

Received 1 July 2015 Accepted 12 July 2015

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; polyhalogenated benzene; halogen bond; bromine; iodine

CCDC references: 1412444; 1412445 Supporting information: this article has supporting information at journals.iucr.org/e

Anomalous halogen bonds in the crystal structures of 1,2,3-tribromo-5-nitrobenzene and 1,3-dibromo-2-iodo-5-nitrobenzene

CrossMark

José A. Romero,^a Gerardo Aguirre Hernández^a and Sylvain Bernès^b*

^aCentro de Graduados e Investigación en Química, Instituto Tecnológico de Tijuana, Apdo. Postal 1166, 22510 Tijuana, B.C., Mexico, and ^bInstituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico. *Correspondence e-mail: sylvain_bernes@hotmail.com

The title trihalogenated nitrobenzene derivatives, $C_6H_2Br_3NO_2$ and $C_6H_2Br_2INO_2$, crystallize in triclinic and monoclinic cells, respectively, with two molecules per asymmetric unit in each case. The asymmetric unit of the tribromo compound features a polarized $Br^{\delta_+} \cdots Br^{\delta_-}$ intermolecular halogen bond. After substitution of the Br atom in the *para* position with respect to the nitro group, the network of $X \cdots X$ halogen contacts is reorganized. Two intermolecular polarized halogen bonds are then observed, which present the uncommon polarization $Br^{\delta_+} \cdots I^{\delta_-}$: the more electronegative site (Br) behaves as a donor and the less electronegative site (I) as an acceptor for the charge transfer.

1. Chemical context

Within the large class of non-covalent interactions studied in chemical crystallography, halogen bonds are of special interest in crystal engineering. The stabilizing interaction between a halogen atom and a Lewis base, $X \cdots B$, shares many aspects with classical hydrogen bonds, but is more directional. On the other hand, halogen contacts $X \cdots X$ are more difficult to conceptualize (Wang *et al.*, 2014), for instance because the charge transfer in the Br \cdots Br contact is not as obvious as in hydrogen bonds. Evidence supporting the importance of this topic is the recent organization of an international meeting dedicated to halogen bonding (Erdelyi, 2014).

In this context, we are engaged in the synthesis and structural characterization of a series of halogen-substituted nitrobenzenes. The present communication describes two closely related compounds in the series, which differ only by the halogen atom substituting at the ring position *para* to the nitro group. Despite the small chemical modification, the resulting crystal structures are very different, as a consequence of a different network of halogen bonds.

OPEN d ACCESS

Figure 1

The asymmetric unit of (I), with displacement ellipsoids at the 30% probability level. The dashed bond connecting the independent molecules is a type-II halogen bond.

2. Structural commentary

Both compounds crystallize with two molecules in the asymmetric unit, but in different space groups. The tribromo derivative, (I, Fig. 1), is a $P\overline{1}$ crystal isomorphous to the chloro analogue (Bhar *et al.*, 1995), although the unit-cell parameters are significantly larger for (I) compared to the chloro compound: the cell volume is increased by more than 7%. In the present work, we retained the Niggli reduced triclinic cell (a < b < c), while Bhar *et al.* used a non-reduced cell. Moreover, the asymmetric unit content was defined in order to emphasize the strongest Br···Br bond in (I). The bromo-iodo derivative (II, Fig. 2) crystallizes in the monoclinic system and, in that case, the standard setting was used for space group $P2_1/c$.

The C-halogen bond lengths are as expected. In (I), C-Br distances are in the range 1.821 (12)–1.886 (11) Å, slightly shorter than C-Br bond lengths observed in hexabromobenzene, 1.881 Å (T = 100 K; Reddy *et al.*, 2006) or 1.871 Å (synchrotron study, T = 100 K; Brezgunova *et al.*, 2012). In (II), C-Br bond lengths are longer, 1.875 (13) to 1.895 (14) Å, while the C-I bond lengths, 2.088 (12) and 2.074 (14) Å, may be compared to bonds in hexaiodobenzene, 2.109 Å (T = 100 K; Ghosh *et al.*, 2007) or 1,2,3-triiodobenzene, 2.090 Å (T

Figure 2

The asymmetric unit of (II), with displacement ellipsoids at the 30% probability level. The dashed bonds connecting the independent molecules are halogen contacts.

= 223 K, Novak & Li, 2007). Indeed, differences in bond lengths between perhalogenated and trihalogenated derivatives are within experimental errors, and the substitution of the 5-position by the nitro electron-withdrawing group in (I) and (II) has probably little influence on these bonds.

The important feature in these halogenated molecules is rather the possibility of steric repulsion between vicinal halogen atoms, which is related to the reduction of endocyclic angles. Regarding this point, it is worth reading the *Acta E* article about 1,2,3-triiodobenzene (Novak & Li, 2007). As in polyiodo derivatives, intramolecular steric crowding between the halogen atoms in (I) and (II) is offset by benzene ring distortion. As a consequence, the C1-C2-C3 and equivalent C11-C12-C13 angles are systematically less than 120° : 116.2 (11) and 118.8 (13)° in (I); 118.1 (12) and 117.3 (13)° in (II). Again, the nitro group has little influence on intramolecular halogen…halogen contacts. For instance, in 1,3dibromo-2-iodobenzene, the C1-C2-C3 angle is 118.0° (Schmidbaur *et al.*, 2004), very close to that observed in (II), which presents the same halogen substitution.

The 5-nitro substituent is almost conjugated with the benzene nucleus in (I): the dihedral angle between the NO₂ plane and the benzene ring is 6(2) and $1(2)^{\circ}$ for each independent molecule. For (II), twisting of the NO₂ groups is more significant, with dihedral angles of 10 (1) and $7(1)^{\circ}$. This near planar conformation is identical to that observed for 1,2,3-trichloro-5-nitrobenzene (Bhar *et al.*, 1995), but contrasts with the twisted conformation observed in perhalogenated nitrobenzene derivatives: pentachloronitrobenzene (twist angle of NO₂: 62° ; Tanaka *et al.*, 1974) and 1-bromo-2,3,5,6-tetrafluoro-4-nitrobenzene (twist angle of NO₂: 41.7 (3)°; Stein *et al.*,

research communications

Table 1			
Halogen-bo	ond geometry	(Å, $^{\circ}$) for (I).	
37 37		0	0

$X_1 \cdot \cdot \cdot X_2$	d	θ_1	θ_2	bond type
Br2···Br11	3.642 (3)	165.2 (5)	82.3 (5)	II-polarized
$Br1 \cdots Br1^i$	3.731 (4)	133.3 (4)	133.3 (4)	I-unpolarized
$Br2 \cdot \cdot \cdot Br13^{ii}$	3.781 (3)	126.8 (4)	129.6 (4)	I-unpolarized

Notes: d = separation $X_1 \cdots X_2$; $\theta_1 =$ angle $C - X_1 \cdots X_2$; $\theta_2 =$ angle $X_1 \cdots X_2 - C$. For halogen bond types, see: Reddy *et al.* (2006). Symmetry codes: (i) -x, 1 - y, -z; (ii) -x, -y, 1 - z.

