CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 26 June 2015
Accepted 14 July 2015

Edited by V. V. Chernyshev, Moscow State University, Russia

Keywords: crystal structure; cluster; iron(III); acetylacetonate; ouble cubane

CCDC reference: 1412851
Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \odot ACCESS

Crystal structure of tetrakis(acetylacetonato)di-chloridodi- μ_{3}-methanolato-tetra- μ_{2}-methanolatotetrairon(III)

Casseday P. Richers, Jeffery A. Bertke, Danielle L. Gray* and Thomas B. Rauchfuss

School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA. *Correspondence e-mail: dgray@illinois.edu

The title complex, $\left[\mathrm{Fe}_{4}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{4}\left(\mathrm{CH}_{3} \mathrm{O}\right)_{6} \mathrm{Cl}_{2}\right]$ or $\left[\mathrm{Fe}_{4}(\mathrm{acac})_{4}\left(\mu_{2}-\mathrm{OMe}\right)_{4}\left(\mu_{3^{-}}\right.\right.$ $\left.\mathrm{OMe})_{2} \mathrm{Cl}_{2}\right]($ acac $=$ acetylacetonate $)$, crystallizes in the orthorhombic $P b c a$ space group with one half of the molecule per asymmetric unit, the other half being completed by inversion symmetry. The core structure consists of a face-sharing double pseudo-cubane entity with two opposite corners missing. Weak C$\mathrm{H} \cdots \mathrm{Cl}$ intermolecular interactions result in a two-dimensional layered structure parallel to the ac plane.

1. Chemical context

Metal silanolate complexes bearing methoxy and ethoxy groups on silicon are relatively rare (Dupuy et al., 2012) in comparison to tert-butoxysilanolate complexes (McMullen et al., 1989, 1990; Nozaki et al., 2002; Terry et al., 1993, 1996; Truscott et al., 2013). Nevertheless, such compounds may play a pivotal role in sol-gel reactions and in metal-catalysed curing reactions, such as room-temperature vulcanization (Cervantes et al., 2012; Levitsky et al., 2007; van Der Weij, 1980).

(I)

We have investigated the syntheses of metal methoxysilanolates via the additions of $\mathrm{NaOSi}(\mathrm{OMe})_{2} \mathrm{Me}$ to metal

Figure 1
View of the molecular structure of (I), showing the atomic numbering and 35% probability displacement ellipsoids for the non-H atoms. The unlabeled atoms are related to the labeled ones by the symmetry operator $(-x+1,-y+1,-z+1)$. H atoms have been removed for clarity.
halides and discovered that, in certain cases, the addition of $\mathrm{NaOSi}(\mathrm{OMe})_{2} \mathrm{Me}$ to a metal halide results in the formation of a methanolate complex instead of silanolate complex. In line with this observation, we now report that the addition of $\mathrm{NaOSi}(\mathrm{OMe})_{2} \mathrm{Me}$ to $\mathrm{Fe}(\mathrm{acac})_{2} \mathrm{Cl}$ results in the formation of a tetranuclear iron(III) methanolate compound, $\mathrm{Fe}_{4}(\mathrm{acac})_{4}\left(\mu_{2^{-}}\right.$ $\mathrm{OMe})_{4}\left(\mu_{3}-\mathrm{OMe}\right)_{2} \mathrm{Cl}_{2}$, (I).

2. Structural commentary

The structure of (I) contains two crystallographically independent $\mathrm{Fe}^{\text {III }}$ metal atoms. Both cations are in approximately octahedral coordination environments. The coordination sphere of Fe 1 is filled by the O atoms of one κ^{2}-acac ligand $[\mathrm{Fe} 1-\mathrm{O} 1=1.9971$ (13) \AA and $\mathrm{Fe} 1-\mathrm{O} 2=1.9934$ (13) \AA], two μ_{2}-methanolate groups $[\mathrm{Fe} 1-\mathrm{O} 3=1.9861$ (12) \AA and $\mathrm{Fe} 1-$ $\mathrm{O} 5^{\mathrm{i}}=1.9885$ (12) \AA; symmetry code: (i) $\left.-x+1,-y+1,-z+1\right]$, one μ_{3}-methanolate group $[\mathrm{Fe} 1-\mathrm{O} 4=2.2135(12) \AA$ A , and one terminal chloride ligand $[\mathrm{Fe} 1-\mathrm{Cl} 1=2.2776(5) \AA]$. The coordination sphere of Fe 2 is filled by the O atoms of one κ^{2}-acac ligand $[\mathrm{Fe} 2-\mathrm{O} 6=1.9717$ (13) \AA and $\mathrm{Fe} 2-\mathrm{O} 7=$ $1.9692(12) \AA$ A , two μ_{2}-methanolate groups $[\mathrm{Fe} 2-\mathrm{O} 3=$ 1.9755 (12) \AA and $\mathrm{Fe} 2-\mathrm{O} 5=1.9823$ (12) \AA], and two $\mu_{3^{-}}$

