

Received 2 April 2015 Accepted 26 June 2015

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; vortioxetine; major depressive disorder; hydrogen bonding

CCDC references: 1408949; 1408948 Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structures of vortioxetine and its methanol monosolvate

Xin-Bo Zhou,^a Jian-Ming Gu,^b Meng-ying Sun,^a Xiu-Rong Hu^{c*} and Su-Xiang Wu^a

^aCollege of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China, ^bCenter of Analysis and Measurement, Zhejiang University, Hangzhou, Zhejiang 310028, People's Republic of China, and ^cChemistry Department, Zhejiang University, Hangzhou, Zhejiang 310028, People's Republic of China. *Correspondence e-mail: huxiurong@zju.edu.cn

Vortioxetine, $C_{18}H_{22}N_2S$, (1), systematic name 1-{2-[(2,4-dimethylphenyl)sulfanyl]phenyl}piperazine, a new drug used to treat patients with major depressive disorder, has been crystallized as the free base and its methanol monosolvate, $C_{18}H_{22}N_2S \cdot CH_3OH$, (2). In both structures, the vortioxetine molecules have similar conformations: in (1), the dihedral angle between the aromatic rings is 80.04 (16)° and in (2) it is 84.94 (13)°. The C-S-C bond angle in (1) is 102.76 (14)° and the corresponding angle in (2) is 103.41 (11)°. The piperazine ring adopts a chair conformation with the exocyclic N-C bond in a pseudoequatorial orientation in both structures. No directional interactions beyond normal van der Waals contacts could be identified in the crystal of (1), whereas in (2), the vortioxetine and methanol molecules are linked by N-H···O and O-H···N hydrogen bonds, generating [001] chains.

1. Chemical context

Major depressive disorder (MDD) is a disabling mental illness responsible for almost 66 million disability-adjusted life-years globally (Bidzan *et al.*, 2012). The medications most often prescribed for depression include the selective serotonin reuptake inhibitors (SSRIs) and the serotonin norepinephrine reuptake inhibitors (SNRIs). As several neurotransmitter pathways may be involved in MDD, antidepressants possessing two or more complementary modes of action (*i.e.* multimodal) have been a focus of MDD therapy for some time (Richelson, 2013). One such antidepressant is vortioxetine.

Vortioxetine is an investigational multi-modal antidepressant that is believed to work through a combination of two pharmacological modes of action: serotonin (5-HT) reuptake inhibition and 5-HT receptor activity (du Jardin *et al.*, 2014; Hussar *et al.*, 2014). In 2013, vortioxetine hydrobromide was approved by the US Food and Drug Administration (FDA) for the once-daily treatment of adults with MDD in the USA (Gibb & Deeks, 2014. The patent of Benny *et al.* (2007) discloses crystalline vortioxetine base and a variety of crys-

Figure 1

The molecular structure of compound (1), showing 50% probability displacement ellipsoids.

Figure 2

The molecular structure of compound (2), showing 50% probability displacement ellipsoids.

talline vortioxetine salts, comprising polymorphs of vortioxetine hydrobromide as well as a hemihydrate and an ethyl acetate solvate thereof, and crystalline vortioxetine hydrochloride and a monohydrate thereof. Crystalline vortioxetine mesylate, mesohydrogentartrate, hydrogenmaleate and hydrogen sulfate are also disclosed. However, there are few reports on the single-crystal X-ray structure of vortioxetine base and its salts. As part of our ongoing structural studies of pharmaceutical compounds, the crystal structures of vortioxetine free base (1), and its methanol solvate (2), have been determined and reported here.

2. Structural commentary

The asymmetric unit of (1) consists of one vortioxetine molecule and that of compound (2) consists of one vortioxetine molecule and one methanol molecule. Views of the asymmetric units of (1) and (2), with atom labelling, are presented in Figs. 1 and 2, respectively. In both structures, the two benzene rings bridged by the S atom, are almost perpendicular to one another. The dihedral angles between the planes of these benzene rings is $80.04 (16)^{\circ}$ in compound (1) and $84.94 (13)^{\circ}$ in compound(2). The S atom is nearly coplanar with the benzene rings as indicated by C1-S1-C9-C14 torsion angles of 176.0 (2) for (1) and $-176.04 (18)^{\circ}$ for (2).

Table 1	
Hydrogen-bond geometry (Å, °) for (2).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2A\cdotsO1^{i}$	0.86	2.15	2.930 (3)	151
$O1-H1\cdots N2$	0.82	1.93	2.744 (3)	171

Symmetry code: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$.

The piperazine ring of both structures adopts a chair conformation with the exocyclic N1–C14 bond in a pseudo equatorial orientation. Atoms N1 and N2 deviate from the best fit plane through the remaining four C atoms by 0.683 (1) and 0.637 (1) Å in (1) and by 0.698 (1) and -0.562 Å in (2).

3. Supramolecular features

There are no hydrogen bonds or $\pi-\pi$ stacking interactions linking the molecules in (1), while in (2) the presence of the additional methanol solvent molecule results in the formation of zigzag chains mediated by alternating O1-H1···N2 and N2-H2A···O1ⁱ [symmetry code: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$] hydrogen bonds propagating along the *c*-axis direction (Table 1). a packing diagram for (2) is shown in Fig. 3.

