

Crystal structure of cyclosulfamuron

Gihaeng Kang, Jineun Kim,* Eunjin Kwon and Tae Ho Kim*

Department of Chemistry and Research Institute of Natural Sciences. Gyeongsang National University, Jinju 660-701, Republic of Korea. *Correspondence e-mail: thkim@gnu.ac.kr, jekim@gnu.ac.kr

Received 25 July 2015; accepted 27 July 2015

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

The title compound (systematic name: 1-{[2-(cyclopropylcarbonyl)anilino]sulfonyl}-3-(4,6-dimethoxypyrimidin-2-yl)urea), $C_{17}H_{19}N_5O_6S$, is a pyrimidinylsulfonylurea herbicide. The dihedral angles between the mean planes of the central benzene ring and the cyclopropyl and pyrimidinyl rings are 75.32 (9) and 88.79 (4) $^{\circ}$, respectively. The C atoms of the methoxy groups lie almost in the plane of the pyrimidine ring [deviations = 0.043 (2) and 0.028 (2) Å] and intramolecular N-H···N, N-H···O and C-H···O hydrogen bonds all close S(6) rings. In the crystal, N-H···O and C-H···O hydrogen bonds and weak $\pi - \pi$ interactions [centroidcentroid distances = 3.6175(9) and 3.7068(9) Å] link adjacent molecules, forming a three-dimensional network.

Keywords: crystal structure; hydrogen bonding; $\pi - \pi$ interactions.

CCDC reference: 1415211

1. Related literature

For information on the herbicidal properties of the title compound, see: Sarıgül & İnam (2009). For a related crystal structure, see: Xia et al. (2008).

2. Experimental

OPEN a ACCESS

2.1. Crystal data

$C_{17}H_{19}N_5O_6S$	$V = 1905.31 (10) \text{ Å}^3$
$M_r = 421.43$	Z = 4
Monoclinic, $P2_1/n$	Mo Ka radiation
a = 12.7019 (4) Å	$\mu = 0.22 \text{ mm}^{-1}$
b = 9.6216 (3) Å	$T = 173 { m K}$
c = 15.6213 (5) Å	$0.32 \times 0.27 \times 0.23$ r
$\beta = 93.6194 \ (12)^{\circ}$	

2.2. Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2013) $T_{\min} = 0.934, \ T_{\max} = 0.952$

2.3. Refinement $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.113$ S=1.054365 reflections

n 23 mm

17544 measured reflections 4365 independent reflections 3688 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.030$

264 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.22 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.49 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1N···O1	0.88	1.86	2.5736 (18)	137
$N2 - H2N \cdot \cdot \cdot N4$	0.88	1.92	2.6158 (18)	135
C9−H9···O3	0.95	2.45	3.088 (2)	124
$N3-H3N \cdot \cdot \cdot O2^{i}$	0.88	2.08	2.9391 (17)	165
$C2-H2B\cdots O2^{ii}$	0.99	2.51	3.483 (2)	169
C3-H3···O4 ⁱⁱⁱ	1.00	2.51	3.286 (2)	135
$C8 - H8 \cdots O3^{iv}$	0.95	2.50	3.307 (2)	142

Symmetry codes: (i) $-x + \frac{5}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x + 2, -y + 1, -z; (iii) -x + 2, -y, -z; (iv) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2013): cell refinement: SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2015R1D1A4A01020317).

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7470).

References

Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Sarıgül, T. & İnam, R. (2009). *Electrochim. Acta*, **54**, 5376–5380. Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122. Sheldrick, G. M. (2015). *Acta Cryst.* C**71**, 3–8.

Xia, J., Li, F., Yin, L., Yu, D. & Wu, D. (2008). Acta Cryst. E64, 0632.

supporting information

Acta Cryst. (2015). E71, o631–o632 [https://doi.org/10.1107/S2056989015014115]

Crystal structure of cyclosulfamuron

Gihaeng Kang, Jineun Kim, Eunjin Kwon and Tae Ho Kim

S1. Comment

Cyclosulfamuron [systematic name: 1-[2-(cyclopropylcarbonyl)anilinosulfonyl]-3-(4,6-dimethoxypyrimidin-2-yl)urea] is a pyrimidinylsulfonylurea herbicide and has been widely used to control weeds because of their low toxicity to mammals and their high herbicidal activity (Sarıgül & Inam, 2009). However, until now its crystal structure has not been reported. In the title compound (Fig. 1), the dihedral angles between the mean planes of the central phenyl ring and the cyclopropyl and pyrimidinyl rings are 75.32 (9) and 88.79 (4)°, respectively. All bond lengths and bond angles are normal and comparable to those observed in a similar crystal structure (Xia *et al.*, 2008).

In the crystal structure (Fig. 2), N—H···O and C—H···O hydrogen bonds are observed (Table 1). In addition, weak intermolecular Cg1···Cg1^v and Cg1···Cg2^{vi} (Cg1 and Cg2 are the centroids of the N4—C12—N5—C15—C14—C13 and C5–C10 rings, respectively) interactions are present [for symmetry codes: (v), -x + 2, -y, -z + 1, (vi), x + 1/2, -y + 1/2, z + 1/2]. A three-dimensional network is formed by the hydrogen bonds and π - π interactions.

S2. Experimental

The title compound was purchased from the Dr. Ehrenstorfer GmbH Company. Slow evaporation of a solution in CH_2Cl_2 gave single crystals suitable for X-ray analysis.

S3. Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(N-H) = 0.88 Å, $U_{iso} = 1.2U_{eq}(C)$ for N—H group, d(C-H) = 1.00 Å, $U_{iso} = 1.2U_{eq}(C)$ for Csp^3 —H. d(C-H) = 0.98 Å, $U_{iso} = 1.5U_{eq}(C)$ for methyl group, d(C-H) = 0.99 Å, $U_{iso} = 1.2U_{eq}(C)$ for CH₂ group, d(C-H) = 0.95 Å, $U_{iso} = 1.2U_{eq}(C)$ for aromatic C—H.

Figure 1

The asymmetric unit of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.

Crystal packing viewed along the c axis. The intermolecular interactions are shown as dashed lines.

1-{[2-(Cyclopropylcarbonyl)anilino]sulfonyl}-3-(4,6-dimethoxypyrimidin-2-yl)urea

Crystal data

$C_{17}H_{19}N_5O_6S$	$V = 1905.31 (10) \text{ Å}^3$
$M_r = 421.43$	Z = 4
Monoclinic, $P2_1/n$	F(000) = 880
a = 12.7019 (4) Å	$D_{\rm x} = 1.469 {\rm ~Mg} {\rm ~m}^{-3}$
b = 9.6216 (3) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 15.6213(5) Å	Cell parameters from 6977 reflections
$\beta = 93.6194 \ (12)^{\circ}$	$\theta = 2.6 - 27.4^{\circ}$

 $\mu = 0.22 \text{ mm}^{-1}$ T = 173 K

Data collection

Data concerton	
Bruker APEXII CCD	4365 independent reflections
diffractometer	3688 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.030$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$
(SADABS; Bruker, 2013)	$h = -16 \rightarrow 15$
$T_{\min} = 0.934, \ T_{\max} = 0.952$	$k = -12 \rightarrow 12$
17544 measured reflections	$l = -20 \rightarrow 20$
Refinement	

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.039$	H-atom parameters constrained
$wR(F^2) = 0.113$	$w = 1/[\sigma^2(F_o^2) + (0.0579P)^2 + 0.7248P]$
<i>S</i> = 1.05	where $P = (F_o^2 + 2F_c^2)/3$
4365 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
264 parameters	$\Delta ho_{ m max} = 0.22 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta ho_{\min} = -0.49 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Block, colourless

 $0.32 \times 0.27 \times 0.23 \text{ mm}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	1.03274 (3)	0.41778 (4)	0.19915 (2)	0.02564 (12)	
01	1.02757 (11)	0.25129 (16)	-0.03440 (8)	0.0524 (4)	
O2	1.12410 (9)	0.48608 (12)	0.17159 (7)	0.0340 (3)	
03	0.95254 (9)	0.49585 (12)	0.23699 (7)	0.0343 (3)	
O4	1.19071 (9)	0.18921 (12)	0.19997 (7)	0.0335 (3)	
05	0.94327 (9)	0.31556 (13)	0.52112 (7)	0.0386 (3)	
O6	1.17908 (10)	-0.04334 (14)	0.61128 (7)	0.0429 (3)	
N1	0.98567 (10)	0.33405 (14)	0.11638 (8)	0.0290 (3)	
H1N	1.0187	0.3456	0.0690	0.035*	
N2	1.06665 (10)	0.30293 (14)	0.27345 (8)	0.0281 (3)	
H2N	1.0317	0.3014	0.3203	0.034*	
N3	1.17533 (10)	0.13526 (15)	0.33969 (8)	0.0303 (3)	
H3N	1.2279	0.0767	0.3351	0.036*	
N4	1.05707 (10)	0.22678 (14)	0.43352 (8)	0.0284 (3)	
N5	1.17993 (10)	0.04736 (14)	0.47520 (8)	0.0302 (3)	
C1	1.00581 (16)	0.0853 (2)	-0.18258 (11)	0.0418 (4)	
H1A	1.0695	0.1442	-0.1740	0.050*	
H1B	1.0162	-0.0019	-0.2147	0.050*	
C2	0.90252 (18)	0.1560 (2)	-0.19567 (11)	0.0492 (5)	
H2A	0.8486	0.1127	-0.2357	0.059*	

H2B	0.9019	0.2589	-0.1950	0.059*
C3	0.93094 (14)	0.08205 (17)	-0.11251 (10)	0.0354 (4)
H3	0.8943	-0.0082	-0.1031	0.042*
C4	0.95231 (14)	0.17112 (17)	-0.03618(10)	0.0334 (4)
C5	0.88087 (12)	0.16383 (17)	0.03524 (10)	0.0301 (3)
C6	0.79319 (14)	0.0755 (2)	0.02989 (12)	0.0415 (4)
H6	0.7797	0.0215	-0.0206	0.050*
C7	0.72575 (15)	0.0639 (2)	0.09523 (13)	0.0462 (5)
H7	0.6672	0.0023	0.0901	0.055*
C8	0.74454 (14)	0.1432 (2)	0.16818 (12)	0.0432 (4)
H8	0.6987	0.1354	0.2137	0.052*
C9	0.82919 (13)	0.23370 (19)	0.17609 (10)	0.0347 (4)
H9	0.8403	0.2886	0.2264	0.042*
C10	0.89805 (12)	0.24451 (16)	0.11062 (9)	0.0267 (3)
C11	1.14737 (12)	0.20858 (16)	0.26595 (9)	0.0267 (3)
C12	1.13446 (12)	0.13831 (16)	0.42007 (9)	0.0272 (3)
C13	1.01967 (12)	0.22237 (17)	0.51212 (9)	0.0294 (3)
C14	1.05796 (13)	0.13144 (18)	0.57482 (9)	0.0325 (4)
H14	1.0303	0.1274	0.6299	0.039*
C15	1.13996 (13)	0.04587 (18)	0.55188 (10)	0.0314 (3)
C16	0.89737 (16)	0.3201 (2)	0.60284 (11)	0.0514 (5)
H16A	0.8605	0.2326	0.6124	0.077*
H16B	0.8472	0.3974	0.6035	0.077*
H16C	0.9531	0.3336	0.6484	0.077*
C17	1.26553 (16)	-0.1300 (2)	0.58797 (12)	0.0463 (5)
H17A	1.2435	-0.1851	0.5372	0.069*
H17B	1.2862	-0.1925	0.6357	0.069*
H17C	1.3256	-0.0714	0.5752	0.069*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0234 (2)	0.0291 (2)	0.02454 (19)	-0.00228 (14)	0.00254 (14)	-0.00382 (13)
O1	0.0535 (9)	0.0729 (10)	0.0323 (6)	-0.0295 (7)	0.0133 (6)	-0.0169 (6)
O2	0.0313 (6)	0.0348 (6)	0.0362 (6)	-0.0109 (5)	0.0052 (5)	-0.0047 (5)
O3	0.0321 (6)	0.0368 (6)	0.0343 (6)	0.0076 (5)	0.0039 (5)	-0.0045 (5)
O4	0.0305 (6)	0.0445 (7)	0.0263 (5)	0.0045 (5)	0.0096 (4)	-0.0049 (5)
05	0.0368 (7)	0.0544 (8)	0.0255 (6)	0.0162 (6)	0.0090 (5)	-0.0010 (5)
O6	0.0459 (8)	0.0518 (8)	0.0309 (6)	0.0133 (6)	0.0007 (5)	0.0070 (5)
N1	0.0263 (7)	0.0387 (7)	0.0222 (6)	-0.0083 (6)	0.0039 (5)	-0.0029 (5)
N2	0.0243 (7)	0.0385 (7)	0.0221 (6)	0.0048 (5)	0.0055 (5)	-0.0010 (5)
N3	0.0256 (7)	0.0394 (7)	0.0263 (6)	0.0096 (6)	0.0059 (5)	-0.0015 (5)
N4	0.0253 (7)	0.0370 (7)	0.0232 (6)	0.0037 (5)	0.0039 (5)	-0.0023 (5)
N5	0.0263 (7)	0.0368 (7)	0.0274 (6)	0.0026 (6)	0.0016 (5)	-0.0017 (5)
C1	0.0512 (11)	0.0429 (10)	0.0312 (8)	0.0058 (8)	0.0010 (8)	-0.0081 (7)
C2	0.0760 (15)	0.0388 (10)	0.0310 (9)	0.0193 (10)	-0.0112 (9)	-0.0048 (7)
C3	0.0467 (10)	0.0305 (8)	0.0283 (8)	0.0018 (7)	-0.0033 (7)	-0.0030 (6)
C4	0.0368 (9)	0.0366 (9)	0.0262 (7)	-0.0024 (7)	-0.0031 (6)	-0.0015 (6)

supporting information

~	0.0050 (0)	0.0000 (0)	0 0000 (T)		0.0040 (0)	
C5	0.0270 (8)	0.0333 (8)	0.0292 (7)	-0.0029 (6)	-0.0049 (6)	0.0009 (6)
C6	0.0348 (10)	0.0436 (10)	0.0451 (10)	-0.0099 (8)	-0.0048 (8)	-0.0083 (8)
C7	0.0301 (9)	0.0511 (11)	0.0571 (11)	-0.0163 (8)	-0.0002 (8)	-0.0050 (9)
C8	0.0282 (9)	0.0552 (11)	0.0471 (10)	-0.0093 (8)	0.0086 (7)	0.0018 (9)
C9	0.0255 (8)	0.0450 (10)	0.0338 (8)	-0.0062 (7)	0.0027 (6)	-0.0025 (7)
C10	0.0220 (7)	0.0304 (8)	0.0272 (7)	-0.0022 (6)	-0.0019 (6)	0.0015 (6)
C11	0.0209 (7)	0.0342 (8)	0.0252 (7)	-0.0015 (6)	0.0030 (5)	-0.0046 (6)
C12	0.0234 (7)	0.0346 (8)	0.0238 (7)	-0.0015 (6)	0.0017 (6)	-0.0037 (6)
C13	0.0260 (8)	0.0379 (8)	0.0244 (7)	0.0015 (6)	0.0033 (6)	-0.0057 (6)
C14	0.0328 (9)	0.0429 (9)	0.0220 (7)	0.0020 (7)	0.0036 (6)	-0.0029 (6)
C15	0.0287 (8)	0.0383 (9)	0.0270 (7)	-0.0005 (7)	-0.0013 (6)	-0.0006 (6)
C16	0.0513 (12)	0.0780 (15)	0.0262 (8)	0.0277 (11)	0.0122 (8)	-0.0043 (9)
C17	0.0476 (11)	0.0523 (11)	0.0379 (9)	0.0167 (9)	-0.0058 (8)	0.0016 (8)

Geometric parameters (Å, °)

S1—O2	1.4237 (11)	C2—C3	1.505 (2)
S1—O3	1.4238 (11)	C2—H2A	0.9900
S1—N1	1.6065 (12)	C2—H2B	0.9900
S1—N2	1.6402 (13)	C3—C4	1.480 (2)
O1—C4	1.227 (2)	С3—Н3	1.0000
O4—C11	1.2132 (17)	C4—C5	1.484 (2)
O5—C13	1.3351 (19)	C5—C6	1.399 (2)
O5—C16	1.4372 (19)	C5—C10	1.416 (2)
O6—C15	1.3366 (19)	C6—C7	1.378 (3)
O6—C17	1.444 (2)	С6—Н6	0.9500
N1-C10	1.4058 (19)	C7—C8	1.379 (3)
N1—H1N	0.8800	С7—Н7	0.9500
N2-C11	1.3799 (19)	C8—C9	1.383 (2)
N2—H2N	0.8800	C8—H8	0.9500
N3—C11	1.378 (2)	C9—C10	1.391 (2)
N3—C12	1.3890 (18)	С9—Н9	0.9500
N3—H3N	0.8800	C13—C14	1.379 (2)
N4—C12	1.327 (2)	C14—C15	1.392 (2)
N4—C13	1.3449 (19)	C14—H14	0.9500
N5—C15	1.3303 (19)	C16—H16A	0.9800
N5-C12	1.333 (2)	C16—H16B	0.9800
C1—C2	1.480 (3)	C16—H16C	0.9800
C1—C3	1.495 (2)	C17—H17A	0.9800
C1—H1A	0.9900	C17—H17B	0.9800
C1—H1B	0.9900	C17—H17C	0.9800
02-51-03	120.02 (7)	C7—C6—C5	122.31 (17)
02 - 81 - N1	104.90 (7)	C7—C6—H6	118.8
03—81—N1	111.04 (7)	С5—С6—Н6	118.8
O2—S1—N2	110.02 (7)	C6—C7—C8	118.96 (17)
O3—S1—N2	102.97 (7)	C6—C7—H7	120.5
N1—S1—N2	107.42 (7)	С8—С7—Н7	120.5

C13—O5—C16	116.90 (13)	C7—C8—C9	120.99 (17)
C15—O6—C17	116.82 (13)	С7—С8—Н8	119.5
C10—N1—S1	127.72 (10)	С9—С8—Н8	119.5
C10—N1—H1N	116.1	C8—C9—C10	120.18 (16)
S1—N1—H1N	116.1	С8—С9—Н9	119.9
C11—N2—S1	123.13 (10)	С10—С9—Н9	119.9
C11—N2—H2N	118.4	C9—C10—N1	122.06 (14)
\$1—N2—H2N	118.4	C9-C10-C5	119.97 (14)
$C_{11} = N_{3} = C_{12}$	130.81 (13)	N1-C10-C5	117.98 (13)
C11-N3-H3N	114.6	04—C11—N3	121.65 (14)
C12—N3—H3N	114.6	04-C11-N2	123 54 (14)
C12 - N4 - C13	115 60 (13)	N3-C11-N2	11481(12)
C15 - N5 - C12	114 47 (13)	N4—C12—N5	127.86 (14)
C_{2} C_{1} C_{3}	60 76 (12)	N4-C12-N3	118 65 (14)
C_2 C_1 H_1A	1177	N5-C12-N3	113 49 (13)
$C_3 - C_1 - H_1 A$	117.7	05-C13-N4	112.08(13)
C_2 — C_1 — H_1B	117.7	05-C13-C14	125.00(13)
$C_2 = C_1 = H_1 B$	117.7	N4-C13-C14	123.27(14) 122.65(14)
HIA_C1_HIB	117.7	C13 - C14 - C15	122.05(14) 115 36(14)
C1 $C2$ $C3$	60 10 (12)	$C_{13} = C_{14} = C_{13}$	122.3
$C_1 = C_2 = C_3$	117.8	$C_{15} = C_{14} = H_{14}$	122.3
$C_1 = C_2 = H_2 \Lambda$	117.8	N5 C15 O6	110.06 (15)
C_{1} C_{2} $H_{2}B$	117.8	N5 - C15 - C14	119.00(15) 124.04(15)
$C_1 = C_2 = H_2 B$	117.8	06 C15 C14	124.04(13)
$U_2 = U_2 = U_2 D$	117.0	05 - C16 + 116	100.5
$\Pi 2A - C_2 - \Pi 2D$	114.9	$O_5 = C_{16} = H_{16} P$	109.5
$C_4 = C_3 = C_1$	119.02(10) 116.24(14)		109.5
$C_4 - C_3 - C_2$	110.34(14) 50.14(12)	10A - 10 - 100	109.5
C1 = C3 = C2	116 C		109.5
C4 - C3 - H3	110.0	H16A - C16 - H16C	109.5
$C_1 = C_2 = H_2$	110.0		109.5
$C_2 = C_3 = H_3$	110.0	O_{0} C_{17} H_{17}	109.5
01 - C4 - C3	119.04 (15)	U0	109.5
01 - C4 - C5	121.08 (14)	HI/A - CI/-HI/B	109.5
$C_{3} - C_{4} - C_{5}$	119.26 (15)		109.5
$C_{6} = C_{5} = C_{10}$	117.59 (15)	HI/A = CI/=HI/C	109.5
$C_{6} - C_{5} - C_{4}$	120.40(15) 122.01(14)	HI/B—CI/—HI/C	109.5
C10-C3-C4	122.01 (14)		
$\Omega^2 = S1 = N1 = C10$	176 89 (13)	C4—C5—C10—C9	-179 69 (15)
03 - 11 - 11 - 10	-52.05(15)	C6-C5-C10-N1	-17972(15)
$N_{2}=S_{1}=N_{1}=C_{10}$	59 84 (15)	C4-C5-C10-N1	0.3(2)
02 - 11 - 11 - 11	-47.34(14)	C12 - N3 - C11 - O4	-177.90(15)
03 - 11 - 11 - 11	-17641(12)	C12 = N3 = C11 = N2	15(2)
N1 - S1 - N2 - C11	66.31 (13)	S1—N2—C11—O4	-10.3(2)
$C_2 - C_1 - C_3 - C_4$	-105.05(18)	S1_N2_C11_N3	170.31 (11)
C1 - C2 - C3 - C4	109.56 (18)	C13 - N4 - C12 - N5	-0.8(2)
C1 - C3 - C4 - O1	41(2)	C13 - N4 - C12 - N3	178 68 (14)
$C_{2} C_{3} C_{4} O_{1}$	-63 6 (2)	C15 - N5 - C12 - N4	13(2)
			(-)

C1—C3—C4—C5	-177.36 (15)	C15—N5—C12—N3	-178.23 (14)
C2—C3—C4—C5	114.96 (19)	C11—N3—C12—N4	-2.0 (2)
O1—C4—C5—C6	177.40 (17)	C11—N3—C12—N5	177.54 (15)
C3—C4—C5—C6	-1.1 (2)	C16—O5—C13—N4	-179.99 (16)
O1-C4-C5-C10	-2.6 (3)	C16—O5—C13—C14	-0.3 (2)
C3-C4-C5-C10	178.88 (14)	C12—N4—C13—O5	179.06 (13)
C10-C5-C6-C7	-1.0 (3)	C12—N4—C13—C14	-0.6 (2)
C4—C5—C6—C7	179.00 (18)	O5-C13-C14-C15	-178.31 (15)
C5—C6—C7—C8	0.7 (3)	N4—C13—C14—C15	1.3 (2)
C6—C7—C8—C9	0.4 (3)	C12—N5—C15—O6	178.96 (14)
C7—C8—C9—C10	-1.0 (3)	C12—N5—C15—C14	-0.4 (2)
C8—C9—C10—N1	-179.31 (16)	C17—O6—C15—N5	1.8 (2)
C8—C9—C10—C5	0.7 (3)	C17—O6—C15—C14	-178.78 (15)
S1—N1—C10—C9	10.3 (2)	C13—C14—C15—N5	-0.8 (2)
S1—N1—C10—C5	-169.74 (12)	C13—C14—C15—O6	179.85 (15)
C6—C5—C10—C9	0.3 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
N1—H1 <i>N</i> …O1	0.88	1.86	2.5736 (18)	137
N2—H2 <i>N</i> ···N4	0.88	1.92	2.6158 (18)	135
С9—Н9…ОЗ	0.95	2.45	3.088 (2)	124
N3—H3 <i>N</i> ···O2 ⁱ	0.88	2.08	2.9391 (17)	165
C2—H2 <i>B</i> ···O2 ⁱⁱ	0.99	2.51	3.483 (2)	169
C3—H3····O4 ⁱⁱⁱ	1.00	2.51	3.286 (2)	135
C8—H8····O3 ^{iv}	0.95	2.50	3.307 (2)	142

Symmetry codes: (i) -x+5/2, y-1/2, -z+1/2; (ii) -x+2, -y+1, -z; (iii) -x+2, -y, -z; (iv) -x+3/2, y-1/2, -z+1/2.