Table 1
Hydrogen-bond geometry ($\left({ }_{\mathrm{A}},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 3 \cdots{ }^{\circ} \cdots 1^{\mathrm{i}}$	0.95	2.91	$3.797(2)$	155
${\text { C5-H5B } \cdots \mathrm{Cl} 1^{\mathrm{i}}}^{2}$	0.98	2.91	$3.800(2)$	152

Symmetry code: (i) $x+\frac{1}{2}, y,-z+\frac{1}{2}$.

Figure 2
A view along the b axis of the extended two-dimensional network of (I) with an overlay of the unit cell. The intermolecular $\mathrm{Cl}-\mathrm{H}$ interations are shown as dashed red lines. All C atoms except those in the hydrogenbonded acac ligand and all H atoms except those of the hydrogen-bonded methyl group have been removed for clarity. Color key: blue $=\mathrm{Fe}$, lightgreen $=\mathrm{Cl}$, red $=\mathrm{O}$, gray $=\mathrm{C}$, and green $=\mathrm{H}$.
methanolate groups $\left[\mathrm{Fe} 2-\mathrm{O} 4=2.0815(12) \AA\right.$ and $\mathrm{Fe} 2-\mathrm{O} 4{ }^{\mathrm{i}}$ $=2.0809$ (12) \AA]. The angles around both Fe 1 and Fe 2 distort significantly from the ideal values of 90 and 180° of a perfect octahedron. For Fe 1 , the cis angles range from 75.69 (5) to $98.40(4)^{\circ}$, while the trans angles range from 164.47 (5) to $170.40(3)^{\circ}$. The angles around Fe 2 have narrower ranges, with cis being $78.95(5)-96.48(5)^{\circ}$ and trans being 170.08 (5)$170.16(5)^{\circ}$.

The molecular structure of (I) (Fig. 1) can be described as an $\left[\mathrm{Fe}_{4}(\mathrm{OMe})_{6}\right]$ face-sharing double pseudo-cubane entity with two opposite corners missing. The outside of the cluster is decorated by one acac ligand per metal and the Fe atoms at either end of the cluster are coordinated by one chloride ion. Neighboring $\mathrm{Fe} \cdots \mathrm{Fe}$ distances range from 3.1997 (4) to 3.2175 (6) A, while the $\mathrm{Fe} 1 \cdots \mathrm{Fe} 1^{\mathrm{i}}$ distance is 5.5702 (6) \AA.

3. Supramolecular features

There are no significant supramolecular features to discuss with the extended structure of (I). There are weak interactions
between the Cl^{-}ion and an acac ligand on neighboring molecules (Table 1). Taking into account these weak interactions, the extended structure becomes layers of two-dimensional 4^{4} nets normal to the b axis (Fig. 2).

4. Database survey

One closely related complex, $\left[\mathrm{Fe}_{4}(\mathrm{acac})_{4}(\mathrm{OMe})_{6}\left(\mathrm{~N}_{3}\right)_{2}\right]$, has previously been reported (Li et al., 1997) in which $\mathrm{N}_{3}{ }^{-}$takes the position of Cl^{-}in (I). The molecular structure of the azide complex is very similar to that of (I), and can be described as the same $\left[\mathrm{Fe}_{4}(\mathrm{OMe})_{6}\right]$ face-sharing double cubane cluster with two opposite corners missing. The average $\mathrm{Fe}-\mathrm{O}_{\text {acac }}$ distance of $1.978 \AA$ is quite close to the average $\mathrm{Fe}-\mathrm{O}_{\text {acac }}$ distance of $1.982 \AA$ in (I). The average $\mathrm{Fe}-\mathrm{OMe}$ distances in the azide complex (μ_{2}-OMe: $1.977 \AA$; μ_{3}-OMe: $2.124 \AA$) are also comparable to those in (I) (μ_{2}-OMe: $1.983 \AA \AA_{3}$; μ_{3} $2.125 \AA$).

A search of the Cambridge Structural Database (Groom \& Allen, 2014) returned 14 complexes with an $\left[\mathrm{Fe}_{4}(\mathrm{OR})_{6}\right]$ cluster core similar to (I) (Abu-Nawwas et al., 2009; Mulyana et al., 2009). All of these materials, except the azide compound described above, use more complex, multidentate ligands to form the polynuclear entity. The $\left[\mathrm{Fe}_{4}(\mathrm{OR})_{6}\right]$ motif is present is 63 additional materials as part of a higher-order cluster complex (Ferguson et al., 2013; Murugesu et al., 2004).

5. Synthesis and crystallization

A solution of $\mathrm{NaOSi}(\mathrm{OMe})_{2} \mathrm{Me}\left(57 \mathrm{mg}, 3.96 \times 10^{-4} \mathrm{~mol}, 1\right.$ equivalent) in THF (3 ml) was added to a solution of $\mathrm{Fe}(\mathrm{acac})_{2} \mathrm{Cl}\left(200 \mathrm{mg}, 3.96 \times 10^{-4} \mathrm{~mol}, 1\right.$ equivalent) in THF (see Scheme). The mixture was stirred rapidly at room temperature, and a slight color change from a dark-red to a lighter red was observed. Removal of the solvent under vacuum resulted in the precipitation of an orange solid, which upon washing with dry $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{ml})$ left a yellow solid. The yellow solid was extracted into dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through Celite. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was then removed under vacuum, leaving a yellow solid ($54 \mathrm{mg}, 6.16 \times 10^{-5} \mathrm{~mol}, 62 \%$ yield). Crystals suitable for X -ray diffraction were grown by slow diffusion of pentane into a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of the yellow solid.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Methyl-H atom positions, $R \mathrm{CH}_{3}$, were optimized by rotation about $R-\mathrm{C}$ bonds, with idealized $\mathrm{C}-\mathrm{H}, R-\mathrm{H}$ and $\mathrm{H} \cdots \mathrm{H}$ distances $(\mathrm{C}-\mathrm{H}=0.98 \AA)$. The remaining H atoms were included as riding idealized contributors $(\mathrm{C}-\mathrm{H}=0.95 \AA) . \mathrm{H}$ atoms were assigned $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ otherwise. The 102 reflection was omitted from the final refinement because it was partially obscured by the shadow of the beam stop.

Table 2
Experimental details.
Crystal data

Chemical formula	$\left[\mathrm{Fe}_{4}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{4}\left(\mathrm{CH}_{3} \mathrm{O}\right)_{6} \mathrm{Cl}_{2}\right]$
M_{r}	876.93
Crystal system, space group	Orthorhombic, Pbca
Temperature (K)	102
$a, b, c(\AA)$	$14.0714(6), 12.1888(4)$,
$V\left(\AA^{3}\right)$	$21.3543(7)$
Z	$3662.6(2)$
Radiation type	4
$\mu\left(\mathrm{~mm}^{-1}\right)$	Mo $\mathrm{K} \alpha$
Crystal size (mm)	1.76
	$0.38 \times 0.37 \times 0.23$
Data collection	
Diffractometer	Bruker D8 Venture/Photon 100
Absorption correction	Integration $(S A D A B S ;$ Bruker,
	$2012)$
$T_{\text {min }}, T_{\text {max }}$	$0.568,0.718$
No. of measured, independent and	$46682,4559,3837$
observed $[I>2 \sigma(I)]$ reflections	
$R_{\text {int }}$	0.060
(sin $\theta / \lambda)_{\text {max }}\left(\AA \AA^{-1}\right)$	0.668
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	$0.028,0.070,1.04$
No. of reflections	4559
No. of parameters	215
H-atom treatment	H -atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA{ }^{-3}\right)$	$0.39,-0.34$

Computer programs: APEX2, SAINT, XPREP and XCIF (Bruker, 2013), SHELXT (Sheldrick, 2015a), SHELXL2013 (Sheldrick, 2015b), SHELXTL (Sheldrick, 2008), CrystalMaker (CrystalMaker, 2014) and publCIF (Westrip, 2010).

Acknowledgements

This research was conducted under contract DEFG0290ER14146 with the US Department of Energy by its Division of Chemical Sciences, Office of Basic Energy Sciences.

References

Abu-Nawwas, A. H., Muryn, C. A. \& Malik, M. A. (2009). Inorg. Chem. Commun. 12, 125-127.
Bruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2013). APEX2, SAINT, SHELXTL, XCIF, and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
Cervantes, J., Zárraga, R. \& Salazar-Hernández, C. (2012). Appl. Organomet. Chem. 26, 157-163.
CrystalMaker (2014). CrystalMaker. CrystalMaker Software Ltd, Bicester, Oxfordshire, England. http://www.crystalmaker.com.
Der Weij, F. W. van (1980). Makromol. Chem. 181, 2541-2548.
Dupuy, S., Slawin, A. M. Z. \& Nolan, S. P. (2012). Chem. Eur. J. 18, 14923-14928.
Ferguson, A., Thomas, L. H. \& Murrie, M. (2013). Polyhedron, 52, 227-233.
Groom, C. R. \& Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662671.

Levitsky, M. M., Zavin, B. G. \& Bilyachenko, A. N. (2007). Russ. Chem. Rev. 76, 847-866.
Li, H., Zhong, Z. J., Chen, W. \& You, X. Z. (1997). J. Chem. Soc. Dalton Trans. pp. 463-464.
McMullen, A. K., Tilley, T. D., Rheingold, A. L. \& Geib, S. J. (1989). Inorg. Chem. 28, 3772-3774.
McMullen, A. K., Tilley, T. D., Rheingold, A. L. \& Geib, S. J. (1990). Inorg. Chem. 29, 2228-2232.

research communications

Mulyana, Y., Nafady, A., Mukherjee, A., Bircher, R., Moubaraki, B., Murray, K. S., Bond, A. M., Abrahams, B. F. \& Boskovic, C. (2009). Inorg. Chem. 48, 7765-7781.
Murugesu, M., Abboud, K. A. \& Christou, G. (2004). Polyhedron, 23, 2779-2788.
Nozaki, C., Lugmair, C. G., Bell, A. T. \& Tilley, T. D. (2002). J. Am. Chem. Soc. 124, 13194-13203.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.

Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Terry, K. W., Gantzel, P. K. \& Tilley, T. D. (1993). Inorg. Chem. 32, 5402-5404.
Terry, K. W., Lugmair, C. G., Gantzel, P. K. \& Tilley, T. D. (1996). Chem. Mater. 8, 274-280.
Truscott, B. J., Nelson, D. J., Lujan, C., Slawin, A. M. Z. \& Nolan, S. P. (2013). Chem. Eur. J. 19, 7904-7916.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Crystal structure of tetrakis(acetylacetonato)dichloridodi- μ_{3}-methanolato-tetra-μ_{2}-methanolato-tetrairon(III)

Casseday P. Richers, Jeffery A. Bertke, Danielle L. Gray and Thomas B. Rauchfuss

Computing details

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013), XPREP (Bruker, 2013), SADABS (Bruker, 2012) and TWINABS (Bruker, 2012); program(s) used to solve structure: SHELXTL (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015b); molecular graphics: SHELXTL (Bruker, 2013) and CrystalMaker (CrystalMaker, 2014); software used to prepare material for publication:
XCIF (Bruker, 2013) and publCIF (Westrip, 2010).
Tetrakis(acetylacetonato)dichloridodi- μ_{3}-methanolato-tetra- μ_{2}-methanolato-tetrairon(III)

Crystal data

[$\mathrm{Fe}_{4}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{4}\left(\mathrm{CH}_{3} \mathrm{O}\right)_{6} \mathrm{Cl}_{2}$]
$M_{r}=876.93$
Orthorhombic, Pbca
$a=14.0714$ (6) \AA
$b=12.1888$ (4) \AA
$c=21.3543(7) \AA$
$V=3662.6(2) \AA^{3}$
$Z=4$
$F(000)=1808$

Data collection

Bruker D8 Venture/Photon 100 diffractometer
Radiation source: microfocus sealed tube
Multilayer mirrors monochromator
profile data from φ and ω scans
Absorption correction: integration
(SADABS; Bruker, 2012)
$T_{\text {min }}=0.568, T_{\text {max }}=0.718$
$D_{\mathrm{x}}=1.590 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9882 reflections
$\theta=2.4-28.3^{\circ}$
$\mu=1.76 \mathrm{~mm}^{-1}$
$T=102 \mathrm{~K}$
Prism, orange
$0.38 \times 0.37 \times 0.23 \mathrm{~mm}$