4. Synthesis and crystallization

Vortioxetine was supplied by Zhejiang Jingxin Pharmaceutical Co., Ltd. Crystals of (1) and (2) suitable for X-ray diffraction were recrystallized by slow evaporation from acetonitrile and methanol–water solutions, respectively, at room temperature over a few days.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were placed in idealized positions and refined as riding, with C-H = 0.93– 0.97, N-H = 0.86 and O-H = 0.82 Å and $U_{iso}(H) = 1.2U_{eq}$ or $1.5U_{eq}$ (carrier atom).

Part of the crystal packing of compound (2), viewed along the *a* axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

Table 2Experimental details.

	(1)	(2)
Crystal data		
Chemical formula	$C_{18}H_{22}N_2S$	$C_{18}H_{22}N_2S \cdot CH_4O$
<i>M</i> _r	298.44	330.48
Crystal system, space group	Triclinic, $P\overline{1}$	Monoclinic, $P2_1/c$
Temperature (K)	296	296
<i>a</i> , <i>b</i> , <i>c</i> (Å)	7.6160 (4), 8.3267 (5), 13.9011 (7)	13.2100 (7), 18.1500 (9), 8.1746 (4)
α, β, γ (°)	84.999 (2), 77.631 (1), 74.347 (2)	90, 104.378 (2), 90
$V(Å^3)$	828.75 (8)	1898.57 (17)
Ζ	2	4
Radiation type	Μο Κα	Μο Κα
$\mu \text{ (mm}^{-1})$	0.19	0.18
Crystal size (mm)	$0.48 \times 0.38 \times 0.16$	$0.38 \times 0.33 \times 0.28$
Data collection		
Diffractometer	Rigaku R-AXIS RAPID/ZJUG	Rigaku R-AXIS RAPID/ZJUG
Absorption correction	Multi-scan (ABSCOR: Higashi, 1995)	Multi-scan (ABSCOR: Higashi, 1995)
T_{\min}, T_{\max}	0.904, 0.970	0.928, 0.952
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	8178, 3756, 2072	18365, 4331, 2468
R _{int}	0.053	0.054
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.649	0.648
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.056, 0.185, 1.00	0.052, 0.156, 1.00
No. of reflections	3756	4331
No. of parameters	193	213
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.40, -0.37	0.25, -0.25

Computer programs: PROCESS-AUTO and CrystalStructure (Rigaku, 2007), SHELXS97 and SHELXL97 (Sheldrick, 2008) and ORTEP-3 for Windows and WinGX (Farrugia, 2012).

Acknowledgements

The project was supported by the Analysis and Measurement Foundation of Zhejiang Provincial, China (grant No. 2014 C37055).

References

- Benny, B. A., Andre, F., Heidi, L. D. D., Arne, M., Rene, H., Bryan, S. T., Munch, R. L. J. M. M., Harold, R. M., Jorgen, B., Morten, R. & Nicholas, M. (2007). World Patent WO2007114005A1.
- Bidzan, L., Mahableshwarkar, A. R., Jacobsen, P., Yan, M. J. & Sheehan, D. V. (2012). Eur. Neuropsychopharmacol. 22, 847–857.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

Gibb, A. & Deeks, E. D. (2014). Drugs, 74, 135-145.

- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Hussar, D. A. & Lye, A. (2014). J. Am. Pharm. Assoc. (2003), 54, 91-94.
- Jardin, K. G. du, Jensen, J. B., Sanchez, C. & Pehrson, A. L. (2014). Eur. Neuropsychopharmacol. 24, 160–171.
- Richelson, E. (2013). Int. J. Neuropsychopharm. 16, 1433–1442.
- Rigaku (2007). *PROCESS-AUTO* and *CrystalStructure*. Rigaku Americas, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2015). E71, 883-885 [https://doi.org/10.1107/S2056989015012256]

Crystal structures of vortioxetine and its methanol monosolvate

Xin-Bo Zhou, Jian-Ming Gu, Meng-ying Sun, Xiu-Rong Hu and Su-Xiang Wu

Computing details

For both compounds, data collection: *PROCESS-AUTO* (Rigaku, 2007); cell refinement: *PROCESS-AUTO* (Rigaku, 2007); data reduction: *CrystalStructure* (Rigaku, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

Z = 2 F(000) = 320 $D_x = 1.196 \text{ Mg m}^{-3}$

 $\theta = 3.0-27.4^{\circ}$ $\mu = 0.19 \text{ mm}^{-1}$ T = 296 KChunk, colorless $0.48 \times 0.38 \times 0.16 \text{ mm}$

Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 5189 reflections

(1) 1-{2-[(2,4-Dimethylphenyl)sulfanyl]phenyl}piperazine

Crystal data
$C_{18}H_{22}N_2S$
$M_r = 298.44$
Triclinic, $P\overline{1}$
Hall symbol: -P 1
a = 7.6160 (4) Å
b = 8.3267 (5) Å
<i>c</i> = 13.9011 (7) Å
$\alpha = 84.999 \ (2)^{\circ}$
$\beta = 77.631 \ (1)^{\circ}$
$\gamma = 74.347 \ (2)^{\circ}$
V = 828.75 (8) Å ³

