChang, F. C. & Chiang, C. (1969). Tetrahedron Lett. 10, 891–894.  CrossRef Google Scholar
First citationDong, S.-H., He, X.-F., Dong, L., Wu, Y. & Yue, J. (2012). Helv. Chim. Acta, 95, 286–300.  Web of Science CrossRef CAS Google Scholar
First citationFaizi, S., Wasi, A., Siddiqui, B. S. & Naz, A. (2002). Aust. J. Chem. 55, 291–296.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J.-S., Zhang, Y., Luo, J. & Kong, L.-Y. (2011). Magn. Reson. Chem. 49, 450–457.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o464-o465
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds