data reports

OPEN access

Crystal structure of cis-anti-cis-dicyclohexane-18-crown-6 acetonitrile disolvate

Alexander Nazarenko

Chemistry Department, SUNY College at Buffalo, 1300 Elmwood Ave, Buffalo, New York 14222, USA. *Correspondence e-mail: nazareay@buffalostate.edu

Received 6 June 2015; accepted 7 June 2015

Edited by M. Zeller, Youngstown State University, USA

title compound (systematic name: cis-anti-cis-The 2,5,8,15,18,21-hexaoxatricyclo[20.4.0.0^{9,14}]hexacosane acetonitrile disolvate), C₂₀H₃₆O₆·2CH₃CN, crystallizes from an acetonitrile solution of dicyclohexane-18-crown-6 on evaporation. The molecule is arranged around a center of symmetry with half the crown ether molecule and one molecule of acetonitrile symmetry independent. All O-C-C-O torsion angles are *gauche* while all C–O–C–C angles are *trans*. The sequence of torsion angles is $[(tg^+t)(tg^-t)]_3$; the geometry of oxygen atoms is close to pseudo- D_{3d} with three atoms below and three atoms above the mean plane, with an average deviation of ± 0.16 (1) Å from the mean plane. This geometry is identical to that observed in metal ion complexes of dicyclohexane-18-crown-6 but differs significantly from the conformation of a free unsolvated molecule. Each acetonitrile molecule connects to a crown ether molecule via two of its methyl group H atoms (C-H···O). Weaker interactions exist between the third H atom of the acetonitrile methyl group and an O atom of a neighbouring crown ether molecule (C- $H \cdots O$); and between the N atom of the acetonitrile molecule and a H atom of another neighbouring crown ether molecule. All these intermolecular interactions create a three-dimensional network stabilizing the disolvate.

Keywords: crystal structure; dicyclohexane-18-crown-6; crown ether; acetonitrile; hydrogen bonding.

CCDC reference: 1405283

1. Related literature

The crystal structure of the cis-anti-cis isomer of dicyclohexane-18-crown-6 was reported by Dalley et al. (1975) (no atomic coordinates given), and later re-investigated by Nazarenko (2002). For the orthorhombic polymorph, see: Kravtsov et al. (2002). Synthesis and crystal structures of solvates of dicyclohexane-18-crown-6 with dinitriles have been investigated: see: structures with malononitrile by Damewood et al. (1988) and with succinonitrile by Dalley & Nazarenko (1999). The importance of the different behavior of isomers of dicyclohexane-18-crown-6 was first stressed by Pedersen (1967) and later studied in complexation, extraction, and transport reactions.

2. Experimental

2.1. Crystal data

 $C_{20}H_{36}O_6 \cdot 2C_2H_3N$ $\nu = 80.927 \ (2)^{\circ}$ V = 632.53 (6) Å³ $M_r = 454.59$ Triclinic, $P\overline{1}$ Z = 1a = 6.9428 (4) Å Mo $K\alpha$ radiation b = 9.5286(5) Å $\mu = 0.09 \text{ mm}^{-1}$ c = 9.8927 (6) Å T = 173 K $0.49 \times 0.34 \times 0.28 \text{ mm}$ $\alpha = 80.415 \ (2)^{\circ}$ $\beta = 81.697 (2)^{\circ}$

2.2. Data collection

2.3. Refinement

```
Bruker PHOTON-100 CMOS
  diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2014)
  T_{\min} = 0.956, T_{\max} = 1.000
```

20203 measured reflections 3045 independent reflections 2476 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.031$

Table 1 Hydrogen-bond geometry (Å, °).

D=II···A	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C11-H11A\cdots O3^{i}$	0.936 (19)	2.51 (2)	3.3528 (17)	150.8 (16)
$C11 - H11C \cdots O1^{1}$	0.97 (2)	2.56 (2)	3.4809 (16)	159.1 (15)

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Acknowledgements

Financial support from the State University of New York for acquisition of the X-ray diffractometer is gratefully acknowledged.

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZL2627).

References

Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Dalley, N. K., Lamb, J. D. & Nazarenko, A. Y. (1999). J. Inclusion Phenom. Macrocycl. Chem. 33, 331–338.
- Dalley, N. K., Smith, J. S., Larson, S. B., Christensen, J. J. & Izatt, R. M. (1975). Chem. Commun., pp. 43–44.
- Damewood, J. R., Urban, J. J., Williamson, T. C. & Rheingold, A. (1988). J. Org. Chem. 53, 167–171.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Kravtsov, V. Ch., Fonari, M. S., Zaworotko, M. J. & Lipkowski, J. (2002). Acta Cryst. C58, 0683–0684.
- Nazarenko, A. Y. (2002). Private communication (refcode DCHXCS01). CCDC, Cambridge, England.
- Pedersen, C. J. (1967). J. Am. Chem. Soc. 89, 7017-7036.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

supporting information

Acta Cryst. (2015). E71, o472-o473 [doi:10.1107/S2056989015011056]

Crystal structure of cis-anti-cis-dicyclohexane-18-crown-6 acetonitrile disolvate

Alexander Nazarenko

Figure 1

Structure of the title compound with atom labeling. The second half of the crown ether molecule and the second acetonitrile molecule molecule are created by an inversion center located at the center of the crown ether molecule (symmetry operator: 1 - x, 1 - y, 1 - z).

Intermolecular short contacts of acetonitrile molecules with neighboring crown ether molecules.

cis-anti-cis-2,5,8,15,18,21-Hexaoxatricyclo[20.4.0.09,14] hexacosane acetonitrile disolvate

Crystal data

 $C_{20}H_{36}O_6 \cdot 2C_2H_3N$ $M_r = 454.59$ Triclinic, $P\overline{1}$ a = 6.9428 (4) Å b = 9.5286 (5) Å c = 9.8927 (6) Å $a = 80.415 (2)^{\circ}$ $\beta = 81.697 (2)^{\circ}$ $\gamma = 80.927 (2)^{\circ}$ $V = 632.53 (6) \text{ Å}^3$

Data collection

Bruker PHOTON-100 CMOS diffractometer Detector resolution: 10 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2014) $T_{\min} = 0.956, T_{\max} = 1.000$ 20203 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.104$ S = 1.07 Z = 1 F(000) = 248 $D_x = 1.193 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9918 reflections $\theta = 3.0-33.2^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 173 KBlock, colourless $0.49 \times 0.34 \times 0.28 \text{ mm}$

3045 independent reflections 2476 reflections with $I > 2\sigma(I)$ $R_{int} = 0.031$ $\theta_{max} = 28.0^{\circ}, \ \theta_{min} = 3.0^{\circ}$ $h = -9 \rightarrow 9$ $k = -12 \rightarrow 12$ $l = -13 \rightarrow 13$

3045 reflections229 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

Hydrogen site location: difference Fourier map	$(\Delta/\sigma)_{\rm max} < 0.001$
All H-atom parameters refined	$\Delta \rho_{\rm max} = 0.29 \text{ e} \text{ Å}^{-3}$
$w = 1/[\sigma^2(F_o^2) + (0.0454P)^2 + 0.1761P]$	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$
where $P = (F_{o}^{2} + 2F_{c}^{2})/3$	

Special details

Experimental. SADABS-2014/5 (Bruker, 2014) was used for absorption correction. wR2(int) was 0.0615 before and 0.0513 after correction. The Ratio of minimum to maximum transmission is 0.9562. The $\lambda/2$ correction factor is 0.00150. **Geometry.** All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	v	Z	$U_{\rm iso}^*/U_{\rm eq}$	
03	0 32768 (12)	0 49496 (8)	0 76820 (8)	0 0246 (2)	
01	0.32760(12) 0.47462(11)	0.17190(8) 0.27282(8)	0.32574(8)	0.02307(19)	
02	0.24108(12)	0.30700 (8)	0.52392(8)	0.0258(2)	
C10	0.50905(17)	0.66821(12)	0.81733(11)	0.0222(2)	
C5	0.31527 (17)	0.60704(12)	0.84980 (11)	0.0217(2)	
C2	0.28223(19)	0.18001 (13)	0.53071(12)	0.0265(3)	
C1	0.20225(13) 0.29308(18)	0.22030(14)	0.37680(13)	0.0205(3) 0.0275(3)	
C4	0.16935 (18)	0.41295(13)	0.80064(13)	0.0259(3)	
C3	0 22641 (18)	0.27499(12)	0 73991 (12)	0.0244(3)	
C6	0.14216 (17)	0.72519(13)	0.82817(13)	0.0245(2)	
C9	0.50976 (19)	0.78031 (13)	0.91167(13)	0.0278(3)	
C8	0.3383 (2)	0.90062 (13)	0.89292 (14)	0.0312(3)	
C7	0.1431 (2)	0.84186 (14)	0.91736 (14)	0.0319(3)	
C12	0.25068 (19)	0.76690 (15)	0.34942 (15)	0.0356 (3)	
N1	0.2335 (2)	0.87640 (16)	0.28169 (17)	0.0589 (4)	
C11	0.2721 (2)	0.62716 (15)	0.43442 (15)	0.0346 (3)	
Н5	0.3067 (19)	0.5644 (13)	0.9475 (14)	0.021 (3)*	
H6A	0.1510 (18)	0.7665 (14)	0.7324 (14)	0.022 (3)*	
H8A	0.357 (2)	0.9525 (15)	0.7989 (16)	0.032 (4)*	
H1A	0.183 (2)	0.2961 (15)	0.3529 (14)	0.031 (4)*	
H2A	0.408 (2)	0.1246 (15)	0.5572 (15)	0.032 (4)*	
H10	0.618 (2)	0.5904 (14)	0.8319 (13)	0.024 (3)*	
H3A	0.356 (2)	0.2254 (14)	0.7689 (13)	0.023 (3)*	
H9A	0.499 (2)	0.7318 (15)	1.0061 (16)	0.032 (4)*	
H2B	0.179 (2)	0.1217 (15)	0.5635 (14)	0.029 (3)*	
H4A	0.140 (2)	0.3869 (15)	0.9035 (16)	0.031 (4)*	
H3B	0.124 (2)	0.2113 (14)	0.7749 (14)	0.026 (3)*	
H6B	0.015 (2)	0.6841 (15)	0.8527 (14)	0.028 (3)*	
H9B	0.636 (2)	0.8182 (15)	0.8941 (15)	0.032 (4)*	
H7A	0.121 (2)	0.8002 (16)	1.0119 (17)	0.035 (4)*	
H1B	0.281 (2)	0.1362 (17)	0.3363 (15)	0.036 (4)*	
H8B	0.337 (2)	0.9694 (16)	0.9556 (16)	0.038 (4)*	
H4B	0.053 (2)	0.4659 (16)	0.7635 (15)	0.033 (4)*	

supporting information

H7B	0.034 (2)	0.9160 (17)	0.9006 (16)	0.040 (4)*	
H11A	0.360 (3)	0.5628 (19)	0.3858 (19)	0.055 (5)*	
H11B	0.147 (3)	0.5936 (19)	0.4572 (19)	0.057 (5)*	
H11C	0.326 (3)	0.635 (2)	0.517 (2)	0.069 (6)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
03	0.0272 (4)	0.0223 (4)	0.0253 (4)	-0.0080 (3)	0.0043 (3)	-0.0085 (3)
01	0.0231 (4)	0.0282 (4)	0.0189 (4)	-0.0070 (3)	-0.0018 (3)	-0.0040 (3)
O2	0.0344 (5)	0.0210 (4)	0.0222 (4)	-0.0053 (3)	0.0006 (3)	-0.0055 (3)
C10	0.0249 (6)	0.0223 (5)	0.0196 (5)	-0.0013 (4)	-0.0055 (4)	-0.0028 (4)
C5	0.0283 (6)	0.0208 (5)	0.0163 (5)	-0.0032 (4)	-0.0013 (4)	-0.0047 (4)
C2	0.0308 (6)	0.0222 (6)	0.0276 (6)	-0.0095 (5)	0.0034 (5)	-0.0072 (5)
C1	0.0263 (6)	0.0324 (6)	0.0273 (6)	-0.0117 (5)	-0.0003 (5)	-0.0099 (5)
C4	0.0262 (6)	0.0266 (6)	0.0257 (6)	-0.0081 (5)	0.0030 (5)	-0.0072 (5)
C3	0.0286 (6)	0.0229 (6)	0.0222 (6)	-0.0086 (5)	0.0009 (5)	-0.0034 (4)
C6	0.0241 (6)	0.0259 (6)	0.0237 (6)	-0.0022 (4)	-0.0010 (4)	-0.0065 (5)
C9	0.0335 (7)	0.0308 (6)	0.0221 (6)	-0.0079 (5)	-0.0054 (5)	-0.0078 (5)
C8	0.0408 (7)	0.0249 (6)	0.0303 (7)	-0.0046 (5)	-0.0029 (5)	-0.0119 (5)
C7	0.0329 (7)	0.0292 (6)	0.0335 (7)	0.0011 (5)	0.0009 (5)	-0.0137 (5)
C12	0.0277 (7)	0.0402 (8)	0.0411 (8)	-0.0068 (5)	-0.0073 (5)	-0.0080 (6)
N1	0.0539 (9)	0.0474 (8)	0.0755 (11)	-0.0121 (7)	-0.0197 (7)	0.0062 (7)
C11	0.0317 (7)	0.0371 (7)	0.0340 (7)	-0.0009 (6)	-0.0032 (6)	-0.0063 (6)

Geometric parameters (Å, °)

O3—C5	1.4274 (13)	C4—H4B	0.969 (15)
O3—C4	1.4169 (14)	С3—НЗА	1.005 (13)
O1-C10 ⁱ	1.4285 (13)	С3—Н3В	0.993 (14)
01—C1	1.4230 (14)	C6—C7	1.5313 (16)
O2—C2	1.4241 (13)	C6—H6A	0.961 (13)
O2—C3	1.4177 (14)	C6—H6B	1.006 (14)
C10-01 ⁱ	1.4285 (13)	C9—C8	1.5256 (18)
C10—C5	1.5210 (16)	С9—Н9А	0.969 (15)
С10—С9	1.5319 (16)	С9—Н9В	0.983 (15)
C10—H10	0.982 (13)	C8—C7	1.5196 (19)
С5—С6	1.5248 (16)	C8—H8A	0.980 (15)
С5—Н5	0.981 (13)	C8—H8B	0.972 (16)
C2—C1	1.5009 (17)	С7—Н7А	0.953 (16)
C2—H2A	0.994 (15)	С7—Н7В	0.964 (16)
C2—H2B	0.964 (15)	C12—N1	1.1414 (19)
C1—H1A	0.992 (15)	C12—C11	1.450 (2)
C1—H1B	0.974 (16)	C11—H11A	0.934 (19)
C4—C3	1.5086 (16)	C11—H11B	0.959 (19)
C4—H4A	1.005 (15)	C11—H11C	0.97 (2)
C4—O3—C5	114.40 (8)	O2—C3—H3B	110.1 (8)