Table 2 Halogen-bond geometry (Å, °) for (II).

$\overline{X_1 \cdots X_2}$	d	θ_1	θ_2	bond type
Br1···I12	3.813 (2)	161.2 (4)	117.2 (4)	II-polarized
$I2 \cdot \cdot \cdot Br11^i$	3.893 (2)	116.6 (4)	161.8 (4)	II-polarized
Br1···Br13	3.787 (2)	142.8 (4)	122.9 (4)	I-unpolarized
$Br11 \cdots Br3^{ii}$	3.858 (2)	143.9 (4)	124.4 (4)	I-unpolarized

Notes: d = separation $X_1 \cdots X_2$; $\theta_1 =$ angle $C - X_1 \cdots X_2$; $\theta_2 =$ angle $X_1 \cdots X_2 - C$. For halogen bond types, see: Reddy *et al.* (2006). Symmetry codes: (i) 1 + x, y, z; (ii) -1 + x, y, z.

2011). It thus seems clear that twisting of the nitro group with respect to the benzene ring in nitrobenzene derivatives is a direct consequence of intramolecular crowding with *ortho* substituents. For 1,2,3-halogenated-5-nitrobenzenes such as (I) and (II), a planar conformation should be expected as a rule.

3. Supramolecular features

The crystal structures are directed by intermolecular weak halogen bonds, also known as type-II interactions in the Desiraju classification scheme (Reddy *et al.*, 2006). Such a bond is present in the asymmetric unit of (I), between Br2 and Br11 (Fig. 3). The type-II arrangement is characterized by angles $\theta_1 = C2 - Br2 \cdots Br11$ and $\theta_2 = C11 - Br11 \cdots Br2$, which

Figure 4

Part of the crystal structure of (II), emphasizing the halogen bonds (dashed lines). The green molecules correspond to the asymmetric unit.

should be close to 180 and 90°, respectively. For (I), observed angles are $\theta_1 = 165.2 (5)^\circ$ and $\theta_2 = 82.3 (5)^\circ$. The crystal packing thus polarizes the involved halogen atoms, forming the halogen bond Br2^{δ_+}...Br11^{δ_-}. This dimolecular polar unit is connected *via* inversion centers to neighboring units in the cell, forming C-H···Br hydrogen bonds, and O···Br contacts. This packing motif induces secondary halogen-···halogen contacts, which are clearly unpolarized. These type-I interactions are characterized by angles $\theta_1 \simeq \theta_2$ (Table 1, entries 2 and 3) and display larger Br···Br separations compared to the polarized halogen bond (entry 1), in which electrostatic forces bring the atoms into close contact.

The substitution of one Br atom by I, to form crystal (II), changes dramatically the packing structure, affording a more complex network of halogen contacts (Fig. 4 and Table 2). Within the asymmetric unit, the type-II polarized contact is Br1 \cdots II2 (Table 2, entry 1). However, θ angles for this bond deviate from ideal values, and, surprisingly, the bond is

polarized in the wrong way, $Br^{\delta+} \cdots I^{\delta-}$. The opposite polarization was expected for this bond, due to the lower electronegativity and higher polarizability of iodine compared to bromine. The other significant contact observed in the asymmetric unit is a Br \cdots Br unpolarized contact. The network of halogen bonds is expanded in the [100] direction by Br11, which gives a bifurcated contact with I2 and Br3 (Table 2, entries 2 and 4). One contact is polarized, with the polarization, once again, oriented in the unexpected way, $I2^{\delta-}\cdots Br11^{\delta+}$. These anomalous halogen bonds are not present in other mixed halogen derivatives. Indeed, in 1,3-dibromo-2-iodobenzene (Schmidbaur *et al.*, 2004), the iodine atom is not engaged in halogen bonding.

4. Database survey

The current release of the CSD (Version 5.36 with all updates; Groom & Allen, 2014), contains many structures of halogensubstituted nitrobenzene, with Cl (*e.g.* Bhar *et al.*, 1995; Tanaka *et al.*, 1974), Br (*e.g.* Olaru *et al.*, 2014), and I (Thalladi *et al.*, 1996). This series is completed with nitrophenol derivatives, for example 2,3-difluoro-4-iodo-6-nitrophenol (Francke *et al.*, 2010). Structures of pentachlorophenol (Brezgunova *et al.*, 2012) and pentabromophenol (Betz *et al.*, 2008; Brezgunova *et al.*, 2012) are also available.

Regarding poly- and per-halogenated benzene structures, an impressive series of 23 compounds has been described, including Cl, Br, I and Me as substituents, generating a variety

 Table 3

 Experimental details.

Figure 5 Synthetic scheme for (I) and (II).

of molecular symmetries (Reddy *et al.*, 2006). The structure of D_{6h} -perhalogenated benzene has been reported with F (Shorafa *et al.*, 2009), Cl (Brown & Strydom, 1974; Reddy *et al.*, 2006), Br (Baharie & Pawley, 1979; Reddy *et al.*, 2006; Brezgunova *et al.*, 2012) and I (Ghosh *et al.*, 2007). The former is a Z' = 2 crystal, while others are Z'=1 crystals.

5. Synthesis and crystallization

Compounds (I) and (II) were synthesized from 2,6-dibromo-4nitroaniline (Bryant *et al.*, 1998), as depicted in Fig. 5.

Synthesis of (I). A solution of 2,6-dibromo-4-nitroaniline (1.0 g, 3.38 mmol) in acetic acid (3 ml) was cooled to 278 K, and concentrated H_2SO_4 (7 ml) was carefully added under stirring. While ensuring that the temperature was still below 278 K, NaNO₂ (0.708 g, 10.26 mmol) was added in one batch. The reaction was stirred at this temperature for 2 h to afford

	(I)	(II)
Crystal data		
Chemical formula	$C_6H_2Br_3NO_2$	$C_6H_2Br_2INO_2$
M_r	359.82	406.81
Crystal system, space group	Triclinic, $P\overline{1}$	Monoclinic, $P2_1/c$
Temperature (K)	298	298
a, b, c (Å)	7.641 (5), 8.040 (5), 14.917 (6)	13.548 (3), 20.037 (3), 9.123 (2)
α, β, γ (°)	83.91 (3), 79.86 (4), 81.49 (4)	90, 130.37 (2), 90
$V(A^3)$	889.2 (8)	1886.8 (8)
Z	4	8
Radiation type	Μο Κα	Μο Κα
$\mu (\mathrm{mm}^{-1})$	13.57	11.82
Crystal size (mm)	$0.42 \times 0.40 \times 0.30$	$0.50\times0.22\times0.12$
Data collection		
Diffractometer	Bruker P4	Bruker P4
Absorption correction	Part of the refinement model (ΔF) (Walker & Stuart, 1983)	ψ scan (XSCANS; Bruker, 1997)
T_{\min}, T_{\max}	0.0002, 0.001	0.429, 0.988
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	6070, 3141, 1503	5716, 5407, 1968
R _{int}	0.120	0.058
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.596	0.703
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.066, 0.196, 1.47	0.061, 0.153, 0.95
No. of reflections	3141	5407
No. of parameters	218	218
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.79, -1.00	0.84, -0.84

Computer programs: XSCANS (Bruker, 1997), SHELXS2014 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and Mercury (Macrae et al., 2008).

research communications

the diazonium salt. An aqueous solution (17.67 ml) of CuBr (4.95 g, 34.54 mmol) and 47% HBr (17.67 ml) was warmed to 343 K, and the diazotization solution previously prepared was added in one batch with stirring. The mixture was kept at 343 K for 1 h, and then left to cool overnight. The reaction was neutralized with NaOH and extracted with CH_2Cl_2 (3 \times 30 ml). The resulting solution was concentrated under vacuum and the crude material was purified by flash chromatography (petroleum ether/CH₂Cl₂ 8/2, $R_f = 0.49$) to give (I). Crystals were obtained by slow evaporation of a methanol/ethyl ether solution (yield: 0.952 g, 2.65 mmol, 78%). m.p. 380-382 K. IR $(KBr, cm^{-1}): 3090 (Ar-H); 1583 (C=C); 1526, 1342 (N=O);$ 738 (C–Br). ¹H-NMR (600 MHz, CDCl₃): δ 8.43 (s, H-4, H-6). ¹³C-NMR (150 MHz, CDCl₃): δ 146.8, 135.7, 127.0, 126.9, 126.8. EIMS m/z: $[M^+]$ 357 (34), $[M^++2]$ 359 (7), $[M^++4]$ 361 (100), $[M^++6]$ 363 (36) $[M^+-NO_2]$ 311 (12).

Synthesis of (II). A solution of 2,6-dibromo-4-nitroaniline (1.0 g, 3.38 mmol) in acetic acid (3 ml) was cooled to 278 K in an ice-salt bath, and concentrated H_2SO_4 (3 ml) was carefully added under stirring. While ensuring that the temperature was still below 278 K, NaNO₂ (0.242 g, 3.516 mmol) was added in one batch. The reaction was stirred at this temperature for 30 min to afford the diazonium salt. An aqueous solution (10 ml) of KI (5.635 g, 33.95 mmol) was prepared, and the diazotization solution previously prepared was added in one batch. The mixture was then further stirred for 1 h. The reaction was neutralized with NaOH, extracted with CH₂Cl₂ $(3 \times 30 \text{ ml})$, and concentrated under vacuum. The crude material was purified by flash chromatography (petroleum ether/CH₂Cl₂ 4/1, $R_{\rm f}$ = 0.31) to give (II). Crystals were obtained by slow evaporation of an acetone/methanol/CH2Cl2 solution (vield: 1.21 g, 2.98 mmol, 88%). m.p. 415-417 K. IR $(KBr, cm^{-1}): 3010 (Ar-H); 1620, 1516 (C=C); 1336 (N=O).$ ¹H-NMR (600 MHz, CDCl₃): δ 8.38 (s, H-4, H-6). ¹³C-NMR (150 MHz, CDCl₃): § 146.1, 142.4, 127.4, 124.1. EIMS m/z: $[M^+]$ 405 (42), $[M^++2]$ 407 (100), $[M^++4]$ 409 (48).

6. Refinement

Crystal data, data collection and structure refinement details for (I) and (II) are summarized in Table 3. The absorption correction for (I) was challenging, and eventually carried out by applying *DIFABS* on the complete isotropic model (Walker & Stuart, 1983). In the case of (II), measured ψ -scans were used. H atoms were refined as riding to their carrier C atoms, with C–H bond lengths fixed at 0.93 Å and with $U_{iso}(H) = 1.2U_{eq}$ (carrier atom).

Acknowledgements

We acknowledge the contribution of Angélica Navarrete to the synthesis of the reported compounds.

References

- Baharie, E. & Pawley, G. S. (1979). Acta Cryst. A35, 233-235.
- Betz, R., Klüfers, P. & Mayer, P. (2008). Acta Cryst. E64, 01921.
- Bhar, A., Aune, J. P., Benali-Cherif, N., Benmenni, L. & Giorgi, M. (1995). Acta Cryst. C**51**, 256–260.
- Brezgunova, M. E., Aubert, E., Dahaoui, S., Fertey, P., Lebègue, S., Jelsch, C., Ángyán, J. G. & Espinosa, E. (2012). *Cryst. Growth Des.* 12, 5373–5386.
- Brown, G. M. & Strydom, O. A. W. (1974). Acta Cryst. B30, 801-804.
- Bruker (1997). XSCANS. Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Bryant, R., James, S. C., Norman, N. C. & Orpen, A. G. (1998). Acta Cryst. C54, 1113–1115.
- Erdelyi, M. (2014). Nat. Chem. 6, 762-764.
- Francke, R., Schnakenburg, G. & Waldvogel, S. R. (2010). *Eur. J. Org. Chem.* pp. 2357–2362.
- Ghosh, S., Reddy, C. M. & Desiraju, G. R. (2007). Acta Cryst. E63, 0910–0911.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662– 671.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Novak, I. & Li, D. (2007). Acta Cryst. E63, 0438-0439.
- Olaru, M., Beckmann, J. & Raţ, C. I. (2014). Organometallics, 33, 3012–3020.
- Reddy, C. M., Kirchner, M. T., Gundakaram, R. C., Padmanabhan, K. A. & Desiraju, G. R. (2006). *Chem. Eur. J.* **12**, 2222–2234.
- Schmidbaur, H., Minge, O. & Nogai, S. (2004). Z. Naturforsch. Teil B, 59, 264–268.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Shorafa, H., Mollenhauer, D., Paulus, B. & Seppelt, K. (2009). *Angew. Chem. Int. Ed.* **48**, 5845–5847.
- Stein, M., Schwarzer, A., Hulliger, J. & Weber, E. (2011). *Acta Cryst.* E67, 01655.
- Tanaka, I., Iwasaki, F. & Aihara, A. (1974). Acta Cryst. B30, 1546– 1549.
- Thalladi, V. R., Goud, B. S., Hoy, V. J., Allen, F. H., Howard, J. A. K. & Desiraju, G. R. (1996). *Chem. Commun.* pp. 401–402.
- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.

Wang, C., Danovich, D., Mo, Y. & Shaik, S. (2014). J. Chem. Theory Comput. 10, 3726–3737.

supporting information

Acta Cryst. (2015). E71, 960-964 [https://doi.org/10.1107/S2056989015013377]

Anomalous halogen bonds in the crystal structures of 1,2,3-tribromo-5-nitrobenzene and 1,3-dibromo-2-iodo-5-nitrobenzene

José A. Romero, Gerardo Aguirre Hernández and Sylvain Bernès

Computing details

For both compounds, data collection: *XSCANS* (Bruker, 1997); cell refinement: *XSCANS* (Bruker, 1997); data reduction: *XSCANS* (Bruker, 1997); program(s) used to solve structure: *SHELXS2014* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL2014* (Sheldrick, 2015).

(I) 1,2,3-Tribromo-5-nitrobenzene

Crystal data

C₆H₂Br₃NO₂ $M_r = 359.82$ Triclinic, *P*1 a = 7.641 (5) Å b = 8.040 (5) Å c = 14.917 (6) Å a = 83.91 (3)° $\beta = 79.86$ (4)° $\gamma = 81.49$ (4)° V = 889.2 (8) Å³ Z = 4

Data collection

Bruker P4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: part of the refinement model (ΔF) (Walker & Stuart, 1983) $T_{\min} = 0.0002, T_{\max} = 0.001$ 6070 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.066$ $wR(F^2) = 0.196$ S = 1.473141 reflections F(000) = 664 $D_x = 2.688 \text{ Mg m}^{-3}$ Melting point: 380 K Mo K\alpha radiation, \lambda = 0.71073 Å Cell parameters from 48 reflections $\theta = 4.8-12.4^{\circ}$ $\mu = 13.57 \text{ mm}^{-1}$ T = 298 KIrregular, colourless $0.42 \times 0.40 \times 0.30 \text{ mm}$

3141 independent reflections 1503 reflections with $I > 2\sigma(I)$ $R_{int} = 0.120$ $\theta_{max} = 25.1^{\circ}, \ \theta_{min} = 2.6^{\circ}$ $h = -8 \rightarrow 9$ $k = -9 \rightarrow 9$ $I = 0 \rightarrow 17$ 3 standard reflections every 97 reflections intensity decay: 1%

218 parameters0 restraints0 constraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$(\Delta/\sigma)_{\rm max} < 0.001$
map	$\Delta \rho_{\rm max} = 0.79 \text{ e } \text{\AA}^{-3}$
Hydrogen site location: inferred from	$\Delta \rho_{\rm min} = -1.00 \text{ e } \text{\AA}^{-3}$
neighbouring sites	Extinction correction: SHELXL2014
H-atom parameters constrained	(Sheldrick, 2015),
$w = 1/[\sigma^2(F_o^2) + (0.050P)^2]$	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
where $P = (F_o^2 + 2F_c^2)/3$	Extinction coefficient: 0.0063 (12)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Br1	0.1438 (2)	0.3194 (2)	0.05082 (13)	0.0863 (6)
Br2	0.2958 (2)	0.0254 (2)	0.20089 (11)	0.0855 (6)
Br3	0.4312 (2)	-0.3604 (2)	0.13778 (10)	0.0791 (5)
C1	0.2177 (18)	0.1018 (19)	0.0215 (9)	0.070 (4)
C2	0.2831 (17)	-0.0235 (17)	0.0860 (9)	0.063 (3)
C3	0.3360 (14)	-0.1910 (16)	0.0555 (8)	0.056 (3)
C4	0.3227 (18)	-0.2259 (19)	-0.0296 (9)	0.069 (4)
H4	0.3573	-0.3355	-0.0465	0.083*
C5	0.2615 (17)	-0.1072 (16)	-0.0895 (10)	0.064 (3)
C6	0.2067 (16)	0.0562 (16)	-0.0661 (9)	0.059 (3)
H6	0.1619	0.1373	-0.1085	0.071*
N1	0.2502 (16)	-0.1453 (18)	-0.1809 (8)	0.075 (3)
O1	0.2967 (16)	-0.2925 (16)	-0.2012 (7)	0.094 (3)
O2	0.1923 (18)	-0.0342 (15)	-0.2318 (8)	0.105 (4)
Br11	0.3943 (2)	0.2012 (2)	0.39885 (13)	0.0891 (6)
Br12	0.1013 (2)	0.1170 (2)	0.58586 (10)	0.0795 (6)
Br13	-0.3231 (2)	0.2845 (2)	0.59130 (11)	0.0865 (6)
C11	0.151 (2)	0.2912 (18)	0.4092 (12)	0.077 (4)
C12	0.0303 (18)	0.2505 (18)	0.4860 (10)	0.064 (3)
C13	-0.150 (2)	0.323 (2)	0.4913 (9)	0.073 (4)
C14	-0.2002 (19)	0.4188 (19)	0.4208 (9)	0.070 (4)
H14	-0.3207	0.4619	0.4232	0.084*
C15	-0.079 (2)	0.4583 (18)	0.3427 (8)	0.068 (4)
C16	0.0943 (19)	0.3923 (18)	0.3375 (9)	0.068 (4)
H16	0.1756	0.4155	0.2850	0.082*
N11	-0.1327 (18)	0.5801 (16)	0.2644 (10)	0.076 (3)
O11	-0.2882 (14)	0.6432 (13)	0.2757 (7)	0.083 (3)
O12	-0.0224 (17)	0.5952 (18)	0.1956 (8)	0.110 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0776 (11)	0.0671 (10)	0.1094 (12)	-0.0047 (8)	-0.0022 (9)	-0.0140 (8)
Br2	0.0876 (11)	0.0974 (13)	0.0716 (9)	-0.0124 (9)	-0.0075 (8)	-0.0164 (8)
Br3	0.0765 (10)	0.0789 (11)	0.0793 (10)	-0.0043 (8)	-0.0186 (8)	0.0070 (8)
C1	0.062 (8)	0.078 (10)	0.072 (9)	-0.013 (7)	-0.022 (7)	0.001 (7)
C2	0.058 (8)	0.068 (9)	0.062 (8)	-0.006(7)	0.004 (6)	-0.026 (7)
C3	0.034 (6)	0.064 (8)	0.060 (7)	-0.001 (6)	0.001 (6)	0.012 (6)

supporting information

C4	0.063 (8)	0.072 (9)	0.071 (9)	0.022 (7)	-0.018 (7)	-0.030(7)
C5	0.056 (8)	0.051 (8)	0.087 (10)	-0.015 (6)	-0.021 (7)	0.009 (7)
C6	0.062 (8)	0.052 (8)	0.073 (8)	-0.019 (6)	-0.033 (7)	0.003 (6)
N1	0.079 (8)	0.081 (9)	0.080 (8)	-0.016 (7)	-0.036 (7)	-0.026 (7)
01	0.119 (9)	0.095 (9)	0.071 (6)	-0.005 (7)	-0.017 (6)	-0.032 (6)
O2	0.151 (11)	0.087 (9)	0.089 (7)	-0.010 (8)	-0.061 (8)	0.004 (6)
Br11	0.0644 (10)	0.0993 (13)	0.1026 (12)	0.0018 (9)	-0.0185 (9)	-0.0137 (10)
Br12	0.0955 (12)	0.0701 (10)	0.0769 (9)	-0.0090 (8)	-0.0294 (9)	-0.0017 (7)
Br13	0.0785 (11)	0.0945 (13)	0.0808 (10)	-0.0202 (9)	0.0012 (8)	0.0067 (9)
C11	0.084 (10)	0.050 (8)	0.102 (11)	-0.013 (7)	-0.021 (9)	-0.015 (8)
C12	0.060 (8)	0.062 (8)	0.073 (9)	-0.018 (7)	-0.012 (8)	-0.008 (7)
C13	0.081 (10)	0.082 (10)	0.060 (8)	-0.020 (8)	-0.024 (7)	0.009 (7)
C14	0.056 (8)	0.080 (10)	0.065 (8)	-0.010 (7)	0.011 (7)	-0.007 (7)
C15	0.088 (10)	0.077 (10)	0.040 (6)	0.019 (8)	-0.034 (7)	-0.004 (6)
C16	0.070 (9)	0.072 (9)	0.062 (8)	-0.028 (8)	0.006 (7)	-0.003 (7)
N11	0.067 (8)	0.065 (8)	0.093 (10)	-0.005 (6)	-0.017 (7)	0.011 (7)
O11	0.074 (7)	0.079 (7)	0.099 (7)	0.003 (6)	-0.032 (6)	-0.014 (6)
012	0.097 (8)	0.144 (12)	0.077 (7)	-0.012 (8)	-0.011 (7)	0.028 (7)

Geometric parameters (Å, °)

Br1—C1	1.831 (15)	Br11—C11	1.877 (15)
Br2—C2	1.821 (12)	Br12—C12	1.854 (14)
Br3—C3	1.886 (11)	Br13—C13	1.842 (15)
C1—C6	1.415 (18)	C11—C16	1.368 (19)
C1—C2	1.416 (18)	C11—C12	1.38 (2)
C2—C3	1.445 (18)	C12—C13	1.410 (19)
C3—C4	1.353 (17)	C13—C14	1.313 (18)
C4—C5	1.328 (17)	C14—C15	1.39 (2)
C4—H4	0.9300	C14—H14	0.9300
C5—C6	1.381 (19)	C15—C16	1.347 (19)
C5—N1	1.448 (18)	C15—N11	1.515 (16)
С6—Н6	0.9300	C16—H16	0.9300
N102	1.194 (15)	N11—O11	1.211 (15)
N101	1.238 (16)	N11—O12	1.216 (16)
C6—C1—C2	119.0 (13)	C16—C11—C12	120.4 (14)
C6—C1—Br1	119.9 (9)	C16-C11-Br11	118.6 (13)
C2—C1—Br1	121.0 (10)	C12—C11—Br11	120.9 (11)
C1—C2—C3	116.2 (11)	C11—C12—C13	118.8 (13)
C1—C2—Br2	121.3 (10)	C11—C12—Br12	122.1 (10)
C3—C2—Br2	122.5 (9)	C13—C12—Br12	118.9 (10)
C4—C3—C2	121.8 (11)	C14—C13—C12	118.8 (14)
C4—C3—Br3	120.6 (10)	C14—C13—Br13	118.0 (11)
C2—C3—Br3	117.6 (9)	C12—C13—Br13	123.1 (10)
C5—C4—C3	121.5 (13)	C13—C14—C15	122.5 (13)
C5—C4—H4	119.3	C13—C14—H14	118.8
С3—С4—Н4	119.3	C15—C14—H14	118.8

C_{4} C_{5} C_{6}	120.7(13)	C16 C15 C14	110.2(11)
C4 C5 N1	120.7(13) 121 1 (13)	$C_{10} = C_{15} = C_{14}$	119.2(11) 117.9(13)
$C_{1} = C_{2} = N_{1}$	121.1(13) 118.2(11)	C14 $C15$ $N11$	117.9(13) 122.8(12)
C_{0}	110.2(11) 120.8(11)	C15 - C16 - C11	122.8(12)
$C_{5} = C_{6} = U_{6}$	120.8 (11)	C15 - C16 - U16	120.0 (14)
	119.6		120.0
	119.6		120.0
02—N1—01	123.6 (12)	011—N11—012	127.0 (13)
O2—N1—C5	118.3 (13)	O11—N11—C15	114.7 (13)
01—N1—C5	118.1 (12)	012—N11—C15	118.1 (12)
C6—C1—C2—C3	0.6 (19)	C16—C11—C12—C13	-4 (2)
Br1—C1—C2—C3	179.5 (9)	Br11—C11—C12—C13	179.1 (11)
C6—C1—C2—Br2	-178.5 (10)	C16-C11-C12-Br12	-178.9 (11)
Br1—C1—C2—Br2	0.3 (16)	Br11-C11-C12-Br12	4.0 (17)
C1—C2—C3—C4	-0.3 (19)	C11—C12—C13—C14	4 (2)
Br2—C2—C3—C4	178.8 (11)	Br12-C12-C13-C14	179.4 (12)
C1—C2—C3—Br3	178.0 (9)	C11—C12—C13—Br13	-178.0 (11)
Br2—C2—C3—Br3	-2.8 (14)	Br12-C12-C13-Br13	-2.7 (18)
C2—C3—C4—C5	1 (2)	C12—C13—C14—C15	-3 (2)
Br3—C3—C4—C5	-177.8 (11)	Br13-C13-C14-C15	178.7 (12)
C3—C4—C5—C6	-1 (2)	C13-C14-C15-C16	2 (2)
C3—C4—C5—N1	179.1 (13)	C13—C14—C15—N11	-174.8 (15)
C4—C5—C6—C1	1 (2)	C14—C15—C16—C11	-2 (2)
N1-C5-C6-C1	-178.8 (12)	N11-C15-C16-C11	175.4 (13)
C2-C1-C6-C5	-1 (2)	C12-C11-C16-C15	3 (2)
Br1-C1-C6-C5	-180.0 (10)	Br11-C11-C16-C15	179.8 (11)
C4—C5—N1—O2	179.2 (14)	C16—C15—N11—O11	-175.5 (13)
C6—C5—N1—O2	-1 (2)	C14—C15—N11—O11	1 (2)
C4—C5—N1—O1	1 (2)	C16—C15—N11—O12	10 (2)
C6—C5—N1—O1	-178.8 (13)	C14—C15—N11—O12	-173.5 (15)

(II) 1,3-Dibromo-2-iodo-5-nitrobenzene

Crystal data C₆H₂Br₂INO₂ $M_r = 406.81$ Monoclinic, $P2_1/c$ a = 13.548 (3) Å b = 20.037 (3) Å c = 9.123 (2) Å $\beta = 130.37$ (2)° V = 1886.8 (8) Å³ Z = 8F(000) = 1472

Data collection

Bruker P4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $D_x = 2.864 \text{ Mg m}^{-3}$ Melting point: 415 K Mo *Ka* radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 43 reflections $\theta = 5.7-12.5^{\circ}$ $\mu = 11.82 \text{ mm}^{-1}$ T = 298 KPrism, brown $0.50 \times 0.22 \times 0.12 \text{ mm}$

 $2\theta/\omega$ scans Absorption correction: ψ scan (XSCANS; Bruker, 1997) $T_{\min} = 0.429, T_{\max} = 0.988$ 5716 measured reflections 5407 independent reflections 1968 reflections with $I > 2\sigma(I)$ $R_{int} = 0.058$ $\theta_{max} = 30.0^{\circ}, \ \theta_{min} = 2.2^{\circ}$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.061$	H-atom parameters constrained
$wR(F^2) = 0.153$	$w = 1/[\sigma^2(F_o^2) + (0.053P)^2]$
S = 0.95	where $P = (F_o^2 + 2F_c^2)/3$
5407 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
218 parameters	$\Delta \rho_{\rm max} = 0.84 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.84 \text{ e } \text{\AA}^{-3}$
0 constraints	Extinction correction: SHELXL2014
Primary atom site location: structure-invariant	(Sheldrick, 2015),
direct methods	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.00093 (11)
map	