46682 measured reflections
4559 independent reflections
3837 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.060$
$\theta_{\text {max }}=28.3^{\circ}, \theta_{\text {min }}=2.9^{\circ}$
$h=-18 \rightarrow 18$
$k=-15 \rightarrow 16$
$l=-28 \rightarrow 28$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.070$
$S=1.04$
4559 reflections
215 parameters
0 restraints

> Hydrogen site location: inferred from neighbouring sites
> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0352 P)^{2}+1.8648 P\right]$
> \quad where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.001$
> $\Delta \rho_{\max }=0.39 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.34 \mathrm{e}^{-3}$

Special details

Experimental. One distinct cell was identified using APEX2 (Bruker, 2013). Four frame series were integrated and filtered for statistical outliers using SAINT (Bruker, 2013) then corrected for absorption by integration using SADABS v2012/1 (Bruker, 2012). No decay correction was applied.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Structure was phased by intrinsic phasing methods (XT, Sheldrick, 2013). Systematic conditions suggested the unambiguous space group. The space group choice was confirmed by successful convergence of the full-matrix leastsquares refinement on F^{2}. The final difference Fourier had no significant features. A final analysis of variance between observed and calculated structure factors showed little dependence on amplitude or resolution.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Fel	0.44600 (2)	0.60052 (2)	0.38841 (2)	0.01161 (7)
Fe2	0.49483 (2)	0.38287 (2)	0.46636 (2)	0.01051 (7)
Cl 1	0.31634 (3)	0.65927 (4)	0.33408 (2)	0.01952 (11)
O1	0.52694 (10)	0.73202 (11)	0.37204 (6)	0.0177 (3)
O2	0.51458 (9)	0.52865 (11)	0.31778 (6)	0.0170 (3)
O3	0.39890 (9)	0.45244 (10)	0.41172 (5)	0.0126 (2)
O4	0.55491 (8)	0.53740 (10)	0.45395 (5)	0.0106 (2)
O5	0.59118 (9)	0.33767 (10)	0.52897 (5)	0.0130 (3)
O6	0.41693 (9)	0.25001 (10)	0.47819 (6)	0.0158 (3)
O7	0.56371 (9)	0.31011 (10)	0.39767 (6)	0.0153 (3)
C1	0.63600 (17)	0.85947 (17)	0.33019 (11)	0.0306 (5)
H1A	0.5958	0.9116	0.3530	0.046*
H1B	0.6452	0.8854	0.2872	0.046*
H1C	0.6978	0.8535	0.3511	0.046*
C2	0.58856 (14)	0.74858 (16)	0.32912 (9)	0.0190 (4)
C3	0.61526 (14)	0.67189 (17)	0.28427 (9)	0.0204 (4)
H3	0.6604	0.6933	0.2535	0.024*
C4	0.57959 (13)	0.56530 (16)	0.28188 (8)	0.0169 (4)
C5	0.61965 (15)	0.48447 (18)	0.23600 (9)	0.0246 (4)
H5A	0.6607	0.4323	0.2581	0.037*
H5B	0.6568	0.5236	0.2042	0.037*
H5C	0.5676	0.4447	0.2157	0.037*
C6	0.34499 (14)	0.38938 (16)	0.36761 (9)	0.0201 (4)
H6A	0.3847	0.3723	0.3312	0.030*
H6B	0.2894	0.4317	0.3541	0.030*
H6C	0.3240	0.3210	0.3874	0.030*
C7	0.65434 (12)	0.54563 (16)	0.43948 (8)	0.0151 (4)
H7A	0.6918	0.5215	0.4756	0.023*
H7B	0.6701	0.6220	0.4296	0.023*
H7C	0.6690	0.4990	0.4034	0.023*
C8	0.63734 (16)	0.23375 (17)	0.52457 (10)	0.0242 (5)
H8A	0.5895	0.1754	0.5233	0.036*
H8B	0.6785	0.2232	0.5611	0.036*

H8C	0.6757	0.2313	0.4863	0.036^{*}
C9	$0.35287(16)$	$0.07273(17)$	$0.46844(10)$	$0.0258(5)$
H9A	0.3624	0.0571	0.5130	0.039^{*}
H9B	0.3634	0.0057	0.4440	0.039^{*}
H9C	0.2878	0.0987	0.4617	0.039^{*}
C10	$0.42174(14)$	$0.15947(15)$	$0.44786(9)$	$0.0171(4)$
C11	$0.48468(15)$	$0.13917(15)$	$0.39877(9)$	$0.0198(4)$
H11	0.4823	0.0689	0.3796	0.024^{*}
C12	$0.55074(14)$	$0.21388(16)$	$0.37582(9)$	$0.0175(4)$
C13	$0.61370(17)$	$0.18240(18)$	$0.32192(10)$	$0.0286(5)$
H13A	0.6064	0.2360	0.2881	0.043^{*}
H13B	0.5957	0.1095	0.3067	0.043^{*}
H13C	0.6801	0.1812	0.3358	0.043^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	$0.01076(13)$	$0.01374(13)$	$0.01034(12)$	$-0.00004(9)$	$0.00102(9)$	$0.00161(9)$
Fe2	$0.01094(13)$	$0.01008(12)$	$0.01050(13)$	$-0.00020(9)$	$0.00027(9)$	$-0.00061(9)$
C11	$0.0182(2)$	$0.0259(2)$	$0.0145(2)$	$0.00438(18)$	$-0.00364(17)$	$0.00256(17)$
O1	$0.0174(7)$	$0.0180(7)$	$0.0179(7)$	$-0.0018(5)$	$0.0040(5)$	$0.0027(5)$
O2	$0.0156(7)$	$0.0208(7)$	$0.0146(6)$	$0.0001(5)$	$0.0040(5)$	$0.0015(5)$
O3	$0.0119(6)$	$0.0147(6)$	$0.0112(6)$	$-0.0025(5)$	$-0.0017(5)$	$-0.0005(5)$
O4	$0.0074(6)$	$0.0125(6)$	$0.0121(6)$	$-0.0004(5)$	$0.0015(4)$	$0.0004(5)$
O5	$0.0127(6)$	$0.0126(6)$	$0.0138(6)$	$0.0031(5)$	$-0.0001(5)$	$-0.0005(5)$
O6	$0.0164(7)$	$0.0139(6)$	$0.0171(6)$	$-0.0030(5)$	$0.0016(5)$	$0.0001(5)$
O7	$0.0166(7)$	$0.0144(6)$	$0.0149(6)$	$-0.0002(5)$	$0.0029(5)$	$-0.0029(5)$
C1	$0.0292(12)$	$0.0239(11)$	$0.0388(13)$	$-0.0074(9)$	$0.0114(10)$	$0.0021(9)$
C2	$0.0147(9)$	$0.0205(10)$	$0.0216(10)$	$-0.0003(8)$	$-0.0005(8)$	$0.0080(8)$
C3	$0.0154(10)$	$0.0280(10)$	$0.0177(9)$	$-0.0016(8)$	$0.0047(7)$	$0.0064(8)$
C4	$0.0134(9)$	$0.0268(10)$	$0.0105(8)$	$0.0042(8)$	$-0.0008(7)$	$0.0044(7)$
C5	$0.0230(11)$	$0.0302(11)$	$0.0205(10)$	$0.0037(9)$	$0.0077(8)$	$-0.0007(8)$
C6	$0.0198(10)$	$0.0216(10)$	$0.0191(9)$	$-0.0059(8)$	$-0.0080(8)$	$-0.0011(7)$
C7	$0.0076(8)$	$0.0205(9)$	$0.0172(9)$	$-0.0002(7)$	$0.0020(7)$	$0.0018(7)$
C8	$0.0272(11)$	$0.0190(10)$	$0.0263(11)$	$0.0127(8)$	$-0.0064(9)$	$-0.0051(8)$
C9	$0.0244(11)$	$0.0176(10)$	$0.0353(12)$	$-0.0064(8)$	$0.0005(9)$	$0.0005(8)$
C10	$0.0164(9)$	$0.0131(9)$	$0.0217(9)$	$-0.0005(7)$	$-0.0053(7)$	$0.0014(7)$
C11	$0.0236(11)$	$0.0129(9)$	$0.0229(10)$	$-0.0008(7)$	$-0.0019(8)$	$-0.0056(7)$
C12	$0.0193(10)$	$0.0182(9)$	$0.0151(9)$	$0.0044(8)$	$-0.0013(7)$	$-0.0035(7)$
C13	$0.0334(13)$	$0.0252(11)$	$0.0274(11)$	$0.0016(9)$	$0.0113(9)$	$-0.0107(9)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{Fe} 1-\mathrm{O} 3$	$1.9861(12)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.394(3)$
$\mathrm{Fe} 1-\mathrm{O} 5^{\mathrm{i}}$	$1.9885(12)$	$\mathrm{C} 3-\mathrm{H} 3$	0.9500
$\mathrm{Fe} 1-\mathrm{O} 2$	$1.9934(13)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.499(3)$
$\mathrm{Fe} 1-\mathrm{O} 1$	$1.9971(13)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.9800
$\mathrm{Fe} 1-\mathrm{O} 4$	$2.2135(12)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	0.9800