C1	114.05 (8)	C4—C3—H3A	109.8 (7)
C3—O2—C2	111.74 (9)	C4—C3—H3B	108.8 (8)
O1 ⁱ —C10—C5	106.49 (9)	H3A—C3—H3B	109.1 (10)
O1 ⁱ —C10—C9	112.88 (9)	C5—C6—C7	110.51 (10)
O1 ⁱ —C10—H10	108.5 (8)	С5—С6—Н6А	109.1 (8)
C5—C10—C9	109.33 (9)	С5—С6—Н6В	110.4 (8)
C5-C10-H10	109.5 (8)	С7—С6—Н6А	109.7 (8)
С9—С10—Н10	110.0 (8)	С7—С6—Н6В	109.2 (8)
O3—C5—C10	107.36 (9)	H6A—C6—H6B	107.8 (11)
O3—C5—C6	114.17 (9)	С10—С9—Н9А	107.7 (8)
O3—C5—H5	108.6 (7)	С10—С9—Н9В	110.2 (8)
C10—C5—C6	110.98 (9)	C8—C9—C10	110.82 (10)
С10—С5—Н5	106.1 (8)	С8—С9—Н9А	110.1 (9)
С6—С5—Н5	109.4 (7)	С8—С9—Н9В	111.4 (8)
O2—C2—C1	109.38 (10)	H9A—C9—H9B	106.6 (12)
O2—C2—H2A	109.3 (8)	C9—C8—H8A	108.6 (8)
O2—C2—H2B	109.0 (8)	C9—C8—H8B	110.4 (9)
C1—C2—H2A	110.7 (8)	C7—C8—C9	111.38 (11)
C1—C2—H2B	109.7 (8)	С7—С8—Н8А	109.9 (8)
H2A—C2—H2B	108.7 (11)	C7—C8—H8B	109.5 (9)
O1—C1—C2	109.04 (10)	H8A—C8—H8B	107.0 (12)
01—C1—H1A	109.4 (8)	С6—С7—Н7А	108.0 (9)
O1—C1—H1B	111.4 (9)	C6—C7—H7B	108.9 (9)
C2—C1—H1A	110.0 (8)	C8—C7—C6	111.85 (10)
C2—C1—H1B	108.9 (9)	C8—C7—H7A	108.5 (9)
H1A—C1—H1B	108.1 (12)	C8—C7—H7B	112.3 (9)
O3—C4—C3	109.11 (9)	H7A—C7—H7B	106.9 (13)
O3—C4—H4A	110.3 (8)	N1-C12-C11	179.47 (16)
O3—C4—H4B	110.7 (9)	C12—C11—H11A	109.2 (11)
C3—C4—H4A	107.7 (8)	C12—C11—H11B	109.6 (11)
C3—C4—H4B	109.4 (9)	C12—C11—H11C	108.9 (12)
H4A—C4—H4B	109.6 (12)	H11A—C11—H11B	109.9 (15)
O2—C3—C4	109.08 (9)	H11A—C11—H11C	108.5 (17)
O2—C3—H3A	110.0 (7)	H11B—C11—H11C	110.8 (16)
O3—C5—C6—C7	-178.84 (9)	C5-C10-C9-C8	-58.39 (13)
O3—C4—C3—O2	-68.55 (12)	C5—C6—C7—C8	54.14 (14)
O1 ⁱ C10C5O3	62.59 (10)	C2—O2—C3—C4	-176.21 (10)
O1 ⁱ C10C5C6	-62.81 (11)	C4—O3—C5—C10	171.48 (9)
O1 ⁱ C10C9C8	59.93 (13)	C4—O3—C5—C6	-65.05 (12)
O2-C2-C1-O1	75.52 (12)	C3—O2—C2—C1	179.16 (10)
C10 ⁱ —O1—C1—C2	-172.39 (9)	C9—C10—C5—O3	-175.17 (9)
C10—C5—C6—C7	-57.34 (13)	C9—C10—C5—C6	59.43 (12)
C10—C9—C8—C7	55.90 (14)	С9—С8—С7—С6	-53.72 (15)
C5—O3—C4—C3	-163.53 (9)		

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C11—H11A····O3 ⁱ	0.936 (19)	2.51 (2)	3.3528 (17)	150.8 (16)
C11—H11C···O1 ⁱ	0.97 (2)	2.56 (2)	3.4809 (16)	159.1 (15)

Symmetry code: (i) -x+1, -y+1, -z+1.