research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Anomalous halogen bonds in the crystal structures of 1,2,3-tri­bromo-5-nitro­benzene and 1,3-di­bromo-2-iodo-5-nitro­benzene

aCentro de Graduados e Investigación en Química, Instituto Tecnológico de Tijuana, Apdo. Postal 1166, 22510 Tijuana, B.C., Mexico, and bInstituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 1 July 2015; accepted 12 July 2015; online 22 July 2015)

The title trihalogenated nitro­benzene derivatives, C6H2Br3NO2 and C6H2Br2INO2, crystallize in triclinic and monoclinic cells, respectively, with two mol­ecules per asymmetric unit in each case. The asymmetric unit of the tri­bromo compound features a polarized Brδ+⋯Brδ- inter­molecular halogen bond. After substitution of the Br atom in the para position with respect to the nitro group, the network of XX halogen contacts is reorganized. Two inter­molecular polarized halogen bonds are then observed, which present the uncommon polarization Brδ+⋯Iδ-: the more electronegative site (Br) behaves as a donor and the less electronegative site (I) as an acceptor for the charge transfer.

1. Chemical context

Within the large class of non-covalent inter­actions studied in chemical crystallography, halogen bonds are of special inter­est in crystal engineering. The stabilizing inter­action between a halogen atom and a Lewis base, X⋯B, shares many aspects with classical hydrogen bonds, but is more directional. On the other hand, halogen contacts XX are more difficult to conceptualize (Wang et al., 2014[Wang, C., Danovich, D., Mo, Y. & Shaik, S. (2014). J. Chem. Theory Comput. 10, 3726-3737.]), for instance because the charge transfer in the Br⋯Br contact is not as obvious as in hydrogen bonds. Evidence supporting the importance of this topic is the recent organization of an inter­national meeting dedicated to halogen bonding (Erdelyi, 2014[Erdelyi, M. (2014). Nat. Chem. 6, 762-764.]).

[Scheme 1]

In this context, we are engaged in the synthesis and structural characterization of a series of halogen-substituted nitro­benzenes. The present communication describes two closely related compounds in the series, which differ only by the halogen atom substituting at the ring position para to the nitro group. Despite the small chemical modification, the resulting crystal structures are very different, as a consequence of a different network of halogen bonds.

2. Structural commentary

Both compounds crystallize with two mol­ecules in the asymmetric unit, but in different space groups. The tri­bromo derivative, (I, Fig. 1[link]), is a P[\overline{1}] crystal isomorphous to the chloro analogue (Bhar et al., 1995[Bhar, A., Aune, J. P., Benali-Cherif, N., Benmenni, L. & Giorgi, M. (1995). Acta Cryst. C51, 256-260.]), although the unit-cell parameters are significantly larger for (I)[link] compared to the chloro compound: the cell volume is increased by more than 7%. In the present work, we retained the Niggli reduced triclinic cell (a < b < c), while Bhar et al. used a non-reduced cell. Moreover, the asymmetric unit content was defined in order to emphasize the strongest Br⋯Br bond in (I)[link]. The bromo-iodo derivative (II, Fig. 2[link]) crystallizes in the monoclinic system and, in that case, the standard setting was used for space group P21/c.

[Figure 1]
Figure 1
The asymmetric unit of (I)[link], with displacement ellipsoids at the 30% probability level. The dashed bond connecting the independent mol­ecules is a type-II halogen bond.
[Figure 2]
Figure 2
The asymmetric unit of (II)[link], with displacement ellipsoids at the 30% probability level. The dashed bonds connecting the independent mol­ecules are halogen contacts.

The C—halogen bond lengths are as expected. In (I)[link], C—Br distances are in the range 1.821 (12)–1.886 (11) Å, slightly shorter than C—Br bond lengths observed in hexa­bromo­benzene, 1.881 Å (T = 100 K; Reddy et al., 2006[Reddy, C. M., Kirchner, M. T., Gundakaram, R. C., Padmanabhan, K. A. & Desiraju, G. R. (2006). Chem. Eur. J. 12, 2222-2234.]) or 1.871 Å (synchrotron study, T = 100 K; Brezgunova et al., 2012[Brezgunova, M. E., Aubert, E., Dahaoui, S., Fertey, P., Lebègue, S., Jelsch, C., Ángyán, J. G. & Espinosa, E. (2012). Cryst. Growth Des. 12, 5373-5386.]). In (II)[link], C—Br bond lengths are longer, 1.875 (13) to 1.895 (14) Å, while the C—I bond lengths, 2.088 (12) and 2.074 (14) Å, may be compared to bonds in hexa­iodo­benzene, 2.109 Å (T = 100 K; Ghosh et al., 2007[Ghosh, S., Reddy, C. M. & Desiraju, G. R. (2007). Acta Cryst. E63, o910-o911.]) or 1,2,3-tri­iodo­benzene, 2.090 Å (T = 223 K, Novak & Li, 2007[Novak, I. & Li, D. (2007). Acta Cryst. E63, o438-o439.]). Indeed, differences in bond lengths between perhalogenated and trihalogenated derivatives are within experimental errors, and the substitution of the 5-position by the nitro electron-withdrawing group in (I)[link] and (II)[link] has probably little influence on these bonds.

The important feature in these halogenated mol­ecules is rather the possibility of steric repulsion between vicinal halogen atoms, which is related to the reduction of endocyclic angles. Regarding this point, it is worth reading the Acta E article about 1,2,3-tri­iodo­benzene (Novak & Li, 2007[Novak, I. & Li, D. (2007). Acta Cryst. E63, o438-o439.]). As in polyiodo derivatives, intra­molecular steric crowding between the halogen atoms in (I)[link] and (II)[link] is offset by benzene ring distortion. As a consequence, the C1—C2—C3 and equivalent C11—C12—C13 angles are systematically less than 120°: 116.2 (11) and 118.8 (13)° in (I)[link]; 118.1 (12) and 117.3 (13)° in (II)[link]. Again, the nitro group has little influence on intra­molecular halogen⋯halogen contacts. For instance, in 1,3-di­bromo-2-iodo­benzene, the C1—C2—C3 angle is 118.0° (Schmidbaur et al., 2004[Schmidbaur, H., Minge, O. & Nogai, S. (2004). Z. Naturforsch. Teil B, 59, 264-268.]), very close to that observed in (II)[link], which presents the same halogen substitution.

The 5-nitro substituent is almost conjugated with the benzene nucleus in (I)[link]: the dihedral angle between the NO2 plane and the benzene ring is 6(2) and 1(2)° for each independent mol­ecule. For (II)[link], twisting of the NO2 groups is more significant, with dihedral angles of 10 (1) and 7(1)°. This near planar conformation is identical to that observed for 1,2,3-tri­chloro-5-nitro­benzene (Bhar et al., 1995[Bhar, A., Aune, J. P., Benali-Cherif, N., Benmenni, L. & Giorgi, M. (1995). Acta Cryst. C51, 256-260.]), but contrasts with the twisted conformation observed in perhalogenated nitro­benzene derivatives: penta­chloro­nitro­benzene (twist angle of NO2: 62°; Tanaka et al., 1974[Tanaka, I., Iwasaki, F. & Aihara, A. (1974). Acta Cryst. B30, 1546-1549.]) and 1-bromo-2,3,5,6-tetra­fluoro-4-nitro­benzene (twist angle of NO2: 41.7 (3)°; Stein et al., 2011[Stein, M., Schwarzer, A., Hulliger, J. & Weber, E. (2011). Acta Cryst. E67, o1655.]). It thus seems clear that twisting of the nitro group with respect to the benzene ring in nitro­benzene derivatives is a direct consequence of intra­molecular crowding with ortho substituents. For 1,2,3-halogenated-5-nitro­benzenes such as (I)[link] and (II)[link], a planar conformation should be expected as a rule.

3. Supra­molecular features

The crystal structures are directed by inter­molecular weak halogen bonds, also known as type-II inter­actions in the Desiraju classification scheme (Reddy et al., 2006[Reddy, C. M., Kirchner, M. T., Gundakaram, R. C., Padmanabhan, K. A. & Desiraju, G. R. (2006). Chem. Eur. J. 12, 2222-2234.]). Such a bond is present in the asymmetric unit of (I)[link], between Br2 and Br11 (Fig. 3[link]). The type-II arrangement is characterized by angles θ1 = C2—Br2⋯Br11 and θ2 = C11—Br11⋯Br2, which should be close to 180 and 90°, respectively. For (I)[link], observed angles are θ1 = 165.2 (5)° and θ2 = 82.3 (5)°. The crystal packing thus polarizes the involved halogen atoms, forming the halogen bond Br2δ+⋯Br11δ-. This dimolecular polar unit is connected via inversion centers to neighboring units in the cell, forming C—H⋯Br hydrogen bonds, and O⋯Br contacts. This packing motif induces secondary halogen⋯halogen contacts, which are clearly unpolarized. These type-I inter­actions are characterized by angles θ1θ2 (Table 1[link], entries 2 and 3) and display larger Br⋯Br separations compared to the polarized halogen bond (entry 1), in which electrostatic forces bring the atoms into close contact.

Table 1
Halogen-bond geometry (Å, °) for (I)

X1X2 d θ1 θ2 bond type
Br2⋯Br11 3.642 (3) 165.2 (5) 82.3 (5) II-polarized
Br1⋯Br1i 3.731 (4) 133.3 (4) 133.3 (4) I-unpolarized
Br2⋯Br13ii 3.781 (3) 126.8 (4) 129.6 (4) I-unpolarized
Notes: d = separation X1X2; θ1 = angle C—X1X2; θ2 = angle X1X2—C. For halogen bond types, see: Reddy et al. (2006[Reddy, C. M., Kirchner, M. T., Gundakaram, R. C., Padmanabhan, K. A. & Desiraju, G. R. (2006). Chem. Eur. J. 12, 2222-2234.]). Symmetry codes: (i) −x, 1 − y, −z; (ii) −x, −y, 1 − z.
[Figure 3]
Figure 3
Part of the crystal structure of (I)[link], emphasizing the halogen bonds (dashed lines). The green mol­ecules correspond to the asymmetric unit.

The substitution of one Br atom by I, to form crystal (II)[link], changes dramatically the packing structure, affording a more complex network of halogen contacts (Fig. 4[link] and Table 2[link]). Within the asymmetric unit, the type-II polarized contact is Br1⋯I12 (Table 2[link], entry 1). However, θ angles for this bond deviate from ideal values, and, surprisingly, the bond is polarized in the wrong way, Brδ+⋯Iδ-. The opposite polarization was expected for this bond, due to the lower electronegativity and higher polarizability of iodine compared to bromine. The other significant contact observed in the asymmetric unit is a Br⋯Br unpolarized contact. The network of halogen bonds is expanded in the [100] direction by Br11, which gives a bifurcated contact with I2 and Br3 (Table 2[link], entries 2 and 4). One contact is polarized, with the polarization, once again, oriented in the unexpected way, I2δ-⋯Br11δ+. These anomalous halogen bonds are not present in other mixed halogen derivatives. Indeed, in 1,3-di­bromo-2-iodo­benzene (Schmidbaur et al., 2004[Schmidbaur, H., Minge, O. & Nogai, S. (2004). Z. Naturforsch. Teil B, 59, 264-268.]), the iodine atom is not engaged in halogen bonding.

Table 2
Halogen-bond geometry (Å, °) for (II)

X1X2 d θ1 θ2 bond type
Br1⋯I12 3.813 (2) 161.2 (4) 117.2 (4) II-polarized
I2⋯Br11i 3.893 (2) 116.6 (4) 161.8 (4) II-polarized
Br1⋯Br13 3.787 (2) 142.8 (4) 122.9 (4) I-unpolarized
Br11⋯Br3ii 3.858 (2) 143.9 (4) 124.4 (4) I-unpolarized
Notes: d = separation X1X2; θ1 = angle C—X1X2; θ2 = angle X1X2—C. For halogen bond types, see: Reddy et al. (2006[Reddy, C. M., Kirchner, M. T., Gundakaram, R. C., Padmanabhan, K. A. & Desiraju, G. R. (2006). Chem. Eur. J. 12, 2222-2234.]). Symmetry codes: (i) 1 + x, y, z; (ii) −1 + x, y, z.
[Figure 4]
Figure 4
Part of the crystal structure of (II)[link], emphasizing the halogen bonds (dashed lines). The green mol­ecules correspond to the asymmetric unit.

4. Database survey

The current release of the CSD (Version 5.36 with all updates; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]), contains many structures of halogen-substituted nitro­benzene, with Cl (e.g. Bhar et al., 1995[Bhar, A., Aune, J. P., Benali-Cherif, N., Benmenni, L. & Giorgi, M. (1995). Acta Cryst. C51, 256-260.]; Tanaka et al., 1974[Tanaka, I., Iwasaki, F. & Aihara, A. (1974). Acta Cryst. B30, 1546-1549.]), Br (e.g. Olaru et al., 2014[Olaru, M., Beckmann, J. & Raţ, C. I. (2014). Organometallics, 33, 3012-3020.]), and I (Thalladi et al., 1996[Thalladi, V. R., Goud, B. S., Hoy, V. J., Allen, F. H., Howard, J. A. K. & Desiraju, G. R. (1996). Chem. Commun. pp. 401-402.]). This series is completed with nitro­phenol deriv­atives, for example 2,3-di­fluoro-4-iodo-6-nitro­phenol (Francke et al., 2010[Francke, R., Schnakenburg, G. & Waldvogel, S. R. (2010). Eur. J. Org. Chem. pp. 2357-2362.]). Structures of penta­chloro­phenol (Brezgunova et al., 2012[Brezgunova, M. E., Aubert, E., Dahaoui, S., Fertey, P., Lebègue, S., Jelsch, C., Ángyán, J. G. & Espinosa, E. (2012). Cryst. Growth Des. 12, 5373-5386.]) and penta­bromo­phenol (Betz et al., 2008[Betz, R., Klüfers, P. & Mayer, P. (2008). Acta Cryst. E64, o1921.]; Brezgunova et al., 2012[Brezgunova, M. E., Aubert, E., Dahaoui, S., Fertey, P., Lebègue, S., Jelsch, C., Ángyán, J. G. & Espinosa, E. (2012). Cryst. Growth Des. 12, 5373-5386.]) are also available.

Regarding poly- and per-halogenated benzene structures, an impressive series of 23 compounds has been described, including Cl, Br, I and Me as substituents, generating a variety of mol­ecular symmetries (Reddy et al., 2006[Reddy, C. M., Kirchner, M. T., Gundakaram, R. C., Padmanabhan, K. A. & Desiraju, G. R. (2006). Chem. Eur. J. 12, 2222-2234.]). The structure of D6h-perhalogenated benzene has been reported with F (Shorafa et al., 2009[Shorafa, H., Mollenhauer, D., Paulus, B. & Seppelt, K. (2009). Angew. Chem. Int. Ed. 48, 5845-5847.]), Cl (Brown & Strydom, 1974[Brown, G. M. & Strydom, O. A. W. (1974). Acta Cryst. B30, 801-804.]; Reddy et al., 2006[Reddy, C. M., Kirchner, M. T., Gundakaram, R. C., Padmanabhan, K. A. & Desiraju, G. R. (2006). Chem. Eur. J. 12, 2222-2234.]), Br (Baharie & Pawley, 1979[Baharie, E. & Pawley, G. S. (1979). Acta Cryst. A35, 233-235.]; Reddy et al., 2006[Reddy, C. M., Kirchner, M. T., Gundakaram, R. C., Padmanabhan, K. A. & Desiraju, G. R. (2006). Chem. Eur. J. 12, 2222-2234.]; Brezgunova et al., 2012[Brezgunova, M. E., Aubert, E., Dahaoui, S., Fertey, P., Lebègue, S., Jelsch, C., Ángyán, J. G. & Espinosa, E. (2012). Cryst. Growth Des. 12, 5373-5386.]) and I (Ghosh et al., 2007[Ghosh, S., Reddy, C. M. & Desiraju, G. R. (2007). Acta Cryst. E63, o910-o911.]). The former is a Z′ = 2 crystal, while others are Z′=1 crystals.

5. Synthesis and crystallization

Compounds (I)[link] and (II)[link] were synthesized from 2,6-di­bromo-4-nitro­aniline (Bryant et al., 1998[Bryant, R., James, S. C., Norman, N. C. & Orpen, A. G. (1998). Acta Cryst. C54, 1113-1115.]), as depicted in Fig. 5[link].

[Figure 5]
Figure 5
Synthetic scheme for (I)[link] and (II)[link].

Synthesis of (I). A solution of 2,6-di­bromo-4-nitro­aniline (1.0 g, 3.38 mmol) in acetic acid (3 ml) was cooled to 278 K, and concentrated H2SO4 (7 ml) was carefully added under stirring. While ensuring that the temperature was still below 278 K, NaNO2 (0.708 g, 10.26 mmol) was added in one batch. The reaction was stirred at this temperature for 2 h to afford the diazo­nium salt. An aqueous solution (17.67 ml) of CuBr (4.95 g, 34.54 mmol) and 47% HBr (17.67 ml) was warmed to 343 K, and the diazo­tization solution previously prepared was added in one batch with stirring. The mixture was kept at 343 K for 1 h, and then left to cool overnight. The reaction was neutralized with NaOH and extracted with CH2Cl2 (3 × 30 ml). The resulting solution was concentrated under vacuum and the crude material was purified by flash chromatography (petroleum ether/CH2Cl2 8/2, Rf = 0.49) to give (I)[link]. Crystals were obtained by slow evaporation of a methanol/ethyl ether solution (yield: 0.952 g, 2.65 mmol, 78%). m.p. 380–382 K. IR (KBr, cm−1): 3090 (Ar—H); 1583 (C=C); 1526, 1342 (N=O); 738 (C—Br). 1H-NMR (600 MHz, CDCl3): δ 8.43 (s, H-4, H-6). 13C-NMR (150 MHz, CDCl3): δ 146.8, 135.7, 127.0, 126.9, 126.8. EIMS m/z: [M+] 357 (34), [M++2] 359 (7), [M++4] 361 (100), [M++6] 363 (36) [M+-NO2] 311 (12).

Synthesis of (II). A solution of 2,6-di­bromo-4-nitro­aniline (1.0 g, 3.38 mmol) in acetic acid (3 ml) was cooled to 278 K in an ice-salt bath, and concentrated H2SO4 (3 ml) was carefully added under stirring. While ensuring that the temperature was still below 278 K, NaNO2 (0.242 g, 3.516 mmol) was added in one batch. The reaction was stirred at this temperature for 30 min to afford the diazo­nium salt. An aqueous solution (10 ml) of KI (5.635 g, 33.95 mmol) was prepared, and the diazo­tization solution previously prepared was added in one batch. The mixture was then further stirred for 1 h. The reaction was neutralized with NaOH, extracted with CH2Cl2 (3 × 30 ml), and concentrated under vacuum. The crude material was purified by flash chromatography (petroleum ether/CH2Cl2 4/1, Rf = 0.31) to give (II)[link]. Crystals were obtained by slow evaporation of an acetone/methanol/CH2Cl2 solution (yield: 1.21 g, 2.98 mmol, 88%). m.p. 415–417 K. IR (KBr, cm−1): 3010 (Ar—H); 1620, 1516 (C=C); 1336 (N=O). 1H-NMR (600 MHz, CDCl3): δ 8.38 (s, H-4, H-6). 13C-NMR (150 MHz, CDCl3): δ 146.1, 142.4, 127.4, 124.1. EIMS m/z: [M+] 405 (42), [M++2] 407 (100), [M++4] 409 (48).

6. Refinement

Crystal data, data collection and structure refinement details for (I)[link] and (II)[link] are summarized in Table 3[link]. The absorption correction for (I)[link] was challenging, and eventually carried out by applying DIFABS on the complete isotropic model (Walker & Stuart, 1983[Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.]). In the case of (II)[link], measured ψ-scans were used. H atoms were refined as riding to their carrier C atoms, with C—H bond lengths fixed at 0.93 Å and with Uiso(H) = 1.2Ueq(carrier atom).

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C6H2Br3NO2 C6H2Br2INO2
Mr 359.82 406.81
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/c
Temperature (K) 298 298
a, b, c (Å) 7.641 (5), 8.040 (5), 14.917 (6) 13.548 (3), 20.037 (3), 9.123 (2)
α, β, γ (°) 83.91 (3), 79.86 (4), 81.49 (4) 90, 130.37 (2), 90
V3) 889.2 (8) 1886.8 (8)
Z 4 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 13.57 11.82
Crystal size (mm) 0.42 × 0.40 × 0.30 0.50 × 0.22 × 0.12
 
Data collection
Diffractometer Bruker P4 Bruker P4
Absorption correction Part of the refinement model (ΔF) (Walker & Stuart, 1983[Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.]) ψ scan (XSCANS; Bruker, 1997[Bruker (1997). XSCANS. Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.0002, 0.001 0.429, 0.988
No. of measured, independent and observed [I > 2σ(I)] reflections 6070, 3141, 1503 5716, 5407, 1968
Rint 0.120 0.058
(sin θ/λ)max−1) 0.596 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.196, 1.47 0.061, 0.153, 0.95
No. of reflections 3141 5407
No. of parameters 218 218
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.79, −1.00 0.84, −0.84
Computer programs: XSCANS (Bruker, 1997[Bruker (1997). XSCANS. Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

For both compounds, data collection: XSCANS (Bruker, 1997); cell refinement: XSCANS (Bruker, 1997); data reduction: XSCANS (Bruker, 1997); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

(I) 1,2,3-Tribromo-5-nitrobenzene top
Crystal data top
C6H2Br3NO2F(000) = 664
Mr = 359.82Dx = 2.688 Mg m3
Triclinic, P1Melting point: 380 K
a = 7.641 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.040 (5) ÅCell parameters from 48 reflections
c = 14.917 (6) Åθ = 4.8–12.4°
α = 83.91 (3)°µ = 13.57 mm1
β = 79.86 (4)°T = 298 K
γ = 81.49 (4)°Irregular, colourless
V = 889.2 (8) Å30.42 × 0.40 × 0.30 mm
Z = 4
Data collection top
Bruker P4
diffractometer
1503 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.120
Graphite monochromatorθmax = 25.1°, θmin = 2.6°
ω scansh = 89
Absorption correction: part of the refinement model (ΔF)
(Walker & Stuart, 1983)
k = 99
Tmin = 0.0002, Tmax = 0.001l = 017
6070 measured reflections3 standard reflections every 97 reflections
3141 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.196 w = 1/[σ2(Fo2) + (0.050P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.47(Δ/σ)max < 0.001
3141 reflectionsΔρmax = 0.79 e Å3
218 parametersΔρmin = 1.00 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.0063 (12)
Primary atom site location: structure-invariant direct methods
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.1438 (2)0.3194 (2)0.05082 (13)0.0863 (6)
Br20.2958 (2)0.0254 (2)0.20089 (11)0.0855 (6)
Br30.4312 (2)0.3604 (2)0.13778 (10)0.0791 (5)
C10.2177 (18)0.1018 (19)0.0215 (9)0.070 (4)
C20.2831 (17)0.0235 (17)0.0860 (9)0.063 (3)
C30.3360 (14)0.1910 (16)0.0555 (8)0.056 (3)
C40.3227 (18)0.2259 (19)0.0296 (9)0.069 (4)
H40.35730.33550.04650.083*
C50.2615 (17)0.1072 (16)0.0895 (10)0.064 (3)
C60.2067 (16)0.0562 (16)0.0661 (9)0.059 (3)
H60.16190.13730.10850.071*
N10.2502 (16)0.1453 (18)0.1809 (8)0.075 (3)
O10.2967 (16)0.2925 (16)0.2012 (7)0.094 (3)
O20.1923 (18)0.0342 (15)0.2318 (8)0.105 (4)
Br110.3943 (2)0.2012 (2)0.39885 (13)0.0891 (6)
Br120.1013 (2)0.1170 (2)0.58586 (10)0.0795 (6)
Br130.3231 (2)0.2845 (2)0.59130 (11)0.0865 (6)
C110.151 (2)0.2912 (18)0.4092 (12)0.077 (4)
C120.0303 (18)0.2505 (18)0.4860 (10)0.064 (3)
C130.150 (2)0.323 (2)0.4913 (9)0.073 (4)
C140.2002 (19)0.4188 (19)0.4208 (9)0.070 (4)
H140.32070.46190.42320.084*
C150.079 (2)0.4583 (18)0.3427 (8)0.068 (4)
C160.0943 (19)0.3923 (18)0.3375 (9)0.068 (4)
H160.17560.41550.28500.082*
N110.1327 (18)0.5801 (16)0.2644 (10)0.076 (3)
O110.2882 (14)0.6432 (13)0.2757 (7)0.083 (3)
O120.0224 (17)0.5952 (18)0.1956 (8)0.110 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0776 (11)0.0671 (10)0.1094 (12)0.0047 (8)0.0022 (9)0.0140 (8)
Br20.0876 (11)0.0974 (13)0.0716 (9)0.0124 (9)0.0075 (8)0.0164 (8)
Br30.0765 (10)0.0789 (11)0.0793 (10)0.0043 (8)0.0186 (8)0.0070 (8)
C10.062 (8)0.078 (10)0.072 (9)0.013 (7)0.022 (7)0.001 (7)
C20.058 (8)0.068 (9)0.062 (8)0.006 (7)0.004 (6)0.026 (7)
C30.034 (6)0.064 (8)0.060 (7)0.001 (6)0.001 (6)0.012 (6)
C40.063 (8)0.072 (9)0.071 (9)0.022 (7)0.018 (7)0.030 (7)
C50.056 (8)0.051 (8)0.087 (10)0.015 (6)0.021 (7)0.009 (7)
C60.062 (8)0.052 (8)0.073 (8)0.019 (6)0.033 (7)0.003 (6)
N10.079 (8)0.081 (9)0.080 (8)0.016 (7)0.036 (7)0.026 (7)
O10.119 (9)0.095 (9)0.071 (6)0.005 (7)0.017 (6)0.032 (6)
O20.151 (11)0.087 (9)0.089 (7)0.010 (8)0.061 (8)0.004 (6)
Br110.0644 (10)0.0993 (13)0.1026 (12)0.0018 (9)0.0185 (9)0.0137 (10)
Br120.0955 (12)0.0701 (10)0.0769 (9)0.0090 (8)0.0294 (9)0.0017 (7)
Br130.0785 (11)0.0945 (13)0.0808 (10)0.0202 (9)0.0012 (8)0.0067 (9)
C110.084 (10)0.050 (8)0.102 (11)0.013 (7)0.021 (9)0.015 (8)
C120.060 (8)0.062 (8)0.073 (9)0.018 (7)0.012 (8)0.008 (7)
C130.081 (10)0.082 (10)0.060 (8)0.020 (8)0.024 (7)0.009 (7)
C140.056 (8)0.080 (10)0.065 (8)0.010 (7)0.011 (7)0.007 (7)
C150.088 (10)0.077 (10)0.040 (6)0.019 (8)0.034 (7)0.004 (6)
C160.070 (9)0.072 (9)0.062 (8)0.028 (8)0.006 (7)0.003 (7)
N110.067 (8)0.065 (8)0.093 (10)0.005 (6)0.017 (7)0.011 (7)
O110.074 (7)0.079 (7)0.099 (7)0.003 (6)0.032 (6)0.014 (6)
O120.097 (8)0.144 (12)0.077 (7)0.012 (8)0.011 (7)0.028 (7)
Geometric parameters (Å, º) top
Br1—C11.831 (15)Br11—C111.877 (15)
Br2—C21.821 (12)Br12—C121.854 (14)
Br3—C31.886 (11)Br13—C131.842 (15)
C1—C61.415 (18)C11—C161.368 (19)
C1—C21.416 (18)C11—C121.38 (2)
C2—C31.445 (18)C12—C131.410 (19)
C3—C41.353 (17)C13—C141.313 (18)
C4—C51.328 (17)C14—C151.39 (2)
C4—H40.9300C14—H140.9300
C5—C61.381 (19)C15—C161.347 (19)
C5—N11.448 (18)C15—N111.515 (16)
C6—H60.9300C16—H160.9300
N1—O21.194 (15)N11—O111.211 (15)
N1—O11.238 (16)N11—O121.216 (16)
C6—C1—C2119.0 (13)C16—C11—C12120.4 (14)
C6—C1—Br1119.9 (9)C16—C11—Br11118.6 (13)
C2—C1—Br1121.0 (10)C12—C11—Br11120.9 (11)
C1—C2—C3116.2 (11)C11—C12—C13118.8 (13)
C1—C2—Br2121.3 (10)C11—C12—Br12122.1 (10)
C3—C2—Br2122.5 (9)C13—C12—Br12118.9 (10)
C4—C3—C2121.8 (11)C14—C13—C12118.8 (14)
C4—C3—Br3120.6 (10)C14—C13—Br13118.0 (11)
C2—C3—Br3117.6 (9)C12—C13—Br13123.1 (10)
C5—C4—C3121.5 (13)C13—C14—C15122.5 (13)
C5—C4—H4119.3C13—C14—H14118.8
C3—C4—H4119.3C15—C14—H14118.8
C4—C5—C6120.7 (13)C16—C15—C14119.2 (11)
C4—C5—N1121.1 (13)C16—C15—N11117.9 (13)
C6—C5—N1118.2 (11)C14—C15—N11122.8 (12)
C5—C6—C1120.8 (11)C15—C16—C11120.0 (14)
C5—C6—H6119.6C15—C16—H16120.0
C1—C6—H6119.6C11—C16—H16120.0
O2—N1—O1123.6 (12)O11—N11—O12127.0 (13)
O2—N1—C5118.3 (13)O11—N11—C15114.7 (13)
O1—N1—C5118.1 (12)O12—N11—C15118.1 (12)
C6—C1—C2—C30.6 (19)C16—C11—C12—C134 (2)
Br1—C1—C2—C3179.5 (9)Br11—C11—C12—C13179.1 (11)
C6—C1—C2—Br2178.5 (10)C16—C11—C12—Br12178.9 (11)
Br1—C1—C2—Br20.3 (16)Br11—C11—C12—Br124.0 (17)
C1—C2—C3—C40.3 (19)C11—C12—C13—C144 (2)
Br2—C2—C3—C4178.8 (11)Br12—C12—C13—C14179.4 (12)
C1—C2—C3—Br3178.0 (9)C11—C12—C13—Br13178.0 (11)
Br2—C2—C3—Br32.8 (14)Br12—C12—C13—Br132.7 (18)
C2—C3—C4—C51 (2)C12—C13—C14—C153 (2)
Br3—C3—C4—C5177.8 (11)Br13—C13—C14—C15178.7 (12)
C3—C4—C5—C61 (2)C13—C14—C15—C162 (2)
C3—C4—C5—N1179.1 (13)C13—C14—C15—N11174.8 (15)
C4—C5—C6—C11 (2)C14—C15—C16—C112 (2)
N1—C5—C6—C1178.8 (12)N11—C15—C16—C11175.4 (13)
C2—C1—C6—C51 (2)C12—C11—C16—C153 (2)
Br1—C1—C6—C5180.0 (10)Br11—C11—C16—C15179.8 (11)
C4—C5—N1—O2179.2 (14)C16—C15—N11—O11175.5 (13)
C6—C5—N1—O21 (2)C14—C15—N11—O111 (2)
C4—C5—N1—O11 (2)C16—C15—N11—O1210 (2)
C6—C5—N1—O1178.8 (13)C14—C15—N11—O12173.5 (15)
(II) 1,3-Dibromo-2-iodo-5-nitrobenzene top
Crystal data top
C6H2Br2INO2Dx = 2.864 Mg m3
Mr = 406.81Melting point: 415 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.548 (3) ÅCell parameters from 43 reflections
b = 20.037 (3) Åθ = 5.7–12.5°
c = 9.123 (2) ŵ = 11.82 mm1
β = 130.37 (2)°T = 298 K
V = 1886.8 (8) Å3Prism, brown
Z = 80.50 × 0.22 × 0.12 mm
F(000) = 1472
Data collection top
Bruker P4
diffractometer
1968 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.058
Graphite monochromatorθmax = 30.0°, θmin = 2.2°
2θ/ω scansh = 1419
Absorption correction: ψ scan
(XSCANS; Bruker, 1997)
k = 028
Tmin = 0.429, Tmax = 0.988l = 120
5716 measured reflections3 standard reflections every 97 reflections
5407 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.053P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max < 0.001
5407 reflectionsΔρmax = 0.84 e Å3
218 parametersΔρmin = 0.84 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.00093 (11)
Primary atom site location: structure-invariant direct methods
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.30362 (13)0.43988 (8)0.2401 (2)0.0615 (4)
I20.54556 (10)0.36925 (4)0.26460 (13)0.0583 (3)
Br30.73278 (12)0.49074 (7)0.26614 (18)0.0561 (4)
C10.4175 (11)0.4967 (7)0.2453 (16)0.035 (3)
C20.5191 (11)0.4723 (6)0.2535 (13)0.033 (3)
C30.5960 (11)0.5182 (6)0.2557 (17)0.038 (3)
C40.5754 (12)0.5862 (6)0.2478 (17)0.040 (3)
H4A0.62640.61710.24740.048*
C50.4763 (13)0.6050 (7)0.2405 (15)0.046 (4)
C60.3965 (12)0.5642 (7)0.2397 (18)0.048 (4)
H6A0.33070.58090.23550.057*
N10.4555 (13)0.6807 (6)0.2380 (17)0.065 (3)
O10.5145 (11)0.7161 (5)0.2088 (17)0.085 (4)
O20.3795 (15)0.6989 (5)0.2557 (18)0.105 (4)
Br110.18918 (13)0.30721 (8)0.2488 (2)0.0620 (4)
I120.04866 (10)0.37922 (4)0.26639 (13)0.0593 (3)
Br130.24427 (12)0.25893 (8)0.2825 (2)0.0588 (4)
C110.0736 (11)0.2509 (7)0.2562 (17)0.039 (3)
C120.0237 (12)0.2769 (7)0.2619 (14)0.035 (3)
C130.1046 (11)0.2312 (6)0.2672 (18)0.039 (3)
C140.0869 (13)0.1639 (6)0.2665 (18)0.045 (4)
H14A0.14290.13440.27360.054*
C150.0137 (13)0.1391 (8)0.2553 (16)0.045 (4)
C160.0922 (13)0.1829 (6)0.2507 (18)0.043 (4)
H16A0.15960.16680.24370.052*
N110.0302 (15)0.0681 (6)0.2483 (17)0.066 (4)
O110.0350 (12)0.0323 (6)0.2418 (18)0.099 (4)
O120.1106 (14)0.0493 (6)0.2609 (17)0.099 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0558 (8)0.0680 (9)0.0684 (9)0.0167 (7)0.0437 (7)0.0035 (7)
I20.0737 (6)0.0268 (4)0.0723 (7)0.0048 (5)0.0464 (5)0.0017 (4)
Br30.0484 (7)0.0636 (9)0.0654 (9)0.0047 (7)0.0409 (7)0.0002 (7)
C10.041 (7)0.035 (7)0.033 (6)0.012 (6)0.027 (5)0.007 (5)
C20.043 (7)0.017 (6)0.035 (8)0.002 (5)0.024 (6)0.000 (4)
C30.042 (6)0.033 (7)0.041 (7)0.003 (5)0.028 (6)0.004 (5)
C40.037 (7)0.036 (8)0.048 (8)0.005 (6)0.027 (6)0.003 (6)
C50.046 (7)0.023 (7)0.040 (8)0.005 (6)0.015 (6)0.002 (5)
C60.036 (7)0.064 (10)0.045 (8)0.003 (7)0.027 (6)0.016 (7)
N10.066 (8)0.031 (7)0.075 (9)0.010 (7)0.036 (7)0.001 (6)
O10.091 (8)0.030 (6)0.108 (9)0.003 (6)0.053 (7)0.003 (6)
O20.163 (12)0.050 (7)0.137 (11)0.050 (8)0.112 (10)0.016 (6)
Br110.0522 (8)0.0681 (9)0.0685 (9)0.0108 (7)0.0404 (7)0.0033 (7)
I120.0755 (6)0.0283 (4)0.0735 (7)0.0069 (5)0.0479 (5)0.0038 (4)
Br130.0488 (7)0.0631 (9)0.0703 (9)0.0088 (7)0.0412 (7)0.0014 (7)
C110.043 (7)0.035 (7)0.041 (7)0.002 (6)0.028 (6)0.002 (6)
C120.041 (7)0.033 (8)0.039 (8)0.007 (6)0.030 (6)0.004 (4)
C130.033 (6)0.037 (8)0.042 (7)0.005 (5)0.022 (6)0.005 (6)
C140.051 (8)0.029 (7)0.044 (8)0.008 (6)0.025 (6)0.000 (6)
C150.063 (9)0.028 (7)0.056 (9)0.015 (6)0.045 (8)0.006 (5)
C160.046 (7)0.031 (7)0.042 (7)0.021 (6)0.024 (6)0.015 (5)
N110.096 (10)0.034 (7)0.073 (9)0.018 (7)0.057 (8)0.006 (6)
O110.101 (9)0.029 (6)0.147 (11)0.010 (6)0.072 (8)0.005 (7)
O120.144 (11)0.061 (7)0.130 (10)0.042 (8)0.106 (9)0.012 (6)
Geometric parameters (Å, º) top
Br1—C11.894 (12)Br11—C111.895 (14)
I2—C22.088 (12)I12—C122.074 (14)
Br3—C31.875 (13)Br13—C131.888 (13)
C1—C61.375 (18)C11—C121.387 (17)
C1—C21.416 (17)C11—C161.381 (18)
C2—C31.380 (17)C12—C131.405 (17)
C3—C41.384 (16)C13—C141.370 (16)
C4—C51.353 (18)C14—C151.390 (19)
C4—H4A0.9300C14—H14A0.9300
C5—C61.35 (2)C15—C161.359 (19)
C5—N11.539 (18)C15—N111.435 (19)
C6—H6A0.9300C16—H16A0.9300
N1—O21.199 (17)N11—O111.168 (19)
N1—O11.221 (19)N11—O121.226 (18)
C6—C1—C2120.8 (13)C12—C11—C16121.2 (14)
C6—C1—Br1116.4 (11)C12—C11—Br11121.4 (11)
C2—C1—Br1122.8 (10)C16—C11—Br11117.3 (11)
C3—C2—C1118.1 (12)C11—C12—C13117.3 (13)
C3—C2—I2123.6 (10)C11—C12—I12120.7 (11)
C1—C2—I2118.4 (10)C13—C12—I12122.0 (10)
C2—C3—C4122.0 (13)C14—C13—C12120.8 (13)
C2—C3—Br3121.2 (10)C14—C13—Br13117.0 (11)
C4—C3—Br3116.8 (11)C12—C13—Br13122.2 (10)
C5—C4—C3115.9 (13)C13—C14—C15120.8 (14)
C5—C4—H4A122.0C13—C14—H14A119.6
C3—C4—H4A122.0C15—C14—H14A119.6
C4—C5—C6126.6 (14)C16—C15—C14118.8 (14)
C4—C5—N1116.2 (15)C16—C15—N11122.8 (14)
C6—C5—N1117.2 (15)C14—C15—N11118.3 (15)
C5—C6—C1116.7 (13)C15—C16—C11121.0 (14)
C5—C6—H6A121.7C15—C16—H16A119.5
C1—C6—H6A121.7C11—C16—H16A119.5
O2—N1—O1126.4 (14)O11—N11—O12124.2 (16)
O2—N1—C5117.6 (14)O11—N11—C15120.6 (18)
O1—N1—C5115.9 (17)O12—N11—C15115.0 (15)
C6—C1—C2—C30.0 (16)C16—C11—C12—C131.7 (16)
Br1—C1—C2—C3179.7 (9)Br11—C11—C12—C13180.0 (9)
C6—C1—C2—I2179.4 (9)C16—C11—C12—I12179.2 (9)
Br1—C1—C2—I21.0 (12)Br11—C11—C12—I120.8 (13)
C1—C2—C3—C40.8 (17)C11—C12—C13—C140.1 (17)
I2—C2—C3—C4179.9 (9)I12—C12—C13—C14179.2 (9)
C1—C2—C3—Br3179.9 (9)C11—C12—C13—Br13178.2 (9)
I2—C2—C3—Br30.7 (14)I12—C12—C13—Br130.9 (14)
C2—C3—C4—C50.9 (18)C12—C13—C14—C151.7 (19)
Br3—C3—C4—C5179.9 (9)Br13—C13—C14—C15179.9 (10)
C3—C4—C5—C60.2 (18)C13—C14—C15—C161.9 (18)
C3—C4—C5—N1178.2 (11)C13—C14—C15—N11177.8 (12)
C4—C5—C6—C10.5 (19)C14—C15—C16—C110.3 (18)
N1—C5—C6—C1178.9 (10)N11—C15—C16—C11179.5 (12)
C2—C1—C6—C50.6 (17)C12—C11—C16—C151.6 (19)
Br1—C1—C6—C5179.1 (9)Br11—C11—C16—C15180.0 (10)
C4—C5—N1—O2171.0 (13)C16—C15—N11—O11175.7 (14)
C6—C5—N1—O27.6 (18)C14—C15—N11—O114 (2)
C4—C5—N1—O112.4 (17)C16—C15—N11—O128.3 (19)
C6—C5—N1—O1169.1 (12)C14—C15—N11—O12171.9 (13)
Halogen-bond geometry (Å, °) for (I) top
X1···X2dθ1θ2bond type
Br2···Br113.642 (3)165.2 (5)82.3 (5)II-polarized
Br1···Br1i3.731 (4)133.3 (4)133.3 (4)I-unpolarized
Br2···Br13ii3.781 (3)126.8 (4)129.6 (4)I-unpolarized
Notes: d = separation X1···X2; θ1 = angle C—X1···X2; θ2 = angle X1···X2—C. For halogen bond types, see: Reddy et al. (2006). Symmetry codes: (i) -x, 1 - y, -z; (ii) -x, -y, 1 - z.
Halogen-bond geometry (Å, °) for (II) top
X1···X2dθ1θ2bond type
Br1···I123.813 (2)161.2 (4)117.2 (4)II-polarized
I2···Br11i3.893 (2)116.6 (4)161.8 (4)II-polarized
Br1···Br133.787 (2)142.8 (4)122.9 (4)I-unpolarized
Br11···Br3ii3.858 (2)143.9 (4)124.4 (4)I-unpolarized
Notes: d = separation X1···X2; θ1 = angle C—X1···X2; θ2 = angle X1···X2—C. For halogen bond types, see: Reddy et al. (2006). Symmetry codes: (i) 1 + x, y, z; (ii) -1 + x, y, z.
 