Fe1-Cl1	2.2776 (5)	C5-H5C	0.9800
Fe2-07	1.9692 (12)	C6-H6A	0.9800
Fe2-O6	1.9717 (13)	C6-H6B	0.9800
Fe2-O3	1.9755 (12)	C6-H6C	0.9800
$\mathrm{Fe} 2-\mathrm{O} 5$	1.9823 (12)	C7-H7A	0.9800
$\mathrm{Fe} 2-\mathrm{O} 4{ }^{\text {i }}$	2.0809 (12)	C7-H7B	0.9800
Fe2-O4	2.0815 (12)	C7-H7C	0.9800
$\mathrm{O} 1-\mathrm{C} 2$	1.278 (2)	C8-H8A	0.9800
O2-C4	1.274 (2)	C8-H8B	0.9800
O3-C6	1.433 (2)	C8-H8C	0.9800
O4-C7	1.436 (2)	C9-C10	1.500 (3)
$\mathrm{O} 4-\mathrm{Fe}^{2}{ }^{\mathrm{i}}$	2.0808 (12)	C9-H9A	0.9800
O5-C8	1.426 (2)	C9-H9B	0.9800
$\mathrm{O} 5-\mathrm{Fe} 1^{1}$	1.9885 (12)	C9-H9C	0.9800
O6-C10	1.281 (2)	C10-C11	1.394 (3)
O7-C12	1.275 (2)	C11-C12	1.391 (3)
$\mathrm{C} 1-\mathrm{C} 2$	1.508 (3)	C11-H11	0.9500
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9800	C12-C13	1.502 (3)
C1-H1B	0.9800	C13-H13A	0.9800
C1-H1C	0.9800	C13-H13B	0.9800
C2-C3	1.390 (3)	C13-H13C	0.9800
$\mathrm{O} 3-\mathrm{Fe} 1-\mathrm{O} 5{ }^{\text {i }}$	91.96 (5)	$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	115.54 (18)
$\mathrm{O} 3-\mathrm{Fe} 1-\mathrm{O} 2$	87.24 (5)	C3-C2-C1	119.58 (18)
O 5 - $\mathrm{Fe} 1-\mathrm{O} 2$	164.84 (5)	C2-C3-C4	123.69 (17)
$\mathrm{O} 3-\mathrm{Fe} 1-\mathrm{O} 1$	164.47 (5)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	118.2
$\mathrm{O} 5-\mathrm{Fe} 1-\mathrm{O} 1$	90.08 (5)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	118.2
$\mathrm{O} 2-\mathrm{Fe} 1-\mathrm{O} 1$	86.80 (5)	$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 3$	124.28 (18)
$\mathrm{O} 3-\mathrm{Fe} 1-\mathrm{O} 4$	75.92 (5)	$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 5$	115.63 (18)
$\mathrm{O} 5-\mathrm{Fe} 1-\mathrm{O} 4$	75.69 (5)	C3-C4-C5	120.07 (17)
$\mathrm{O} 2-\mathrm{Fe} 1-\mathrm{O} 4$	89.45 (5)	C4-C5-H5A	109.5
$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{O} 4$	89.70 (5)	C4-C5-H5B	109.5
$\mathrm{O} 3-\mathrm{Fe} 1-\mathrm{Cl} 1$	98.40 (4)	H5A - $\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	109.5
$\mathrm{O} 5-\mathrm{Fe} 1-\mathrm{Cl} 1$	97.01 (4)	C4-C5-H5C	109.5
$\mathrm{O} 2-\mathrm{Fe} 1-\mathrm{Cl} 1$	98.08 (4)	H5A-C5-H5C	109.5
$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{Cl} 1$	96.63 (4)	H5B-C5-H5C	109.5
$\mathrm{O} 4-\mathrm{Fe} 1-\mathrm{Cl} 1$	170.40 (3)	O3-C6-H6A	109.5
O7-Fe2-O6	89.95 (5)	O3-C6-H6B	109.5
O7-Fe2-O3	95.14 (5)	H6A-C6-H6B	109.5
$\mathrm{O} 6-\mathrm{Fe} 2-\mathrm{O} 3$	92.77 (5)	O3-C6-H6C	109.5
$\mathrm{O} 7-\mathrm{Fe} 2-\mathrm{O} 5$	92.33 (5)	H6A-C6-H6C	109.5
O6-Fe2-O5	93.76 (5)	H6B-C6-H6C	109.5
$\mathrm{O} 3-\mathrm{Fe} 2-\mathrm{O} 5$	170.08 (5)	O4-C7-H7A	109.5
$\mathrm{O} 7-\mathrm{Fe} 2-\mathrm{O} 4{ }^{\text {i }}$	170.08 (5)	O4-C7-H7B	109.5
$\mathrm{O} 6-\mathrm{Fe} 2-\mathrm{O} 4{ }^{\text {i }}$	95.27 (5)	H7A-C7-H7B	109.5
$\mathrm{O} 3-\mathrm{Fe} 2-\mathrm{O} 4{ }^{\text {i }}$	93.02 (5)	$\mathrm{O} 4-\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	109.5
$\mathrm{O} 5-\mathrm{Fe} 2-\mathrm{O} 4{ }^{\text {i }}$	78.95 (5)	H7A-C7- H 7 C	109.5
$\mathrm{O} 7-\mathrm{Fe} 2-\mathrm{O} 4$	96.48 (5)	H7B-C7-H7C	109.5

$\mathrm{O} 6-\mathrm{Fe} 2-\mathrm{O} 4$	$170.16(5)$
$\mathrm{O} 3-\mathrm{Fe} 2-\mathrm{O} 4$	$79.28(5)$
$\mathrm{O} 5-\mathrm{Fe} 2-\mathrm{O} 4$	$93.41(5)$
$\mathrm{O} 4-\mathrm{Fe} 2-\mathrm{O} 4$	$79.52(5)$
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{Fe} 1$	$129.75(13)$
$\mathrm{C} 4-\mathrm{O} 2-\mathrm{Fe} 1$	$130.44(13)$
$\mathrm{C} 6-\mathrm{O} 3-\mathrm{Fe} 2$	$121.31(11)$
$\mathrm{C} 6-\mathrm{O} 3-\mathrm{Fe} 1$	$119.96(11)$
$\mathrm{Fe} 2-\mathrm{O} 3-\mathrm{Fe} 1$	$108.06(6)$
$\mathrm{C} 7-\mathrm{O} 4-\mathrm{Fe} 2^{\mathrm{i}}$	$118.09(10)$
$\mathrm{C} 7-\mathrm{O} 4-\mathrm{Fe} 2$	$119.09(10)$
$\mathrm{Fe} 2 \mathrm{C}-\mathrm{O} 4-\mathrm{Fe} 2$	$100.48(5)$
$\mathrm{C} 7-\mathrm{O} 4-\mathrm{Fe} 1$	$120.95(10)$
$\mathrm{Fe} 2 \mathrm{C}-\mathrm{O} 4-\mathrm{Fe} 1$	$97.00(5)$
$\mathrm{Fe} 2-\mathrm{O} 4-\mathrm{Fe} 1$	$120.92(11)$
$\mathrm{C} 8-\mathrm{O} 5-\mathrm{Fe} 2$	$120.97(11)$
$\mathrm{C} 8-\mathrm{O} 5-\mathrm{Fe} 1^{\mathrm{i}}$	$108.25(6)$
$\mathrm{Fe} 2-\mathrm{O} 5-\mathrm{Fe} 1^{\mathrm{i}}$	$127.83(12)$
$\mathrm{C} 10-\mathrm{O} 6-\mathrm{Fe} 2$	$128.04(12)$
$\mathrm{C} 12-\mathrm{O} 7-\mathrm{Fe} 2$	109.5
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	$124.85(18)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	

Symmetry code: (i) $-x+1,-y+1,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3 — \mathrm{H} 3 \cdots \mathrm{Cl1}{ }^{\mathrm{ii}}$	0.95	2.91	$3.797(2)$	155
$\mathrm{C} 5 — \mathrm{H} 5 B \cdots \mathrm{Cl}^{\mathrm{ii}}$	0.98	2.91	$3.800(2)$	152

Symmetry code: (ii) $x+1 / 2, y,-z+1 / 2$.