Data collection

Bull concernon	
Rigaku R-AXIS RAPID/ZJUG diffractometer Rediction courses rotating and de	8178 measured reflections 3756 independent reflections 2072 reflections with $L > 2-(0)$
Radiation source: rotating anode	20/2 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.053$
Detector resolution: 10.00 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$
ω scans	$h = -9 \rightarrow 9$
Absorption correction: multi-scan	$k = -10 \rightarrow 10$
(ABSCOR: Higashi, 1995)	$l = -18 \rightarrow 17$
$T_{\min} = 0.904, \ T_{\max} = 0.970$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.056$	Hydrogen site location: inferred from
$wR(F^2) = 0.185$	neighbouring sites
S = 1.00	H-atom parameters constrained
3756 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0622P)^2 + 0.7569P]$
193 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.40 \ {\rm e} \ {\rm \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.37 \text{ e} \text{ Å}^{-3}$
	,

Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc $^{2}\lambda^{3}/\sin(2\theta)$]^{-1/4}

Extinction coefficient: 0.072 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.6391 (4)	0.3576 (4)	0.1355 (2)	0.0428 (7)
C2	0.6226 (5)	0.1944 (5)	0.1467 (3)	0.0549 (8)
H2	0.5698	0.1559	0.2079	0.066*
C3	0.6828 (5)	0.0891 (5)	0.0688 (3)	0.0641 (10)
H3	0.6711	-0.0198	0.0781	0.077*
C4	0.7608 (5)	0.1436 (5)	-0.0235 (3)	0.0575 (9)
C5	0.7753 (4)	0.3054 (5)	-0.0349 (2)	0.0520 (8)
Н5	0.8265	0.3428	-0.0969	0.062*
C6	0.7165 (4)	0.4163 (4)	0.0425 (2)	0.0446 (7)
C7	0.8231 (6)	0.0284 (6)	-0.1104 (3)	0.0894 (14)
H7A	0.8791	0.0843	-0.1673	0.134*
H7B	0.7174	-0.0007	-0.1241	0.134*
H7C	0.9121	-0.0710	-0.0948	0.134*
C8	0.7350 (5)	0.5916 (4)	0.0254 (3)	0.0573 (9)
H8A	0.8268	0.6061	0.0592	0.086*
H8B	0.6175	0.6680	0.0498	0.086*
H8C	0.7727	0.6130	-0.0440	0.086*
С9	0.7492 (4)	0.5017 (4)	0.2771 (2)	0.0429 (7)
C10	0.9282 (4)	0.4087 (4)	0.2382 (2)	0.0478 (8)
H10	0.9473	0.3388	0.1862	0.057*
C11	1.0770 (4)	0.4193 (4)	0.2761 (2)	0.0526 (8)
H11	1.1958	0.3563	0.2496	0.063*
C12	1.0515 (4)	0.5228 (5)	0.3533 (2)	0.0568 (9)
H12	1.1525	0.5293	0.3789	0.068*
C13	0.8738 (4)	0.6169 (4)	0.3921 (2)	0.0523 (8)
H13	0.8565	0.6869	0.4438	0.063*
C14	0.7213 (4)	0.6081 (4)	0.3550 (2)	0.0420 (7)
C15	0.4781 (5)	0.8573 (4)	0.3382 (2)	0.0542 (8)
H15A	0.5081	0.8376	0.2681	0.065*
H15B	0.5450	0.9350	0.3504	0.065*
C16	0.2704 (5)	0.9311 (5)	0.3705 (3)	0.0643 (10)
H16A	0.2338	1.0370	0.3356	0.077*
H16B	0.2040	0.8566	0.3535	0.077*

C17	0.2816 (5)	0.8026 (5)	0.5307 (2)	0.0561 (9)
H17A	0.2164	0.7227	0.5196	0.067*
H17B	0.2516	0.8238	0.6006	0.067*
C18	0.4901 (4)	0.7287 (4)	0.4994 (2)	0.0485 (8)
H18A	0.5568	0.8049	0.5140	0.058*
H18B	0.5278	0.6242	0.5354	0.058*
N1	0.5348 (3)	0.7000 (3)	0.39293 (16)	0.0425 (6)
N2	0.2190 (4)	0.9568 (4)	0.4764 (2)	0.0692 (9)
H2A	0.1597	1.0506	0.5030	0.083*
S1	0.54672 (10)	0.48897 (12)	0.23790 (6)	0.0524 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C1	0.0376 (15)	0.0479 (18)	0.0434 (15)	-0.0111 (13)	-0.0076 (12)	-0.0052 (13)
C2	0.0553 (19)	0.057 (2)	0.0552 (19)	-0.0189 (16)	-0.0121 (16)	-0.0012 (16)
C3	0.069 (2)	0.048 (2)	0.079 (3)	-0.0141 (17)	-0.022 (2)	-0.0033 (18)
C4	0.0539 (19)	0.058 (2)	0.061 (2)	-0.0015 (16)	-0.0194 (17)	-0.0219 (17)
C5	0.0440 (17)	0.067 (2)	0.0425 (16)	-0.0091 (15)	-0.0087 (14)	-0.0079 (15)
C6	0.0372 (15)	0.0502 (19)	0.0458 (16)	-0.0103 (13)	-0.0077 (13)	-0.0024 (13)
C7	0.088 (3)	0.095 (3)	0.086 (3)	-0.005 (3)	-0.023 (2)	-0.048 (3)
C8	0.055 (2)	0.055 (2)	0.064 (2)	-0.0212 (16)	-0.0089 (16)	0.0014 (17)
C9	0.0402 (15)	0.0448 (18)	0.0375 (14)	-0.0075 (13)	0.0005 (12)	0.0006 (12)
C10	0.0390 (15)	0.056 (2)	0.0437 (16)	-0.0090 (14)	0.0006 (13)	-0.0094 (14)
C11	0.0346 (15)	0.066 (2)	0.0540 (18)	-0.0071 (14)	-0.0076 (14)	-0.0083 (16)
C12	0.0426 (17)	0.074 (3)	0.058 (2)	-0.0168 (16)	-0.0161 (15)	-0.0066 (17)
C13	0.0475 (18)	0.065 (2)	0.0488 (17)	-0.0172 (15)	-0.0110 (15)	-0.0141 (15)
C14	0.0410 (15)	0.0452 (18)	0.0378 (14)	-0.0113 (13)	-0.0035 (12)	-0.0012 (12)
C15	0.059 (2)	0.048 (2)	0.0475 (17)	-0.0077 (15)	-0.0032 (15)	0.0013 (14)
C16	0.064 (2)	0.051 (2)	0.065 (2)	0.0022 (17)	-0.0102 (18)	0.0045 (17)
C17	0.0546 (19)	0.061 (2)	0.0459 (17)	-0.0119 (16)	0.0054 (15)	-0.0107 (15)
C18	0.0516 (18)	0.057 (2)	0.0376 (15)	-0.0142 (15)	-0.0066 (13)	-0.0097 (14)
N1	0.0423 (13)	0.0423 (15)	0.0367 (12)	-0.0054 (11)	-0.0013 (10)	-0.0033 (10)
N2	0.071 (2)	0.0517 (19)	0.0656 (18)	0.0063 (15)	0.0048 (16)	-0.0124 (15)
S 1	0.0349 (4)	0.0732 (6)	0.0475 (5)	-0.0108 (4)	-0.0023 (3)	-0.0186 (4)

Geometric parameters (Å, °)

C1—C2	1.391 (5)	C11—C12	1.384 (5)
C1—C6	1.406 (4)	C11—H11	0.9300
C1—S1	1.773 (3)	C12—C13	1.388 (4)
С2—С3	1.373 (5)	C12—H12	0.9300
С2—Н2	0.9300	C13—C14	1.389 (4)
С3—С4	1.386 (5)	C13—H13	0.9300
С3—Н3	0.9300	C14—N1	1.430 (4)
C4—C5	1.374 (5)	C15—N1	1.464 (4)
C4—C7	1.522 (5)	C15—C16	1.517 (5)
С5—С6	1.398 (4)	C15—H15A	0.9700

С5—Н5	0.9300	C15—H15B	0.9700
C6—C8	1.497 (5)	C16—N2	1.459 (4)
С7—Н7А	0.9600	C16—H16A	0.9700
С7—Н7В	0.9600	C16—H16B	0.9700
C7—H7C	0.9600	C17—N2	1 449 (4)
	0.9600	C17 $C18$	1.719(1) 1.521(4)
	0.9000	C17 H17A	0.0700
	0.9000		0.9700
	0.9000		0.9700
C9	1.392 (4)	CI8—NI	1.4/2 (4)
C9—C14	1.403 (4)	C18—H18A	0.9700
C9—S1	1.773 (3)	C18—H18B	0.9700
C10—C11	1.373 (4)	N2—H2A	0.8600
C10—H10	0.9300		
C2C1C6	119.3 (3)	C11—C12—H12	120.3
C2C1S1	118.4 (2)	C13—C12—H12	120.3
C6C1S1	122.2 (2)	C14—C13—C12	121.1 (3)
C3—C2—C1	121.2 (3)	C14—C13—H13	119.5
С3—С2—Н2	119.4	C12—C13—H13	119.5
C1—C2—H2	119.4	C13—C14—C9	118.9 (3)
$C_{2} - C_{3} - C_{4}$	120.6 (4)	C13—C14—N1	123.5 (3)
C2—C3—H3	119.7	C9-C14-N1	1175(3)
C4-C3-H3	119.7	N1-C15-C16	109.5(3)
$C_{5} - C_{4} - C_{3}$	118.3 (3)	N1-C15-H15A	109.8
C_{5} C_{4} C_{7}	1210(4)	C_{16} C_{15} H_{15A}	109.8
$C_3 = C_4 = C_7$	121.0(4) 120.7(4)	N1 C15 H15P	109.8
C_{4}	120.7(4)	C16 C15 U15D	109.0
C4 - C5 - U5	122.9 (5)	U15A С15 Ш15D	109.8
С4—С5—Н5	110.0		108.2
C6—C5—H5	118.0	$N_2 = C_{16} = C_{15}$	111.3 (3)
	11/./(3)	N2—C16—H16A	109.4
C5-C6-C8	120.4 (3)	С15—С16—Н16А	109.4
C1—C6—C8	121.9 (3)	N2—C16—H16B	109.4
С4—С7—Н7А	109.5	C15—C16—H16B	109.4
С4—С7—Н7В	109.5	H16A—C16—H16B	108.0
H7A—C7—H7B	109.5	N2—C17—C18	111.5 (3)
C4—C7—H7C	109.5	N2—C17—H17A	109.3
H7A—C7—H7C	109.5	C18—C17—H17A	109.3
H7B—C7—H7C	109.5	N2—C17—H17B	109.3
С6—С8—Н8А	109.5	C18—C17—H17B	109.3
C6—C8—H8B	109.5	H17A—C17—H17B	108.0
H8A—C8—H8B	109.5	N1-C18-C17	108.9 (3)
C6—C8—H8C	109.5	N1—C18—H18A	109.9
H8A—C8—H8C	109.5	C17—C18—H18A	109.9
H8B—C8—H8C	109.5	N1—C18—H18B	109.9
C10-C9-C14	119.6 (3)	C17—C18—H18B	109.9
C10-C9-S1	124.1 (2)	H18A—C18—H18B	108.3
C14-C9-S1	1163(2)	C14— $N1$ — $C15$	112 9 (2)
$C_{11} - C_{10} - C_{9}$	120 5 (3)	C14 - N1 - C18	112.9(2) 115.5(2)
/			110.0 (4)

C11 C10 U10	110.7	C15 N1 C19	110.2 (2)
C_{11} $-C_{10}$ $-H_{10}$	119./	C15 - N1 - C18	110.2 (2)
C9—C10—H10	119.7	C17—N2—C16	110.8 (3)
C10—C11—C12	120.6 (3)	C17—N2—H2A	124.6
C10—C11—H11	119.7	C16—N2—H2A	124.6
C12—C11—H11	119.7	C9—S1—C1	102.76 (14)
C11—C12—C13	119.3 (3)		
C6—C1—C2—C3	0.9 (5)	C10-C9-C14-C13	-0.6 (4)
S1—C1—C2—C3	176.7 (3)	S1—C9—C14—C13	176.8 (2)
C1—C2—C3—C4	-0.4 (5)	C10-C9-C14-N1	-179.5 (3)
C2—C3—C4—C5	-0.3 (5)	S1—C9—C14—N1	-2.1 (3)
C2—C3—C4—C7	-178.4 (3)	N1-C15-C16-N2	57.3 (4)
C3—C4—C5—C6	0.6 (5)	N2-C17-C18-N1	-57.9 (4)
C7—C4—C5—C6	178.7 (3)	C13—C14—N1—C15	95.2 (4)
C4—C5—C6—C1	-0.1 (5)	C9—C14—N1—C15	-85.9 (3)
C4—C5—C6—C8	-179.7 (3)	C13-C14-N1-C18	-32.8 (4)
C2-C1-C6-C5	-0.6 (4)	C9—C14—N1—C18	146.1 (3)
S1—C1—C6—C5	-176.2 (2)	C16-C15-N1-C14	169.7 (3)
C2-C1-C6-C8	178.9 (3)	C16-C15-N1-C18	-59.5 (4)
S1—C1—C6—C8	3.3 (4)	C17-C18-N1-C14	-171.1 (3)
C14—C9—C10—C11	0.6 (5)	C17—C18—N1—C15	59.5 (3)
S1—C9—C10—C11	-176.6 (2)	C18—C17—N2—C16	56.1 (4)
C9-C10-C11-C12	-0.1 (5)	C15-C16-N2-C17	-55.7 (4)
C10-C11-C12-C13	-0.3 (5)	C10-C9-S1-C1	-6.7 (3)
C11—C12—C13—C14	0.3 (5)	C14—C9—S1—C1	176.0 (2)
C12—C13—C14—C9	0.1 (5)	C2-C1-S1-C9	106.2 (3)
C12—C13—C14—N1	179.0 (3)	C6—C1—S1—C9	-78.2 (3)
	× /		× /

(2) 1-{2-[(2,4-Dimethylphenyl)sulfanyl]phenyl}piperazine methanol monosolvate

Crystal data

C₁₈H₂₂N₂S·CH₄O $M_r = 330.48$ Monoclinic, P2₁/c Hall symbol: -P 2ybc a = 13.2100 (7) Å b = 18.1500 (9) Å c = 8.1746 (4) Å $\beta = 104.378$ (2)° V = 1898.57 (17) Å³ Z = 4

Data collection

Rigaku R-AXIS RAPID/ZJUG diffractometer Radiation source: rotating anode Graphite monochromator Detector resolution: 10.00 pixels mm⁻¹ ω scans F(000) = 712 $D_x = 1.156 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 10380 reflections $\theta = 3.2-27.4^{\circ}$ $\mu = 0.18 \text{ mm}^{-1}$ T = 296 KChunk, colorless $0.38 \times 0.33 \times 0.28 \text{ mm}$

Absorption correction: multi-scan (ABSCOR: Higashi, 1995) $T_{min} = 0.928$, $T_{max} = 0.952$ 18365 measured reflections 4331 independent reflections 2468 reflections with $I > 2\sigma(I)$ $R_{int} = 0.054$

$\theta_{\text{max}} = 27.4^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$	$k = -23 \rightarrow 23$
$h = -16 \rightarrow 17$	$l = -10 \rightarrow 10$
Refinement	
Refinement on F^2 Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.052$	H-atom parameters constrained
$wR(F^2) = 0.156$	$w = 1/[\sigma^2(F_o^2) + (0.0598P)^2 + 0.7465P]$
S = 1.00	where $P = (F_o^2 + 2F_c^2)/3$
4331 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
213 parameters	$\Delta ho_{ m max} = 0.25 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.032 (3)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C16	0.7959 (2)	0.35981 (14)	0.6308 (3)	0.0631 (7)	
H16A	0.7446	0.3322	0.6726	0.076*	
H16B	0.7810	0.3521	0.5097	0.076*	
C15	0.78325 (19)	0.44056 (13)	0.6641 (3)	0.0590 (6)	
H15A	0.7148	0.4573	0.6018	0.071*	
H15B	0.7892	0.4484	0.7835	0.071*	
C18	0.96814 (19)	0.45883 (14)	0.7082 (3)	0.0604 (6)	
H18A	0.9744	0.4667	0.8277	0.073*	
H18B	1.0219	0.4875	0.6754	0.073*	
C17	0.9822 (2)	0.37770 (14)	0.6748 (3)	0.0628 (7)	
H17A	0.9841	0.3717	0.5577	0.075*	
H17B	1.0490	0.3615	0.7446	0.075*	
C14	0.84554 (18)	0.55978 (12)	0.5953 (3)	0.0500 (5)	
C13	0.89399 (19)	0.61073 (14)	0.7155 (3)	0.0579 (6)	
H13	0.9419	0.5948	0.8126	0.069*	
C12	0.8721 (2)	0.68494 (14)	0.6929 (3)	0.0644 (7)	
H12	0.9049	0.7186	0.7747	0.077*	
C11	0.8017 (2)	0.70901 (14)	0.5493 (3)	0.0645 (7)	
H11	0.7865	0.7590	0.5348	0.077*	
C10	0.7535 (2)	0.65945 (13)	0.4267 (3)	0.0600 (6)	
H10	0.7056	0.6761	0.3302	0.072*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C9	0.77610 (18)	0.58456 (12)	0.4466 (3)	0.0520 (6)
C1	0.6514 (2)	0.56877 (13)	0.1194 (3)	0.0560 (6)
C6	0.5482 (2)	0.58898 (14)	0.1102 (3)	0.0612 (6)
C5	0.4947 (2)	0.62711 (16)	-0.0328 (4)	0.0738 (8)
Н5	0.4261	0.6413	-0.0401	0.089*
C4	0.5387 (2)	0.64500 (16)	-0.1649 (3)	0.0723 (8)
C3	0.6398 (2)	0.62274 (17)	-0.1533 (3)	0.0743 (8)
H3	0.6708	0.6328	-0.2413	0.089*
C2	0.6953 (2)	0.58576 (15)	-0.0131 (3)	0.0650 (7)
H2	0.7638	0.5718	-0.0070	0.078*
C8	0.4960 (3)	0.5711 (2)	0.2494 (4)	0.0946 (10)
H8A	0.4280	0.5935	0.2252	0.142*
H8B	0.5376	0.5897	0.3546	0.142*
H8C	0.4890	0.5186	0.2571	0.142*
C7	0.4764 (3)	0.6864 (2)	-0.3175 (5)	0.1267 (15)
H7A	0.5232	0.7121	-0.3704	0.190*
H7B	0.4311	0.7212	-0.2825	0.190*
H7C	0.4351	0.6523	-0.3962	0.190*
C19	0.8246 (3)	0.1517 (2)	0.6374 (5)	0.1043 (11)
H19A	0.8628	0.1474	0.7534	0.156*
H19B	0.8153	0.1036	0.5866	0.156*
H19C	0.7576	0.1734	0.6317	0.156*
N1	0.86499 (14)	0.48236 (10)	0.6108 (2)	0.0520 (5)
N2	0.89994 (17)	0.33031 (11)	0.7085 (2)	0.0601 (5)
H2A	0.9160	0.3296	0.8171	0.090*
01	0.87917 (19)	0.19532 (11)	0.5525 (2)	0.0848 (6)
H1	0.8925	0.2349	0.6017	0.127*
S1	0.72717 (6)	0.51680 (4)	0.29023 (9)	0.0699 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C16	0.0652 (16)	0.0537 (14)	0.0744 (16)	-0.0033 (12)	0.0246 (13)	0.0061 (12)
C15	0.0560 (15)	0.0559 (15)	0.0708 (15)	0.0007 (11)	0.0263 (12)	0.0091 (12)
C18	0.0550 (15)	0.0564 (15)	0.0679 (15)	0.0030 (12)	0.0117 (12)	0.0056 (12)
C17	0.0605 (15)	0.0587 (16)	0.0700 (15)	0.0089 (12)	0.0179 (12)	0.0051 (12)
C14	0.0514 (13)	0.0455 (13)	0.0583 (13)	0.0004 (10)	0.0232 (10)	0.0031 (10)
C13	0.0568 (15)	0.0582 (15)	0.0588 (14)	-0.0015 (12)	0.0149 (11)	-0.0027 (11)
C12	0.0692 (17)	0.0522 (15)	0.0726 (16)	-0.0061 (13)	0.0193 (13)	-0.0104 (12)
C11	0.0738 (17)	0.0441 (13)	0.0795 (17)	0.0015 (12)	0.0265 (14)	-0.0004 (12)
C10	0.0660 (16)	0.0479 (14)	0.0657 (15)	0.0032 (12)	0.0158 (12)	0.0040 (11)
C9	0.0538 (14)	0.0469 (13)	0.0585 (13)	0.0014 (11)	0.0197 (11)	0.0017 (10)
C1	0.0587 (15)	0.0494 (13)	0.0603 (14)	-0.0020 (11)	0.0154 (11)	-0.0061 (10)
C6	0.0576 (15)	0.0588 (15)	0.0684 (15)	-0.0071 (12)	0.0183 (12)	-0.0078 (12)
C5	0.0520 (15)	0.0746 (19)	0.087 (2)	0.0034 (13)	0.0023 (14)	-0.0083 (15)
C4	0.076 (2)	0.0682 (18)	0.0647 (16)	-0.0061 (15)	0.0024 (14)	0.0004 (13)
C3	0.079 (2)	0.084 (2)	0.0612 (16)	-0.0154 (16)	0.0194 (14)	-0.0003 (14)
C2	0.0552 (15)	0.0723 (18)	0.0686 (16)	-0.0039 (13)	0.0173 (12)	-0.0070 (13)

C8 C7 C19 N1	0.089 (2) 0.138 (4) 0.111 (3) 0.0503 (11)	0.106 (3) 0.125 (3) 0.101 (3) 0.0459 (11)	0.102 (2) 0.094 (3) 0.113 (3) 0.0609 (11)	-0.012 (2) 0.014 (3) -0.031 (2) 0.0022 (9)	0.0492 (19) -0.014 (2) 0.049 (2) 0.0158 (9)	-0.0035 (19) 0.026 (2) -0.009 (2) 0.0081 (8)
N2	0.0708 (14)	0.0516 (12)	0.0599 (12)	0.0050 (10)	0.0201 (10)	0.0058 (9)
01	0.1255 (18)	0.0678 (13)	0.0686 (12)	-0.0129 (12)	0.0384 (12)	-0.0116 (9)
S1	0.0871 (5)	0.0482 (4)	0.0669 (4)	0.0070 (3)	0.0050 (3)	-0.0044(3)

Geometric parameters (Å, °)

C16—N2	1.465 (3)	C9—S1	1.776 (2)
C16—C15	1.507 (4)	C1—C2	1.384 (3)
C16—H16A	0.9700	C1—C6	1.395 (4)
C16—H16B	0.9700	C1—S1	1.774 (2)
C15—N1	1.471 (3)	C6—C5	1.391 (4)
C15—H15A	0.9700	C6—C8	1.506 (4)
C15—H15B	0.9700	C5—C4	1.386 (4)
C18—N1	1.461 (3)	С5—Н5	0.9300
C18—C17	1.517 (3)	C4—C3	1.376 (4)
C18—H18A	0.9700	C4—C7	1.513 (4)
C18—H18B	0.9700	C3—C2	1.373 (4)
C17—N2	1.464 (3)	С3—Н3	0.9300
C17—H17A	0.9700	C2—H2	0.9300
C17—H17B	0.9700	C8—H8A	0.9600
C14—C13	1.385 (3)	C8—H8B	0.9600
C14—C9	1.403 (3)	C8—H8C	0.9600
C14—N1	1.428 (3)	C7—H7A	0.9600
C13—C12	1.380 (3)	C7—H7B	0.9600
C13—H13	0.9300	C7—H7C	0.9600
C12—C11	1.375 (4)	C19—O1	1.370 (4)
C12—H12	0.9300	C19—H19A	0.9600
C11—C10	1.379 (3)	C19—H19B	0.9600
C11—H11	0.9300	C19—H19C	0.9600
С10—С9	1.393 (3)	N2—H2A	0.8598
C10—H10	0.9300	O1—H1	0.8200
N2—C16—C15	114.3 (2)	C2—C1—S1	118.1 (2)
N2-C16-H16A	108.7	C6—C1—S1	122.3 (2)
C15—C16—H16A	108.7	C5—C6—C1	117.5 (2)
N2-C16-H16B	108.7	C5—C6—C8	120.7 (3)
C15—C16—H16B	108.7	C1—C6—C8	121.8 (3)
H16A—C16—H16B	107.6	C4—C5—C6	123.2 (3)
N1-C15-C16	109.0 (2)	С4—С5—Н5	118.4
N1-C15-H15A	109.9	С6—С5—Н5	118.4
C16—C15—H15A	109.9	C3—C4—C5	117.7 (3)
N1—C15—H15B	109.9	C3—C4—C7	121.5 (3)
C16—C15—H15B	109.9	C5—C4—C7	120.8 (3)
H15A—C15—H15B	108.3	C2—C3—C4	120.6 (3)

N1—C18—C17	109.0 (2)	С2—С3—Н3	119.7
N1—C18—H18A	109.9	С4—С3—Н3	119.7
C17—C18—H18A	109.9	C3—C2—C1	121.5 (3)
N1-C18-H18B	109.9	С3—С2—Н2	119.3
C17—C18—H18B	109.9	C1—C2—H2	119.3
H18A—C18—H18B	108.3	С6—С8—Н8А	109.5
N2-C17-C18	114.0 (2)	C6—C8—H8B	109.5
N2-C17-H17A	108.8	H8A—C8—H8B	109.5
C18—C17—H17A	108.8	C6-C8-H8C	109.5
N2-C17-H17B	108.8	H8A—C8—H8C	109.5
C_{18} C_{17} H_{17B}	108.8	H8B-C8-H8C	109.5
H17A - C17 - H17B	107.7	C4-C7-H7A	109.5
C13 - C14 - C9	119.2 (2)	C4-C7-H7B	109.5
C13 - C14 - N1	119.2 (2)	H7A - C7 - H7B	109.5
C_{13} C_{14} N_1	123.0(2) 117.2(2)	CA = C7 = H7C	109.5
$C_{12} = C_{14} = 101$	117.2(2) 120.8(2)	H_{1}^{-}	109.5
$C_{12} = C_{13} = C_{14}$	120.6 (2)		109.5
C_{12} C_{13} C_{14} C_{12} C_{12} C_{12} C_{12} C_{12} C_{12} C_{12} C_{12} C_{12} C_{13} C_{14} C_{12} C_{12} C_{13} C_{14} C_{14} C_{15} C_{15} C_{14} C_{15} C_{15} C_{14} C_{15} C	119.0	H/B - C/-H/C	109.5
C14—C13—H13	119.0	O1 = C19 = H19A	109.5
CII = CI2 = CI3	120.0 (2)		109.5
C12—C12—H12	120.0	HI9A—C19—HI9B	109.5
C13—C12—H12	120.0		109.5
C12 - C11 - C10	120.4 (2)	H19A—C19—H19C	109.5
CI2—CII—HII	119.8	H19B—C19—H19C	109.5
C10—C11—H11	119.8	C14—N1—C18	117.31 (19)
C11—C10—C9	120.3 (2)	C14—N1—C15	113.85 (18)
C11—C10—H10	119.9	C18—N1—C15	109.97 (18)
C9—C10—H10	119.9	C17—N2—C16	111.36 (19)
C10—C9—C14	119.3 (2)	C17—N2—H2A	101.4
C10—C9—S1	124.22 (18)	C16—N2—H2A	114.7
C14—C9—S1	116.39 (17)	C19—O1—H1	109.5
C2—C1—C6	119.5 (2)	C1—S1—C9	103.41 (11)
N2—C16—C15—N1	54.9 (3)	C6—C5—C4—C7	179.9 (3)
N1—C18—C17—N2	-55.2 (3)	C5—C4—C3—C2	-1.6 (4)
C9—C14—C13—C12	2.2 (4)	C7—C4—C3—C2	179.4 (3)
N1—C14—C13—C12	179.8 (2)	C4—C3—C2—C1	0.9 (4)
C14—C13—C12—C11	-0.3 (4)	C6—C1—C2—C3	0.6 (4)
C13—C12—C11—C10	-0.6 (4)	S1—C1—C2—C3	176.9 (2)
C12—C11—C10—C9	-0.4 (4)	C13—C14—N1—C18	-28.7 (3)
C11—C10—C9—C14	2.3 (4)	C9-C14-N1-C18	149.0 (2)
C11—C10—C9—S1	-174.67 (19)	C13—C14—N1—C15	101.7 (3)
C13—C14—C9—C10	-3.1 (3)	C9—C14—N1—C15	-80.6 (3)
N1-C14-C9-C10	179.1 (2)	C17—C18—N1—C14	-166.5 (2)
C13—C14—C9—S1	174.04 (18)	C17—C18—N1—C15	61.3 (3)
N1-C14-C9-S1	-3.7 (3)	C16—C15—N1—C14	164.7 (2)
C2-C1-C6-C5	-1.3 (4)	C16—C15—N1—C18	-61.3 (3)
S1—C1—C6—C5	-177.42 (19)	C18—C17—N2—C16	48.1 (3)
C2—C1—C6—C8	179.2 (3)	C15—C16—N2—C17	-48.2 (3)

S1—C1—C6—C8	3.0 (4)	C2-C1-S1-C9	100.2 (2)
C1—C6—C5—C4	0.6 (4)	C6—C1—S1—C9	-83.6 (2)
C8—C6—C5—C4	-179.9 (3)	C10-C9-S1-C1	1.0 (2)
C6—C5—C4—C3	0.9 (4)	C14—C9—S1—C1	-176.04 (18)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
N2—H2A···O1 ⁱ	0.86	2.15	2.930 (3)	151
O1—H1…N2	0.82	1.93	2.744 (3)	171

Symmetry code: (i) x, -y+1/2, z+1/2.