 $h = -14 \rightarrow 19$

 $k = 0 \rightarrow 28$

 $l = -12 \rightarrow 0$

intensity decay: 1%

3 standard reflections every 97 reflections

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

X	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	
0.30362 (13)	0.43988 (8)	0.2401 (2)	0.0615 (4)	
0.54556 (10)	0.36925 (4)	0.26460 (13)	0.0583 (3)	
0.73278 (12)	0.49074 (7)	0.26614 (18)	0.0561 (4)	
0.4175 (11)	0.4967 (7)	0.2453 (16)	0.035 (3)	
0.5191 (11)	0.4723 (6)	0.2535 (13)	0.033 (3)	
0.5960 (11)	0.5182 (6)	0.2557 (17)	0.038 (3)	
0.5754 (12)	0.5862 (6)	0.2478 (17)	0.040 (3)	
0.6264	0.6171	0.2474	0.048*	
0.4763 (13)	0.6050 (7)	0.2405 (15)	0.046 (4)	
0.3965 (12)	0.5642 (7)	0.2397 (18)	0.048 (4)	
0.3307	0.5809	0.2355	0.057*	
0.4555 (13)	0.6807 (6)	0.2380 (17)	0.065 (3)	
0.5145 (11)	0.7161 (5)	0.2088 (17)	0.085 (4)	
0.3795 (15)	0.6989 (5)	0.2557 (18)	0.105 (4)	
-0.18918 (13)	0.30721 (8)	0.2488 (2)	0.0620 (4)	
0.04866 (10)	0.37922 (4)	0.26639 (13)	0.0593 (3)	
0.24427 (12)	0.25893 (8)	0.2825 (2)	0.0588 (4)	
-0.0736 (11)	0.2509 (7)	0.2562 (17)	0.039 (3)	
0.0237 (12)	0.2769 (7)	0.2619 (14)	0.035 (3)	
0.1046 (11)	0.2312 (6)	0.2672 (18)	0.039 (3)	
0.0869 (13)	0.1639 (6)	0.2665 (18)	0.045 (4)	
0.1429	0.1344	0.2736	0.054*	
-0.0137 (13)	0.1391 (8)	0.2553 (16)	0.045 (4)	
-0.0922 (13)	0.1829 (6)	0.2507 (18)	0.043 (4)	
-0.1596	0.1668	0.2437	0.052*	
-0.0302 (15)	0.0681 (6)	0.2483 (17)	0.066 (4)	
0.0350 (12)	0.0323 (6)	0.2418 (18)	0.099 (4)	
	x $0.30362 (13)$ $0.54556 (10)$ $0.73278 (12)$ $0.4175 (11)$ $0.5191 (11)$ $0.5960 (11)$ $0.5754 (12)$ 0.6264 $0.4763 (13)$ $0.3965 (12)$ 0.307 $0.4555 (13)$ $0.5145 (11)$ $0.3795 (15)$ $-0.18918 (13)$ $0.04866 (10)$ $0.24427 (12)$ $-0.0736 (11)$ $0.0237 (12)$ $0.1046 (11)$ $0.0869 (13)$ 0.1429 $-0.0137 (13)$ $-0.0922 (13)$ -0.1596 $-0.0302 (15)$ $0.0350 (12)$	x y 0.30362 (13)0.43988 (8)0.54556 (10)0.36925 (4)0.73278 (12)0.49074 (7)0.4175 (11)0.4967 (7)0.5191 (11)0.4723 (6)0.5960 (11)0.5182 (6)0.5754 (12)0.5862 (6)0.62640.61710.4763 (13)0.6050 (7)0.3965 (12)0.5642 (7)0.33070.58090.4555 (13)0.6807 (6)0.5145 (11)0.7161 (5)0.3795 (15)0.6989 (5) $-0.18918 (13)$ 0.30721 (8)0.04866 (10)0.37922 (4)0.24427 (12)0.25893 (8) $-0.0736 (11)$ 0.2509 (7)0.1046 (11)0.2312 (6)0.14290.1344 $-0.0137 (13)$ 0.1391 (8) $-0.0922 (13)$ 0.1829 (6) -0.1596 0.1668 $-0.0302 (15)$ 0.0681 (6)0.0350 (12)0.0323 (6)	xyz $0.30362 (13)$ $0.43988 (8)$ $0.2401 (2)$ $0.54556 (10)$ $0.36925 (4)$ $0.26460 (13)$ $0.73278 (12)$ $0.49074 (7)$ $0.26614 (18)$ $0.4175 (11)$ $0.4967 (7)$ $0.2453 (16)$ $0.5191 (11)$ $0.4723 (6)$ $0.2535 (13)$ $0.5960 (11)$ $0.5182 (6)$ $0.2557 (17)$ $0.5754 (12)$ $0.5862 (6)$ $0.2478 (17)$ 0.6264 0.6171 0.2474 $0.4763 (13)$ $0.6050 (7)$ $0.2405 (15)$ $0.3965 (12)$ $0.5642 (7)$ $0.2397 (18)$ 0.3307 0.5809 0.2355 $0.4555 (13)$ $0.6807 (6)$ $0.2380 (17)$ $0.5145 (11)$ $0.7161 (5)$ $0.2088 (17)$ $0.3795 (15)$ $0.6989 (5)$ $0.2557 (18)$ $-0.18918 (13)$ $0.30721 (8)$ $0.24639 (13)$ $0.24427 (12)$ $0.25893 (8)$ $0.2825 (2)$ $-0.0736 (11)$ $0.2769 (7)$ $0.2619 (14)$ 0.1429 0.1344 0.2736 $-0.0137 (13)$ $0.1391 (8)$ $0.2553 (16)$ -0.1596 0.1668 0.2437 $-0.0302 (15)$ $0.0681 (6)$ $0.2418 (18)$	xyz $U_{bw}*/U_{eq}$ 0.30362 (13)0.43988 (8)0.2401 (2)0.0615 (4)0.54556 (10)0.36925 (4)0.26460 (13)0.0583 (3)0.73278 (12)0.49074 (7)0.26614 (18)0.0561 (4)0.4175 (11)0.4967 (7)0.2453 (16)0.035 (3)0.5191 (11)0.4723 (6)0.2535 (13)0.033 (3)0.5960 (11)0.5182 (6)0.2577 (17)0.038 (3)0.5754 (12)0.5862 (6)0.2478 (17)0.040 (3)0.62640.61710.24740.048*0.4763 (13)0.6050 (7)0.2405 (15)0.046 (4)0.3965 (12)0.5642 (7)0.2397 (18)0.048 (4)0.33070.58090.23550.057*0.4555 (13)0.6807 (6)0.2380 (17)0.065 (3)0.5145 (11)0.7161 (5)0.2088 (17)0.085 (4)0.3795 (15)0.6989 (5)0.2557 (18)0.105 (4)-0.18918 (13)0.30721 (8)0.2482 (2)0.0588 (4)-0.037 (12)0.2599 (7)0.26639 (13)0.0593 (3)0.24427 (12)0.25893 (8)0.2825 (2)0.0588 (4)-0.037 (12)0.2769 (7)0.2619 (14)0.035 (3)0.1639 (6)0.2665 (18)0.045 (4)0.14290.13440.27360.054*-0.037 (13)0.1391 (8)0.2557 (18)0.045 (4)-0.137 (13)0.1391 (6)0.2483 (17)0.066 (4)-0.15960.16680.24370.052*-0.0302 (15)0.0681 (6)0.2483 (17)<

supporting information

012	-0.1106	-0.1106 (14)		0.2609 (17)	0.099 (4)						
Atomic displacement parameters $(Å^2)$											
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}					
Br1	0.0558 (8)	0.0680 (9)	0.0684 (9)	-0.0167 (7)	0.0437 (7)	-0.0035 (7)					
I2	0.0737 (6)	0.0268 (4)	0.0723 (7)	0.0048 (5)	0.0464 (5)	0.0017 (4)					
Br3	0.0484 (7)	0.0636 (9)	0.0654 (9)	0.0047 (7)	0.0409 (7)	0.0002 (7)					
C1	0.041 (7)	0.035 (7)	0.033 (6)	-0.012 (6)	0.027 (5)	-0.007(5)					
C2	0.043 (7)	0.017 (6)	0.035 (8)	0.002 (5)	0.024 (6)	0.000 (4)					
C3	0.042 (6)	0.033 (7)	0.041 (7)	0.003 (5)	0.028 (6)	-0.004 (5)					
C4	0.037 (7)	0.036 (8)	0.048 (8)	-0.005 (6)	0.027 (6)	-0.003 (6)					
C5	0.046 (7)	0.023 (7)	0.040 (8)	0.005 (6)	0.015 (6)	-0.002 (5)					
C6	0.036 (7)	0.064 (10)	0.045 (8)	-0.003 (7)	0.027 (6)	-0.016 (7)					
N1	0.066 (8)	0.031 (7)	0.075 (9)	0.010(7)	0.036 (7)	-0.001 (6)					
01	0.091 (8)	0.030 (6)	0.108 (9)	-0.003 (6)	0.053 (7)	0.003 (6)					
O2	0.163 (12)	0.050(7)	0.137 (11)	0.050 (8)	0.112 (10)	0.016 (6)					
Br11	0.0522 (8)	0.0681 (9)	0.0685 (9)	0.0108 (7)	0.0404 (7)	-0.0033 (7)					
I12	0.0755 (6)	0.0283 (4)	0.0735 (7)	-0.0069 (5)	0.0479 (5)	-0.0038 (4)					
Br13	0.0488 (7)	0.0631 (9)	0.0703 (9)	-0.0088 (7)	0.0412 (7)	-0.0014 (7)					
C11	0.043 (7)	0.035 (7)	0.041 (7)	-0.002 (6)	0.028 (6)	0.002 (6)					
C12	0.041 (7)	0.033 (8)	0.039 (8)	0.007 (6)	0.030 (6)	0.004 (4)					
C13	0.033 (6)	0.037 (8)	0.042 (7)	-0.005 (5)	0.022 (6)	-0.005 (6)					
C14	0.051 (8)	0.029 (7)	0.044 (8)	0.008 (6)	0.025 (6)	0.000 (6)					
C15	0.063 (9)	0.028 (7)	0.056 (9)	-0.015 (6)	0.045 (8)	-0.006 (5)					
C16	0.046 (7)	0.031 (7)	0.042 (7)	-0.021 (6)	0.024 (6)	-0.015 (5)					
N11	0.096 (10)	0.034 (7)	0.073 (9)	-0.018 (7)	0.057 (8)	-0.006 (6)					
011	0.101 (9)	0.029 (6)	0.147 (11)	-0.010 (6)	0.072 (8)	-0.005 (7)					
012	0.144 (11)	0.061 (7)	0.130 (10)	-0.042 (8)	0.106 (9)	-0.012 (6)					

Geometric parameters (Å, °)

Br1—C1	1.894 (12)	Br11—C11	1.895 (14)	
I2—C2	2.088 (12)	I12—C12	2.074 (14)	
Br3—C3	1.875 (13)	Br13—C13	1.888 (13)	
C1—C6	1.375 (18)	C11—C12	1.387 (17)	
C1—C2	1.416 (17)	C11—C16	1.381 (18)	
C2—C3	1.380 (17)	C12—C13	1.405 (17)	
C3—C4	1.384 (16)	C13—C14	1.370 (16)	
C4—C5	1.353 (18)	C14—C15	1.390 (19)	
C4—H4A	0.9300	C14—H14A	0.9300	
C5—C6	1.35 (2)	C15—C16	1.359 (19)	
C5—N1	1.539 (18)	C15—N11	1.435 (19)	
С6—Н6А	0.9300	C16—H16A	0.9300	
N102	1.199 (17)	N11—O11	1.168 (19)	
N1—01	1.221 (19)	N11—O12	1.226 (18)	
C6—C1—C2	120.8 (13)	C12—C11—C16	121.2 (14)	

C6—C1—Br1	116.4 (11)	C12—C11—Br11	121.4 (11)
C2C1Br1	122.8 (10)	C16—C11—Br11	117.3 (11)
C3—C2—C1	118.1 (12)	C11—C12—C13	117.3 (13)
C3—C2—I2	123.6 (10)	C11—C12—I12	120.7 (11)
C1—C2—I2	118.4 (10)	C13—C12—I12	122.0 (10)
C2—C3—C4	122.0 (13)	C14—C13—C12	120.8 (13)
C2—C3—Br3	121.2 (10)	C14—C13—Br13	117.0 (11)
C4—C3—Br3	116.8 (11)	C12—C13—Br13	122.2 (10)
C5—C4—C3	115.9 (13)	C13—C14—C15	120.8 (14)
С5—С4—Н4А	122.0	C13—C14—H14A	119.6
C3—C4—H4A	122.0	C15—C14—H14A	119.6
C4—C5—C6	126.6 (14)	C16—C15—C14	118.8 (14)
C4—C5—N1	116.2 (15)	C16—C15—N11	122.8 (14)
C6—C5—N1	117.2 (15)	C14—C15—N11	118.3 (15)
C5—C6—C1	116.7 (13)	C15—C16—C11	121.0 (14)
С5—С6—Н6А	121.7	C15—C16—H16A	119.5
С1—С6—Н6А	121.7	C11—C16—H16A	119.5
O2—N1—O1	126.4 (14)	011—N11—012	124.2 (16)
O2—N1—C5	117.6 (14)	O11—N11—C15	120.6 (18)
O1—N1—C5	115.9 (17)	O12—N11—C15	115.0 (15)
C6—C1—C2—C3	0.0 (16)	C16—C11—C12—C13	-1.7 (16)
Br1-C1-C2-C3	179.7 (9)	Br11-C11-C12-C13	180.0 (9)
C6—C1—C2—I2	179.4 (9)	C16—C11—C12—I12	179.2 (9)
Br1—C1—C2—I2	-1.0 (12)	Br11—C11—C12—I12	0.8 (13)
C1—C2—C3—C4	-0.8 (17)	C11—C12—C13—C14	0.1 (17)
I2—C2—C3—C4	179.9 (9)	I12—C12—C13—C14	179.2 (9)
C1—C2—C3—Br3	-179.9 (9)	C11—C12—C13—Br13	-178.2 (9)
I2—C2—C3—Br3	0.7 (14)	I12-C12-C13-Br13	0.9 (14)
C2—C3—C4—C5	0.9 (18)	C12—C13—C14—C15	1.7 (19)
Br3—C3—C4—C5	-179.9 (9)	Br13-C13-C14-C15	-179.9 (10)
C3—C4—C5—C6	-0.2 (18)	C13—C14—C15—C16	-1.9 (18)
C3—C4—C5—N1	178.2 (11)	C13—C14—C15—N11	177.8 (12)
C4—C5—C6—C1	-0.5 (19)	C14—C15—C16—C11	0.3 (18)
N1-C5-C6-C1	-178.9 (10)	N11—C15—C16—C11	-179.5 (12)
C2-C1-C6-C5	0.6 (17)	C12—C11—C16—C15	1.6 (19)
Br1-C1-C6-C5	-179.1 (9)	Br11-C11-C16-C15	180.0 (10)
C4—C5—N1—O2	-171.0 (13)	C16—C15—N11—O11	175.7 (14)
C6—C5—N1—O2	7.6 (18)	C14—C15—N11—O11	-4 (2)
C4—C5—N1—O1	12.4 (17)	C16—C15—N11—O12	-8.3 (19)
C6—C5—N1—O1	-169.1 (12)	C14—C15—N11—O12	171.9 (13)
			· /