Acknowledgements

We acknowledge the contribution of Angélica Navarrete to the synthesis of the reported compounds.

References

First citationBaharie, E. & Pawley, G. S. (1979). Acta Cryst. A35, 233–235.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBetz, R., Klüfers, P. & Mayer, P. (2008). Acta Cryst. E64, o1921.  CSD CrossRef IUCr Journals Google Scholar
First citationBhar, A., Aune, J. P., Benali-Cherif, N., Benmenni, L. & Giorgi, M. (1995). Acta Cryst. C51, 256–260.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrezgunova, M. E., Aubert, E., Dahaoui, S., Fertey, P., Lebègue, S., Jelsch, C., Ángyán, J. G. & Espinosa, E. (2012). Cryst. Growth Des. 12, 5373–5386.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrown, G. M. & Strydom, O. A. W. (1974). Acta Cryst. B30, 801–804.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationBruker (1997). XSCANS. Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBryant, R., James, S. C., Norman, N. C. & Orpen, A. G. (1998). Acta Cryst. C54, 1113–1115.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationErdelyi, M. (2014). Nat. Chem. 6, 762–764.  CrossRef CAS PubMed Google Scholar
First citationFrancke, R., Schnakenburg, G. & Waldvogel, S. R. (2010). Eur. J. Org. Chem. pp. 2357–2362.  CrossRef Google Scholar
First citationGhosh, S., Reddy, C. M. & Desiraju, G. R. (2007). Acta Cryst. E63, o910–o911.  CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNovak, I. & Li, D. (2007). Acta Cryst. E63, o438–o439.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOlaru, M., Beckmann, J. & Raţ, C. I. (2014). Organometallics, 33, 3012–3020.  CSD CrossRef CAS Google Scholar
First citationReddy, C. M., Kirchner, M. T., Gundakaram, R. C., Padmanabhan, K. A. & Desiraju, G. R. (2006). Chem. Eur. J. 12, 2222–2234.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSchmidbaur, H., Minge, O. & Nogai, S. (2004). Z. Naturforsch. Teil B, 59, 264–268.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShorafa, H., Mollenhauer, D., Paulus, B. & Seppelt, K. (2009). Angew. Chem. Int. Ed. 48, 5845–5847.  Web of Science CSD CrossRef CAS Google Scholar
First citationStein, M., Schwarzer, A., Hulliger, J. & Weber, E. (2011). Acta Cryst. E67, o1655.  CSD CrossRef IUCr Journals Google Scholar
First citationTanaka, I., Iwasaki, F. & Aihara, A. (1974). Acta Cryst. B30, 1546–1549.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationThalladi, V. R., Goud, B. S., Hoy, V. J., Allen, F. H., Howard, J. A. K. & Desiraju, G. R. (1996). Chem. Commun. pp. 401–402.  CSD CrossRef Web of Science Google Scholar
First citationWalker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWang, C., Danovich, D., Mo, Y. & Shaik, S. (2014). J. Chem. Theory Comput. 10, 3726–3737.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds