

CRYSTALLOGRAPHIC

OPEN access

Crystal structure of natural phaeosphaeride A

Victoria V. Abzianidze,^a* Ekaterina V. Poluektova,^b Ksenia P. Bolshakova,^b Taras L. Panikorovskii,^c Alexander S. Bogachenkov^d and Alexander O. Berestetskiv^b*

^aChemical Modeling Laboratory, Research Institute of Hygiene, Occupational Pathology and Human Ecology, Medical Biological Agency, p/o Kuz'molovsky, Saint Petersburg, 188663, Russian Federation, ^bAll-Russian Institute of Plant Protection, Russian Academy of Agricultural Sciences, Pushkin, Saint Petersburg, 196608, Russian Federation, ^cDepartment of Crystallography, Institute of Earth Sciences, Saint Petersburg State University, University Emb., 7/9, Saint Petersburg, 199034, Russian Federation, and ^dDepartment of Organic Chemistry, Institute of Chemistry, Saint Petersburg State University, University Emb., 26, Saint Petersburg, 198504, Russian Federation. *Correspondence e-mail: vvaavv@mail.ru, aberestetski@yahoo.com

Received 14 July 2015; accepted 22 July 2015

Edited by S. Parkin, University of Kentucky, USA

The asymmetric unit of the title compound, C₁₅H₂₃NO₅, contains two independent molecules. Phaeosphaeride A contains two primary sections, an alkyl chain consisting of five C atoms and a cyclic system consisting of fused five- and six-membered rings with attached substituents. In the crystal, the molecules form layered structures. Nearly planar sheets, parallel to the (001) plane, form bilayers of two-dimensional hydrogen-bonded networks with the hydroxy groups located on the interior of the bilayer sheets. The network is constructed primarily of four O-H···O hydrogen bonds, which form a zigzag pattern in the (001) plane. The butyl chains interdigitate with the butyl chains on adjacent sheets. The crystal was twinned by a twofold rotation about the c axis, with refined major-minor occupancy fractions of 0.718 (6): 0.282 (6).

Keywords: crystal structure; natural phaeosphaeride A.

CCDC reference: 1412515

1. Related literature

For details of the extraction of natural phaeosphaeride A and a discussion of its biological activities, see: Malonev et al. (2006). For details of trials of the synthesis of natural phaeosphaeride A, see: Kobayashi et al. (2011); Chatzimpaloglou et al. (2012, 2014); Kobayashi et al. (2015). Ring-puckering parameters are as defined by Cremer & Pople (1975). Hydrogen bonding is described in detail by Desiraiu & Steiner (1999) and by Arunan et al. (2011). The twin law was identified using TwinRotMat in PLATON (Spek, 2009). Criteria for absolute configuration determination are described by Flack (1983) and Parsons et al. (2013).

V = 1599.11 (5) Å³

Cu Ka radiation

 $0.35 \times 0.35 \times 0.05 \text{ mm}$

6054 measured reflections

6054 independent reflections

5940 reflections with $I > 2\sigma(I)$

 $\mu = 0.77 \text{ mm}^{-1}$

T = 100 K

Z = 4

2. Experimental

2.1. Crystal data C15H23NO5 $M_r = 297.34$ Monoclinic, P2, a = 10.14078 (18) Å b = 9.10361 (14) Åc = 17.5991 (3) Å $\beta = 100.1847 (16)^{\circ}$

2.2. Data collection

2.3. Refinement

Agilent SuperNova Dual Source diffractometer with an Atlas detector Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012)

 $T_{\min} = 0.824, T_{\max} = 1.000$

 $R[F^2 > 2\sigma(F^2)] = 0.058$ wR(F²) = 0.150 $\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack x deter-S = 1.10mined using 2632 quotients 6054 reflections $[(I^{+}) - (I^{-})]/[(I^{+}) + (I^{-})]$ 389 parameters (Parsons et al., 2013) 1 restraint Absolute structure parameter: H-atom parameters constrained 0.05 (8) $\Delta \rho_{\rm max} = 0.36 \ {\rm e} \ {\rm \AA}^-$

l'able l			
Hydrogen-bor	nd geometry	' (Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O2-H2\cdots O2A$	0.82	2.04	2.818 (5)	158
$O3-H3\cdots O4^{i}$	0.82	2.03	2.836 (5)	168
$O2A - H2A \cdots O4^{i}$	0.82	2.00	2.685 (5)	141
$O3A - H3A \cdots O4A^{ii}$	0.82	2.10	2.829 (5)	149

Symmetry codes: (i) -x + 2, $y + \frac{1}{2}$, -z + 2; (ii) -x + 1, $y - \frac{1}{2}$, -z + 2.

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2*.

Acknowledgements

XRD study was completed at the X-ray Diffraction Centre of St Petersburg State University. The research was financially supported by Russian Scientific Fund (project No. 14-26-00067).

Supporting information for this paper is available from the IUCr electronic archives (Reference: PK2560).

References

Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.

- Arunan, E., Desiraju, G. R., Klein, R. A., Sadley, J., Scheiner, S., Alcorta, I., Clary, D. C., Crabtree, R. H., Dannenberg, J. J., Hobza, P., Kjaergaard, H. G., Legon, A. C., Menucci, B. & Nesbitt, D. J. (2011). *Pure Appl. Chem.* 83, 1637–1641.
- Chatzimpaloglou, A., Kolosov, M., Eckols, T. K., Tweardy, D. J. & Sarli, V. (2014). J. Org. Chem. 79, 4043–4054.
- Chatzimpaloglou, A., Yavropoulou, M. P., Rooij, K. E., Biedermann, R., Mueller, U., Kaskel, S. & Sarli, V. (2012). J. Org. Chem. 77, 9659–9667.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. Desiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond in Structural
- Chemistry and Biology. New York: Oxford University Press Inc.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Kobayashi, K., Kobayashi, Y., Nakamura, M., Tamura, O. & Kogen, H. (2015). J. Org. Chem. **80**, 1243–1248.
- Kobayashi, K., Okamoto, I., Morita, N., Kiyotani, T. & Tamura, O. (2011). Org. Biomol. Chem. 9, 5825–5832.
- Maloney, K. N., Hao, W., Xu, J., Gibbons, J., Hucul, J., Roll, D., Brady, S. F., Schroeder, F. C. & Clardy, J. (2006). Org. Lett. 8, 4067–4070.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2015). E71, o625-o626 [https://doi.org/10.1107/S205698901501395X]

Crystal structure of natural phaeosphaeride A

Victoria V. Abzianidze, Ekaterina V. Poluektova, Ksenia P. Bolshakova, Taras L. Panikorovskii, Alexander S. Bogachenkov and Alexander O. Berestetskiy

S1. Comment

In 2006, Clardy and colleagues isolated phaeosphaeride A from an endophytic fungus FA39 (Maloney *et al.*, 2006). Phaeosphaeride A turned out to be an inhibitor of signal transduction and an activator of transcription 3 (STAT3)dependent signaling. It was reported to selectively inhibit STAT3/DNA binding with an IC₅₀ of 0.61 mM and to exhibit promising cell growth inhibition in STAT3-dependent U266 multiple myeloma cells with an IC₅₀ of 6.7 μ M.

While the relative stereochemistry of phaeosphaeride A was deduced on the basis of NOE experiments, its absolute configuration remained undetermined (Maloney *et al.*, 2006). Moreover, the attempts of total synthesis of phaeosphaeride A showed considerable differences in ¹H and ¹³C NMR data between the synthetic and natural phaeosphaeride A (Kobayashi *et al.*, 2011; Chatzimpaloglou *et al.*, 2012, 2014). In 2015, Kobayashi and colleagues established the relative and absolute configurations of natural phaeosphaeride A by completing the first total synthesis of ent-phaeosphaeride A (Kobayashi *et al.*, 2015).

Our research group isolated phaeosphaeride A from a fungal strain belonging to the genus Phoma. Phaeosphaeride A was obtained as an optically active (-108.33 (c 0.06, CH_2Cl_2)) yellow glass. ¹H and ¹³C NMR data as well as mass spectra of our phaeosphaeride A match with the data reported for Clardy's natural phaeosphaeride A (Maloney *et al.*, 2006). Optical rotation of Clardy's product (-93.6 (c 2.0, CH_2Cl_2)) and our phaeosphaeride A have the same sign. In this work we describe the crystal structure of natural phaeosphaeride A.

S2. Experimental

NMR spectra were recorded on a Bruker AVANCE III 400 MHz spectrometer in DMSO-d6. The same solvent was used as an internal standard. High-resolution mass spectra (HRMS) were recorded on a LTQ Orbitrap Velos spectrometer. Optical rotations were determined on an Optical Activity AA-55 polarimeter using a 20 cm cell with a Na 589 nm filter.

Phaeosphaeride A was isolated from solid culture of the fungus Phoma sp. N 19. The microorganism was obtained from leaves of Cirsium arvense (L.) Scop. and deposited in the culture collection of the All-Russian Institute of Plant Protection (Saint-Petersburg, Russian Federation). The metabolite was purified from the fungal extract with a combination of preparative column chromatography and TLC on silica gel to give phaeosphaeride A as a yellow precipitate. (-108.33 (c 0.06, CH₂Cl₂); ¹H NMR (400 MHz, DMSO-d6) δ 5.44 (d, J = 5.8 Hz, 1H), 4.97 (s, 2H), 4.92 (s, 1H), 4.07 (d, J = 11.3 Hz, 1H), 3.86 (d, J = 5.8 Hz, 1H), 3.79 (s, 3H), 1.82 (m, 1H), 1.58-1.22 (m, 7H), 1.19 (s, 3H), 0.86 (t, J = 6.4 Hz, 3H); ¹³C NMR (100.6 MHz, DMSO-d6) δ 166.53, 155.30, 137.12, 104.80, 90.80, 86.25, 70.96, 64.36, 63.76, 30.90, 27.60, 26.11, 21.96, 20.40, 13.85; HRMS [M + H]+ calcd for C₁₅H₂₄NO₅ 298.16490, found 298.16493. Recrystallization from heptane yielded yellow crystals (-116.66; -108.33 (c 0.06, CH₂Cl₂).

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1.

H atoms bonded to C atoms were included in calculated positions and refined using a riding model, with $U_{iso}(H)$ set to $1.2U_{eq}(C)$ and C-H = 0.97 Å for CH_2 groups, $U_{iso}(H)$ set to $1.5U_{eq}(N)$ and C-H = 0.96 Å for CH_3 groups and $U_{iso}(H)$ set to $1.2U_{eq}(N)$ and C-H = 0.93 Å for CH groups. All H atoms bonded to O atoms were located in a difference Fourier map and were refined with distance restraints and constrained displacement parameters OH 0.82 Å and $U_{iso}(H)$ set to $1.2U_{eq}(O)$. The large thermal ellipsoid on C13 is characteristic for the distal end of long alkyl chains.

The structure of phaeosphaeride A (Fig.1) was refined as rotational twin [by a two-fold rotation about (001)] with twin fractions of 0.718 (6) and 0.282 (6). The 'HKLF 5' format file for the final refinement was generated by the TwinRotMat facility in Platon (Spek, 2009). The ratio $(F_c^2-F_o^2)/esd$ for the reflections with the highest error in final refinement model (as a rotational twin) has lower residuals than in the initial solution. We have used Bayesian Statistics for verifying absolute structure. Supplementary crystallographic data for this paper have been deposited at Cambridge Crystallographic Data Centre (CCDC 1412515) and can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

S4. Geometry

The asymmetric unit contains two independent molecules of phaeosphaeride A (I and II) (**fig. 1**). Each molecule of phaeosphaeride A (numbering of atoms of phaeosphaeride A is given according to Clardy (Maloney *et al.*, 2006)) contains two primary sections; an alkyl chain consisting of C(13)—C(12)—C(11)—C(10)—C(9) atoms and a cyclic system consisting of five and six membered rings with adjacent atoms.

For the five-membered ring C(1)—N(2)—C(3)—C(4)—C(5) of molecule I the Cremer-Pople (Cremer & Pople, 1975) parameters are Q=0.0714 Å, φ =197.99°, revealing a slightly distorted half-chair (²T₁) conformation. Cremer-Pople parameters *of* Q=0.501 Å, θ =128.71°, φ =88.01° for the six-membered heterocycle of molecule I are consistent with a half-chair conformation (⁵H₄). The geometric parameters of the six-membered rings for both molecules are similar, but the five-membered rings have different conformations. The five-membered ring in molecule II exhibits an envelope (¹E) conformation.

Torsion angles O(1)—C(4)—C(5)—C(1) and C(3)—C(4)—C(5)—C(6) are -178.2 (4)° and -177.1 (4)° respectively, corresponding to co-planar conformation between the five and six-membered rings. The geometry of the heterocyclic ring system of the molecule (base of the half chair and the five-membered ring) is close to planar.

The exocyclic alkyl chain of I and the back of the half-chair lie approximately in the same plane. The deviation between the plane of alkyl atoms C(8)—C(9)—C(10)—C(11)—C(12)—C(13) and the back of the chair is 9.7 (4)°.

The geometric parameters are similar for both molecules I and II forming the weak hydrogen-bonded dimer through O2 —H2…O2A. But angles characterizing the methoxy groups N(2)—O(5)—C(16) are slightly different (109.9 (3)° for I and 110.4 (4)° for II). The difference between angles O(4)—C(1)—C(5) is much greater with values of 129.4 (4)° and 123.2 (4)° for I and II respectively.

The molecules form layered structures. Nearly planar sheets, parallel with the (001) plane, form primary layers of twodimensional hydrogen-bonded networks with the hydroxyl moieties located on the interior of the sheets. The network (Fig. 2) is dependent primarily on four hydrogen bonds (Table 1) O2—H2···O2A, O3—H3···O4, O2A—H2A···O4, O3A —H3A···O4A (Desiraju *et al.*, 1999; Arunan *et al.*, 2011). In the (001) plane, two-dimensional hydrogen-bonded networks form a zig-zag pattern. The aliphatic butyl chains interdigitate with the butyl chains on the adjacent sheets.

Figure 1

A view of molecules I (left) and II (right) of phaeosphaeride A. The atom numbering scheme is that of Maloney *et al.* (2006). Displacement ellipsoids are shown at the 50% probability level.

Figure 2

Projection of the layered crystal structure of phaeosphaeride A on the (100) plane. The dashed lines indicate the short contacts between molecules of phaeosphaeride A (only hydrogen atoms forming hydrogen bonds are shown).

3,4-Dihydroxy-6-methoxy-3-methyl-7-methylidene-2-pentyl-3,4-dihydro-2H,7H-pyrano[2,3-c]pyrrol-5(6H)-one

F(000) = 640

 $\theta = 4.4 - 75.9^{\circ}$ $\mu = 0.77 \text{ mm}^{-1}$

T = 100 K

 $D_{\rm x} = 1.235 {\rm Mg} {\rm m}^{-3}$

Tabular, colourless

 $0.35 \times 0.35 \times 0.05 \text{ mm}$

Cu Ka radiation, $\lambda = 1.54184$ Å

Cell parameters from 14376 reflections

Crystal data

C₁₅H₂₃NO₅ $M_r = 297.34$ Monoclinic, $P2_1$ a = 10.14078 (18) Å b = 9.10361 (14) Å c = 17.5991 (3) Å $\beta = 100.1847$ (16)° V = 1599.11 (5) Å³ Z = 4

Data collection

Agilent SuperNova Dual Source	$T_{\rm min} = 0.824, \ T_{\rm max} = 1.000$
diffractometer with an Atlas detector	6054 measured reflections
Radiation source: SuperNova (Cu) X-ray	6054 independent reflections
Source	5940 reflections with $I > 2\sigma(I)$
Mirror monochromator	$\theta_{\rm max} = 70.0^{\circ}, \ \theta_{\rm min} = 4.4^{\circ}$
Detector resolution: 10.3829 pixels mm ⁻¹	$h = -12 \rightarrow 12$
ω scans	$k = -11 \rightarrow 11$
Absorption correction: multi-scan	$l = -4 \rightarrow 21$
(CrysAlis PRO; Agilent, 2012)	

Refinement

Refinement on F^2 H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.0289P)^2 + 2.9758P]$ Least-squares matrix: full where $P = (F_o^2 + 2F_c^2)/3$ $R[F^2 > 2\sigma(F^2)] = 0.058$ $wR(F^2) = 0.150$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$ S = 1.10 $\Delta \rho_{\rm min} = -0.30 \text{ e} \text{ Å}^{-3}$ 6054 reflections 389 parameters Absolute structure: Flack x determined using 1 restraint 2632 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et Hydrogen site location: inferred from al., 2013) neighbouring sites Absolute structure parameter: 0.05 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	1.1431 (5)	0.8972 (6)	0.9253 (3)	0.0153 (10)	
N2	1.1842 (4)	0.7850 (5)	0.8817 (2)	0.0163 (9)	
C3	1.1862 (5)	0.8314 (6)	0.8053 (3)	0.0149 (10)	
C4	1.1266 (5)	0.9782 (6)	0.8025 (3)	0.0143 (10)	
C5	1.0975 (5)	1.0166 (5)	0.8717 (3)	0.0135 (9)	
C6	1.0311 (5)	1.1589 (6)	0.8845 (3)	0.0159 (10)	
H6	1.0984	1.2269	0.9115	0.019*	

C7	0.9703 (5)	1.2250 (6)	0.8039 (3)	0.0167 (10)
C8	1.0752 (5)	1.2122 (5)	0.7508 (3)	0.0144 (10)
H8	1.1580	1.2596	0.7765	0.017*
С9	1.0343 (5)	1.2809 (6)	0.6718 (3)	0.0194 (11)
H9A	1.0006	1.3791	0.6779	0.023*
H9B	0.9620	1.2237	0.6426	0.023*
C10	1.1482 (5)	1.2899 (7)	0.6264 (3)	0.0231 (11)
H10A	1 1855	1 1924	0.6231	0.028*
H10B	1 2183	1 3519	0.6543	0.028*
C11	1 1059 (7)	1 3504 (8)	0.5454(4)	0.020 0.0349(15)
H11A	1.0380	1.3364	0.5171	0.0319(13)
H11R	1.0500	1.2004	0.5487	0.042*
C12	1 2105 (8)	1 3646 (0)	0.5007 (4)	0.042
H12A	1.2195 (0)	1.3640 (5)	0.4998	0.052*
H12R	1.2027	1.20)7	0.5278	0.052*
C13	1.2052 1.1771(12)	1.4320 1.4175(13)	0.3278 0.4187 (5)	0.032°
	1.1771(12) 1.1110	1.4175 (15)	0.4187(3)	0.080 (4)
ПІЗА	1.1119	1.5511	0.3915	0.120*
нізв	1.2338	1.4211	0.3930	0.120*
HI3C	1.138/	1.5138	0.4189	0.120*
C14	1.2311 (5)	0./56/(6)	0.7508 (3)	0.0213 (11)
HI4A	1.2660	0.6629	0.7611	0.026*
HI4B	1.2277	0.7979	0.7021	0.026*
C15	0.8381 (5)	1.1508 (6)	0.7705 (3)	0.0193 (10)
H15A	0.8540	1.0495	0.7600	0.029*
H15B	0.7986	1.1992	0.7235	0.029*
H15C	0.7782	1.1570	0.8070	0.029*
C16	1.2068 (6)	0.5407 (6)	0.9208 (3)	0.0203 (11)
H16A	1.1648	0.5103	0.8701	0.031*
H16B	1.1400	0.5521	0.9528	0.031*
H16C	1.2706	0.4678	0.9429	0.031*
01	1.1050 (4)	1.0568 (4)	0.73717 (19)	0.0172 (7)
O2	0.9541 (4)	1.3789 (4)	0.8112 (2)	0.0183 (8)
H2	0.8942	1.3951	0.8359	0.027*
O3	0.9324 (4)	1.1327 (4)	0.9312 (2)	0.0213 (8)
Н3	0.9060	1.2114	0.9456	0.032*
O4	1.1447 (4)	0.8881 (4)	0.99543 (19)	0.0183 (8)
O5	1.2747 (4)	0.6794 (4)	0.9159 (2)	0.0194 (8)
C1A	0.4815 (5)	1.9716 (6)	0.8996 (3)	0.0156 (10)
N2A	0.4361 (4)	2.0638 (5)	0.8379 (2)	0.0174 (9)
C3A	0.4890 (5)	2.0271 (6)	0.7717 (3)	0.0159 (10)
C4A	0.5564 (5)	1.8865 (6)	0.7938 (3)	0.0136 (9)
C5A	0.5529 (5)	1.8520 (5)	0.8678 (3)	0.0147 (10)
C6A	0.6116 (5)	1.7116 (5)	0.9032 (3)	0.0140 (10)
H6A	0.5393	1.6398	0.9020	0.017*
C7A	0.7097 (5)	1.6545 (5)	0.8525 (3)	0.0126 (9)
C8A	0.6355 (5)	1.6563 (5)	0.7676 (3)	0.0140 (10)
H8A	0.5498	1.6055	0.7656	0.017*
C9A	0.7086 (5)	1.5840 (6)	0.7096 (3)	0.0191 (11)
	- \- /	- \-/	· (-)	- ()

H9AA	0.7419	1.4891	0.7296	0.023*
H9AB	0.7853	1.6439	0.7038	0.023*
C10A	0.6212 (6)	1.5621 (7)	0.6302 (3)	0.0223 (11)
H10C	0.5384	1.5139	0.6364	0.027*
H10D	0.5986	1.6572	0.6066	0.027*
C11A	0.6921 (6)	1.4697 (7)	0.5771 (3)	0.0270 (13)
H11C	0.7732	1.5202	0.5699	0.032*
H11D	0.7183	1.3768	0.6023	0.032*
C12A	0.6074 (6)	1.4392 (8)	0.4983 (3)	0.0295 (14)
H12C	0.5805	1.5318	0.4730	0.035*
H12D	0.5269	1.3871	0.5051	0.035*
C13A	0.6823 (7)	1.3483 (8)	0.4466 (3)	0.0344 (15)
H13D	0.6244	1.3297	0.3982	0.052*
H13E	0.7096	1.2566	0.4715	0.052*
H13F	0.7599	1.4013	0.4377	0.052*
C14A	0.4806 (5)	2.1038 (6)	0.7075 (3)	0.0210 (11)
H14C	0.4356	2.1932	0.7026	0.025*
H14D	0.5198	2.0685	0.6671	0.025*
C15A	0.8399 (5)	1.7422 (6)	0.8646 (3)	0.0160 (10)
H15D	0.8201	1.8444	0.8550	0.024*
H15E	0.8958	1.7077	0.8296	0.024*
H15F	0.8858	1.7298	0.9168	0.024*
C16A	0.5035 (6)	2.3002 (6)	0.8752 (4)	0.0273 (12)
H16D	0.5616	2.2998	0.8376	0.041*
H16E	0.5520	2.2663	0.9238	0.041*
H16F	0.4719	2.3983	0.8809	0.041*
O1A	0.6069 (4)	1.8064 (4)	0.74144 (18)	0.0166 (7)
O2A	0.7369 (3)	1.5024 (4)	0.86892 (19)	0.0145 (7)
H2A	0.7410	1.4877	0.9152	0.022*
O3A	0.6775 (3)	1.7297 (4)	0.98091 (18)	0.0145 (7)
H3A	0.6363	1.6850	1.0097	0.022*
O4A	0.4586 (4)	1.9909 (4)	0.9650 (2)	0.0179 (7)
O5A	0.3911 (4)	2.2045 (4)	0.8499 (2)	0.0186 (8)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.015 (2)	0.013 (2)	0.017 (2)	-0.004 (2)	-0.0009 (19)	-0.0023 (19)
N2	0.016 (2)	0.013 (2)	0.018 (2)	0.0036 (17)	-0.0009 (16)	0.0025 (17)
C3	0.011 (2)	0.018 (2)	0.016 (2)	-0.0028 (19)	0.0039 (18)	0.0019 (19)
C4	0.014 (2)	0.016 (2)	0.015 (2)	-0.0008 (19)	0.0064 (18)	-0.0002 (19)
C5	0.010 (2)	0.014 (2)	0.017 (2)	-0.0018 (19)	0.0024 (17)	-0.0027 (19)
C6	0.017 (2)	0.017 (2)	0.014 (2)	0.001 (2)	0.0063 (19)	-0.0035 (19)
C7	0.017 (2)	0.012 (2)	0.022 (3)	0.001 (2)	0.006 (2)	-0.0002 (19)
C8	0.013 (2)	0.012 (2)	0.017 (2)	0.0003 (18)	-0.0002 (18)	0.0007 (19)
C9	0.018 (2)	0.021 (3)	0.018 (2)	0.005 (2)	0.0005 (19)	0.006 (2)
C10	0.022 (3)	0.027 (3)	0.020 (3)	0.009 (2)	0.003 (2)	0.008 (2)
C11	0.037 (4)	0.041 (4)	0.027 (3)	0.016 (3)	0.009 (3)	0.017 (3)

supporting information

C12	0.055 (5)	0.047 (4)	0.035 (3)	0.015 (4)	0.027 (3)	0.021 (3)
C13	0.113 (9)	0.095 (8)	0.046 (5)	0.054 (7)	0.049 (5)	0.046 (5)
C14	0.021 (3)	0.022 (3)	0.022 (3)	0.005 (2)	0.009 (2)	-0.002 (2)
C15	0.016 (2)	0.020 (3)	0.021 (2)	0.000 (2)	0.003 (2)	0.000 (2)
C16	0.024 (3)	0.012 (2)	0.026 (3)	0.000(2)	0.007 (2)	0.000 (2)
01	0.0200 (18)	0.0170 (18)	0.0144 (16)	0.0042 (15)	0.0022 (13)	-0.0008 (14)
O2	0.0174 (18)	0.0135 (17)	0.0253 (19)	0.0032 (14)	0.0075 (15)	0.0004 (14)
03	0.030 (2)	0.0158 (18)	0.0222 (18)	0.0035 (16)	0.0158 (16)	-0.0017 (15)
O4	0.0252 (19)	0.0170 (17)	0.0123 (16)	-0.0038 (15)	0.0022 (14)	0.0014 (14)
05	0.0177 (18)	0.0127 (18)	0.0263 (19)	0.0023 (14)	-0.0006 (15)	0.0034 (14)
C1A	0.013 (2)	0.013 (2)	0.021 (2)	-0.0010 (19)	0.0022 (19)	-0.0025 (19)
N2A	0.021 (2)	0.011 (2)	0.020 (2)	0.0053 (18)	0.0049 (17)	-0.0022 (17)
C3A	0.010 (2)	0.016 (2)	0.023 (2)	-0.0024 (19)	0.0038 (18)	-0.005 (2)
C4A	0.010 (2)	0.014 (2)	0.017 (2)	-0.0044 (19)	0.0032 (18)	-0.0027 (19)
C5A	0.013 (2)	0.014 (2)	0.019 (2)	-0.0059 (19)	0.0059 (19)	-0.0034 (19)
C6A	0.016 (2)	0.014 (2)	0.012 (2)	-0.0061 (19)	0.0038 (18)	-0.0016 (18)
C7A	0.012 (2)	0.011 (2)	0.015 (2)	0.0008 (19)	0.0008 (18)	0.0019 (18)
C8A	0.014 (2)	0.014 (2)	0.013 (2)	0.0007 (19)	-0.0007 (18)	0.0015 (18)
C9A	0.018 (3)	0.024 (3)	0.015 (2)	0.006 (2)	0.002 (2)	0.000 (2)
C10A	0.023 (3)	0.028 (3)	0.016 (2)	0.006 (2)	0.004 (2)	-0.005 (2)
C11A	0.031 (3)	0.032 (3)	0.018 (3)	0.010 (3)	0.003 (2)	-0.004 (2)
C12A	0.029 (3)	0.041 (4)	0.019 (3)	0.006 (3)	0.003 (2)	-0.008 (2)
C13A	0.040 (4)	0.043 (4)	0.020 (3)	0.003 (3)	0.005 (3)	-0.010 (3)
C14A	0.021 (3)	0.021 (3)	0.021 (3)	0.005 (2)	0.005 (2)	0.003 (2)
C15A	0.017 (2)	0.018 (2)	0.014 (2)	-0.002 (2)	0.0056 (18)	0.0015 (19)
C16A	0.029 (3)	0.017 (3)	0.036 (3)	-0.011 (2)	0.006 (2)	-0.008 (2)
O1A	0.0188 (17)	0.0195 (18)	0.0120 (15)	0.0060 (15)	0.0039 (13)	0.0011 (14)
O2A	0.0181 (17)	0.0128 (17)	0.0122 (15)	0.0024 (14)	0.0016 (13)	0.0016 (13)
O3A	0.0175 (17)	0.0154 (17)	0.0104 (15)	-0.0013 (14)	0.0022 (13)	0.0008 (13)
O4A	0.0234 (19)	0.0152 (18)	0.0175 (17)	0.0020 (15)	0.0105 (14)	-0.0016 (14)
O5A	0.0157 (18)	0.0102 (17)	0.0301 (19)	0.0022 (14)	0.0044 (15)	-0.0040 (15)

Geometric parameters (Å, °)

C1—N2	1.385 (7)	C1A—N2A	1.386 (7)
C1—C5	1.460 (7)	C1A—C5A	1.472 (7)
C104	1.234 (6)	C1A—O4A	1.226 (6)
N2—C3	1.412 (6)	N2A—C3A	1.406 (7)
N2—O5	1.391 (5)	N2A—O5A	1.389 (5)
C3—C4	1.463 (7)	C3A—C4A	1.471 (7)
C3—C14	1.320 (7)	C3A—C14A	1.318 (7)
C4—C5	1.349 (7)	C4A—C5A	1.347 (7)
C4—O1	1.339 (6)	C4A—O1A	1.345 (6)
C5—C6	1.495 (7)	C5A—C6A	1.498 (7)
С6—Н6	0.9800	C6A—H6A	0.9800
C6—C7	1.563 (7)	C6A—C7A	1.540 (7)
С6—О3	1.423 (6)	C6A—O3A	1.422 (6)
С7—С8	1.540 (7)	C7A—C8A	1.549 (6)

C7—C15	1.523 (7)	C7A—C15A	1.526 (7)
C7—O2	1.419 (6)	C7A—O2A	1.431 (6)
С8—Н8	0.9800	C8A—H8A	0.9800
C8—C9	1.514 (7)	C8A—C9A	1.515 (7)
C8—O1	1.475 (6)	C8A—O1A	1.455 (6)
С9—Н9А	0.9700	С9А—Н9АА	0.9700
С9—Н9В	0.9700	С9А—Н9АВ	0.9700
C9—C10	1.518 (7)	C9A—C10A	1.529 (7)
C10—H10A	0.9700	C10A—H10C	0.9700
C10—H10B	0.9700	C10A—H10D	0.9700
C10—C11	1.519 (7)	C10A—C11A	1.528 (7)
C11—H11A	0.9700	C11A—H11C	0.9700
C11—H11B	0.9700	C11A—H11D	0.9700
C11—C12	1.510 (9)	C11A—C12A	1.523 (8)
C12—H12A	0.9700	C12A—H12C	0.9700
C12—H12B	0.9700	C12A—H12D	0.9700
C12—C13	1.511 (10)	C12A—C13A	1.527 (8)
С13—Н13А	0.9600	C13A—H13D	0.9600
С13—Н13В	0.9600	С13А—Н13Е	0.9600
С13—Н13С	0.9600	C13A—H13F	0.9600
C14—H14A	0.9300	C14A—H14C	0.9300
C14—H14B	0.9300	C14A—H14D	0.9300
С15—Н15А	0.9600	C15A—H15D	0.9600
С15—Н15В	0.9600	C15A—H15E	0.9600
C15—H15C	0.9600	C15A—H15F	0.9600
C16—H16A	0.9600	C16A—H16D	0.9600
C16—H16B	0.9600	C16A—H16E	0.9600
C16—H16C	0.9600	C16A—H16F	0.9600
C16—O5	1.448 (6)	C16A—O5A	1.442 (6)
02—H2	0.8200	O2A—H2A	0.8200
O3—H3	0.8200	O3A—H3A	0.8200
			0.0200
N2—C1—C5	106.4 (4)	N2A—C1A—C5A	105.5 (4)
O4—C1—N2	123.6 (5)	O4A—C1A—N2A	123.9 (5)
O4—C1—C5	129.9 (5)	O4A—C1A—C5A	130.6 (5)
C1—N2—C3	111.3 (4)	C1A—N2A—C3A	112.5 (4)
C1—N2—O5	120.6 (4)	C1A—N2A—O5A	120.8 (4)
O5—N2—C3	120.0 (4)	O5A—N2A—C3A	122.0 (4)
N2—C3—C4	103.3 (4)	N2A—C3A—C4A	102.4 (4)
C14—C3—N2	127.0 (5)	C14A—C3A—N2A	127.4 (5)
C14—C3—C4	129.7 (5)	C14A—C3A—C4A	130.1 (5)
C5—C4—C3	111.2 (4)	C5A—C4A—C3A	111.6 (4)
O1—C4—C3	121.4 (4)	O1A—C4A—C3A	120.4 (4)
O1—C4—C5	127.4 (5)	O1A—C4A—C5A	127.9 (5)
C1—C5—C6	130.4 (4)	C1A—C5A—C6A	131.2 (4)
C4—C5—C1	107.1 (4)	C4A—C5A—C1A	107.1 (4)
C4—C5—C6	122.5 (5)	C4A—C5A—C6A	121.6 (4)
С5—С6—Н6	109.0	С5А—С6А—Н6А	108.7

C5—C6—C7	108.3 (4)	C5A—C6A—C7A	107.3 (4)
С7—С6—Н6	109.0	C7A—C6A—H6A	108.7
O3—C6—C5	108.9 (4)	O3A—C6A—C5A	112.7 (4)
O3—C6—H6	109.0	O3A—C6A—H6A	108.7
O3—C6—C7	112.6 (4)	O3A—C6A—C7A	110.8 (4)
C8—C7—C6	108.5 (4)	C6A—C7A—C8A	107.6 (4)
С15—С7—С6	111.0 (4)	C15A—C7A—C6A	112.0 (4)
C15—C7—C8	112.8 (4)	C15A—C7A—C8A	113.0 (4)
O2—C7—C6	109.4 (4)	O2A—C7A—C6A	109.3 (4)
02	103.5 (4)	02A—C7A—C8A	104.4 (4)
02	111.4 (4)	02A—C7A—C15A	110.3 (4)
C7—C8—H8	108.3	C7A—C8A—H8A	107.8
C9 - C8 - C7	114.8 (4)	C9A—C8A—C7A	115.7 (4)
C9—C8—H8	108.3	C9A—C8A—H8A	107.8
01 - C8 - C7	110.8 (4)	01A - C8A - C7A	110 5 (4)
O1 - C8 - H8	108.3	01A - C8A - H8A	107.8
01 - C8 - C9	106.1 (4)	01A - C8A - C9A	106.8 (4)
C8 - C9 - H9A	108.9		108.9
C8 - C9 - H9B	108.9	C8A - C9A - H9AB	108.9
C8 - C9 - C10	113 3 (4)	C8A - C9A - C10A	113.5(4)
$H_{0}A = C_{0} = H_{0}B$	107.7		107.7
C_{10} C_{9} H_{9A}	107.7	$C_{10A} = C_{0A} = H_{0AA}$	107.7
C10-C9-H9B	108.9	C10A - C9A - H9AA	108.9
C_{0} C_{10} H_{10A}	108.9	$C_{0A} = C_{10A} = H_{10C}$	100.2
C_{0} C_{10} H_{10} H_{10}	108.9	$C_{0A} = C_{10A} = H_{10D}$	109.3
$C_{9} = C_{10} = C_{11}$	113.5(A)	H_{10} C_{10} H_{10} H_{10}	109.5
$H_{10A} = C_{10} = H_{10B}$	107.7	$C_{11} = C_{10} = C_{10}$	107.9 111.7 (5)
$\begin{array}{cccc} 110 & 110 \\ 110 & 10 \\ 110 \\ 100$	107.7	C11A C10A H10C	100.3
$C_{11} = C_{10} = H_{10R}$	108.9	$C_{11A} = C_{10A} = H_{10D}$	109.3
C_{10} C_{11} H_{11A}	108.9	C10A = C11A = H11C	109.5
C_{10} C_{11} H_{11}	108.8		108.7
	108.8		108.7
$\begin{array}{c} \text{HIA} \\ \text{C12} \\ \text{C11} \\ \text{C10} \end{array}$	107.7	$\begin{array}{c} \text{HIC} - \text{CIIA} - \text{HID} \\ \text{CI2A} - \text{CIIA} - \text{CI0A} \end{array}$	107.0
C_{12} C_{11} U_{11A}	113.9 (3)	C12A $C11A$ $U11C$	114.0(3)
C_{12} C_{11} H_{11} H_{11}	108.8	C12A $C11A$ $H11D$	108.7
	108.8	C12A—C12A—H11D	106.7
C11 - C12 - H12A	108.7	C11A - C12A - H12D	109.1
СП—С12—П12В	108.7	C11A - C12A - H12D	109.1
$\begin{array}{c} CI2 \\ HI2A \\ CI2 \\ HI2B \\ \end{array}$	114.2 (7)	$\begin{array}{c} C11A - C12A - C13A \\ H12C - C12A - H12D \end{array}$	112.4 (5)
H12A - C12 - H12B	107.6	H12C - C12A - H12D	107.8
C13—C12—H12A	108.7	C13A - C12A - H12C	109.1
C13—C12—H12B	108.7	C13A - C12A - H12D	109.1
C12—C13—H13A	109.5	C12A - C13A - H13D	109.5
С12—С13—Н13В	109.5	CI2A—CI3A—HI3E	109.5
U12—U13—H13U	109.5	U12A - U13A - H13F	109.5
H13A—C13—H13B	109.5	H13D - C13A - H13E	109.5
H13A—C13—H13C	109.5	HI3D—CI3A—HI3F	109.5
H13B—C13—H13C	109.5	H13E—C13A—H13F	109.5
C3—C14—H14A	120.0	C3A—C14A—H14C	120.0

C3—C14—H14B	120.0	C3A—C14A—H14D	120.0
H14A—C14—H14B	120.0	H14C—C14A—H14D	120.0
C7—C15—H15A	109.5	C7A—C15A—H15D	109.5
C7—C15—H15B	109.5	C7A—C15A—H15E	109.5
C7—C15—H15C	109.5	C7A—C15A—H15F	109.5
H15A—C15—H15B	109.5	H15D—C15A—H15E	109.5
H15A—C15—H15C	109.5	H15D—C15A—H15F	109.5
H15B—C15—H15C	109.5	H15E—C15A—H15F	109.5
H16A—C16—H16B	109.5	H16D—C16A—H16E	109.5
H16A - C16 - H16C	109.5	H_{16D} $-C_{16A}$ $-H_{16F}$	109.5
H16B-C16-H16C	109.5	H_{16F} C_{16A} H_{16F}	109.5
05-C16-H16A	109.5	05A-C16A-H16D	109.5
05-C16-H16B	109.5	O5A - C16A - H16F	109.5
05 - C16 - H16C	109.5	05A - C16A - H16F	109.5
$C_4 = 01$	112 3 (4)		107.5 111.8(4)
$C_{7} = 01 - C_{8}$	112.5 (4)	C7A O2A H2A	100 5
$C_{1} = 02 = 112$	109.5	$C^{A} O^{A} H^{A}$	109.5
$C_0 = 05 = 05$	109.5	COA - OSA - OSA	109.5
N2-05-010	110.1 (4)	N2A-05A-010A	109.9 (4)
C1 N2 $C2$ $C4$	-6.7(5)	C_{1A} N2A C_{2A} C_{4A}	97(5)
C1 = N2 = C3 = C4	(0.7(3))	C1A N2A C3A C14A	-170.0(5)
C1 = N2 = C5 = C14	173.8(5)	C1A N2A O5A C16A	76.8 (6)
C1 - N2 - 05 - C10	107.4(3) -165.0(5)	C1A C5A C6A C7A	-162.0(5)
C1 = C5 = C(-C)	-103.0(3)	CIA = CSA = COA = C/A	-102.9(3)
C1 = C5 = C6 = C3	-42.4(7)	CIA = CIA = COA = OSA	-40.7(7)
N2 - C1 - C5 - C4	-0.0(5)	N2A - CIA - C5A - C4A	3.3(3)
N2 - C1 - C5 - C6	1/3.7(5)	N2A - CIA - C5A - C6A	-1/2.8(5)
$N_2 = C_3 = C_4 = C_5$	2.4 (5)	N2A - C3A - C4A - C5A	-5.0(5)
$N_2 = C_3 = C_4 = 01$	-1/6.8(4)	$N_{2A} = C_{3A} = C_{4A} = O_{1A}$	1/2.2 (4)
C3—N2—O5—C16	-106.7 (5)	C3A—N2A—O5A—C16A	-//.1 (6)
C3—C4—C5—C1	2.5 (6)	C3A—C4A—C5A—C1A	-0.2 (6)
C3—C4—C5—C6	-177.7 (4)	C3A—C4A—C5A—C6A	178.2 (4)
C3—C4—O1—C8	-166.3 (4)	C3A—C4A—O1A—C8A	-164.3 (4)
C4—C5—C6—C7	15.3 (7)	C4A—C5A—C6A—C7A	19.1 (6)
C4—C5—C6—O3	137.9 (5)	C4A—C5A—C6A—O3A	141.3 (4)
C5—C1—N2—C3	8.4 (6)	C5A—C1A—N2A—C3A	-9.1 (6)
C5—C1—N2—O5	157.1 (4)	C5A—C1A—N2A—O5A	-165.3 (4)
C5—C4—O1—C8	14.7 (7)	C5A—C4A—O1A—C8A	12.4 (7)
C5—C6—C7—C8	-45.3 (5)	C5A—C6A—C7A—C8A	-49.7 (5)
C5—C6—C7—C15	79.3 (5)	C5A—C6A—C7A—C15A	75.0 (5)
C5—C6—C7—O2	-157.4 (4)	C5A—C6A—C7A—O2A	-162.5 (4)
C6—C7—C8—C9	-176.2 (4)	C6A—C7A—C8A—C9A	-171.8 (4)
C6—C7—C8—O1	63.7 (5)	C6A—C7A—C8A—O1A	66.7 (5)
C7—C8—C9—C10	170.0 (5)	C7A—C8A—C9A—C10A	168.8 (4)
C7—C8—O1—C4	-47.0 (5)	C7A—C8A—O1A—C4A	-45.8 (5)
C8—C9—C10—C11	176.6 (5)	C8A—C9A—C10A—C11A	-171.9 (5)
C9—C8—O1—C4	-172.2 (4)	C9A—C8A—O1A—C4A	-172.5 (4)
C9—C10—C11—C12	178.0 (6)	C9A—C10A—C11A—C12A	177.7 (5)
C10-C11-C12-C13	177.0 (8)	C10A—C11A—C12A—C13A	179.3 (6)

C14—C3—C4—C5	-178.1 (5)	C14A—C3A—C4A—C5A	173.7 (5)
C14—C3—C4—O1	2.7 (8)	C14A—C3A—C4A—O1A	-9.1 (8)
C15—C7—C8—C9	60.4 (6)	C15A—C7A—C8A—C9A	64.2 (6)
C15—C7—C8—O1	-59.7 (5)	C15A—C7A—C8A—O1A	-57.4 (5)
O1—C4—C5—C1	-178.4 (5)	O1A—C4A—C5A—C1A	-177.1 (5)
O1—C4—C5—C6	1.4 (8)	O1A—C4A—C5A—C6A	1.3 (8)
O1-C8-C9-C10	-67.3 (6)	O1A—C8A—C9A—C10A	-67.7 (6)
O2—C7—C8—C9	-60.1 (5)	O2A—C7A—C8A—C9A	-55.7 (5)
O2—C7—C8—O1	179.8 (4)	O2A—C7A—C8A—O1A	-177.2 (4)
O3—C6—C7—C8	-165.6 (4)	O3A—C6A—C7A—C8A	-173.1 (4)
O3—C6—C7—C15	-41.1 (6)	O3A—C6A—C7A—C15A	-48.4 (5)
O3—C6—C7—O2	82.2 (5)	O3A—C6A—C7A—O2A	74.1 (5)
O4—C1—N2—C3	-173.2 (5)	O4A—C1A—N2A—C3A	173.0 (5)
O4—C1—N2—O5	-24.5 (7)	O4A—C1A—N2A—O5A	16.8 (8)
O4—C1—C5—C4	175.2 (5)	O4A—C1A—C5A—C4A	-176.8 (5)
O4—C1—C5—C6	-4.6 (9)	O4A—C1A—C5A—C6A	5.0 (9)
O5—N2—C3—C4	-155.6 (4)	O5A—N2A—C3A—C4A	164.6 (4)
O5—N2—C3—C14	24.9 (8)	O5A—N2A—C3A—C14A	-14.2 (8)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A	
O2—H2…O2A	0.82	2.04	2.818 (5)	158	
O3—H3…O4 ⁱ	0.82	2.03	2.836 (5)	168	
O2A— $H2A$ ···O4 ⁱ	0.82	2.00	2.685 (5)	141	
O3A—H3A····O4A ⁱⁱ	0.82	2.10	2.829 (5)	149	

Symmetry codes: (i) -*x*+2, *y*+1/2, -*z*+2; (ii) -*x*+1, *y*-1/2, -*z*+2.