organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-4-(acet­­oxy­imino)-N-allyl-3-iso­propyl-2,6-di­phenyl­piperi­dine-1-carbo­thio­amide

aDepartment of Physics, Shri Angalamman College of Engineering and Technology, Siruganoor, Tiruchirappalli, India, bDepartment of Chemistry, Annamalai University, Annamalainagar, Chidambaram, India, cDepartment of Physics, Rover College of Engineering and Technology, Perambalur, India, dDepartment of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland, and eDepartment of Physics, Urumu Dhanalakshmi College, Tiruchirappalli, India
*Correspondence e-mail: sakthi2udc@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 15 June 2015; accepted 29 June 2015; online 4 July 2015)

The title compound, C26H31N3O2S, crystallizes with two mol­ecules (A and B) in the asymmetric unit. In each case, the piperidine ring exists in a twist-boat conformation. The dihedral angle between the phenyl rings is 46.16 (12)° in mol­ecule A and 44.95 (12)° in mol­ecule B. In both mol­ecules, the allyl side chain is disordered over two orientations in a 0.649 (9):0.351 (9) ratio for mol­ecule A and 0.826 (10):0.174 (10) ratio for mol­ecule B. In the crystal, neither mol­ecule forms a hydrogen bond from its N—H group, presumably due to steric hindrance. A+A and B+B inversion dimers are formed, linked by pairs of weak C—H⋯O hydrogen bonds enclosing R22(22) ring motifs.

1. Related literature

For the structural properties and biological potentials of carbothio­amides, see: Wilkerson et al. (1996[Wilkerson, M. W., Akamike, E., Cheatham, W. W., Hollis, Y. A., Collins, R. D., DeLucca, I. L., Lam, P. Y. S. & Ru, Y. (1996). J. Med. Chem. 39, 4299-4312.]); Koca et al. (2013[Koca, İ, Özgür, A., Coşkun, K. A. & Tutar, Y. (2013). Bioorg. Med. Chem. 21, 3859-3865.]); Liu et al. (2012[Liu, W., Zhou, J., Zhang, T., Zhu, H., Qian, H., Zhang, H., Huang, W. & Gust, R. (2012). Bioorg. Med. Chem. Lett. 22, 2701-2704.]); Malik et al.(2013[Malik, S., Bahare, R. S. & Khan, S. A. (2013). Eur. J. Med. Chem. 67, 1-13.]). For related structures, see: Park et al. (2012a[Park, D. H., Ramkumar, V. & Parthiban, P. (2012a). Acta Cryst. E68, o524.],b[Park, D. H., Ramkumar, V. & Parthiban, P. (2012b). Acta Cryst. E68, o525.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C26H31N3O2S

  • Mr = 449.60

  • Triclinic, [P \overline 1]

  • a = 12.0434 (6) Å

  • b = 14.0479 (7) Å

  • c = 15.2740 (7) Å

  • α = 82.161 (2)°

  • β = 72.463 (2)°

  • γ = 80.094 (2)°

  • V = 2417.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 293 K

  • 0.28 × 0.25 × 0.24 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.956, Tmax = 0.962

  • 74637 measured reflections

  • 11303 independent reflections

  • 6065 reflections with I > 2σ(I)

  • Rint = 0.050

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.146

  • S = 1.01

  • 11303 reflections

  • 627 parameters

  • 93 restraints

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.93 2.59 3.298 (4) 133
C2′—H2′⋯O2′ii 0.93 2.59 3.332 (4) 137
Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Structural commentary top

The chemistry of carbo­thio­amide derivatives are much explored today because of their structural properties and their biological potential as anti-HIV (Wilkerson et al., 1996), anti­cancer (Koca et al., 2013), anti­tubercular (Liu et al.2012), and anti­convulsant (Malik et al., 2013) agents.

The bond distances and bond angles in the two independent molecules (A and B) of the title compound, Fig. 1, agree well with those reported for closely related compounds (Park et al., 2012a,b). In each molecule the piperidine ring exists in a twist-boat conformation with the puckering parameters Q = 0.7236, θ = 96.90 (19) and π = 267.97 (19) Å in A and Q = 0.7245, θ = 82.9 (2) and π = 87.38 (19) Å in B. The dihedral angle between the phenyl rings is 46.13 (13) ° in molecule A and 44.97 (13)° in molecule B.

In the crystal, the individual molecules form A—A and B—B inversion dimers with R22(22) ring motifs (Table 1 and Fig. 2).

Synthesis and crystallization top

To a solution of 3-iso­propyl-2,6-di­phenyl­piperidin-4-one O-acetyl oxime (0.5 g, 1.5 mmol) in dry DCM (5 ml), pyridine (1.5 eq) and allyl­iso­thio­cyanate (0.17 g, 1.75 mmol) were added drop wise over 5 min to a 50 ml Erlenmeyer flask. The reaction mixture was subjected to ultrasound irradiation for 1 h at ambient temperature and the progress of the reaction was monitored by TLC. Upon completion of the reaction, the mixture was slowly poured into crushed ice giving the crude product as a precipitate. It was subjected to recrystallization from absolute ethanol giving the title compound in good yield (0.62 g, 76%), as colourless block-like crystals.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The positions of the hydrogen atoms bound to the N and C atoms were identified from difference electron density maps. The NH H atoms were refined with Uiso(H) = 1.2Ueq(N). The C-bound H atoms were refined as riding atoms: C—H = 0.93 - 0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. The atoms of the allyl groups (C19, C20 and C21) are disordered over two orientations in a 0.649 (9):0.351 (9) ratio for molecule A, and a 0.826 (10):0.174 (10) ratio for atom C21' in molecule B. They were modelled with restrained bonds and angles based on the average values found for a non-disordered allyl group.

Related literature top

For the structural properties and biological potentials of carbothiamides, see: Wilkerson et al. (1996); Koca et al. (2013); Liu et al. (2012); Malik et al.(2013). For related structures, see: Park et al. (2012a,b).

Structure description top

The chemistry of carbo­thio­amide derivatives are much explored today because of their structural properties and their biological potential as anti-HIV (Wilkerson et al., 1996), anti­cancer (Koca et al., 2013), anti­tubercular (Liu et al.2012), and anti­convulsant (Malik et al., 2013) agents.

The bond distances and bond angles in the two independent molecules (A and B) of the title compound, Fig. 1, agree well with those reported for closely related compounds (Park et al., 2012a,b). In each molecule the piperidine ring exists in a twist-boat conformation with the puckering parameters Q = 0.7236, θ = 96.90 (19) and π = 267.97 (19) Å in A and Q = 0.7245, θ = 82.9 (2) and π = 87.38 (19) Å in B. The dihedral angle between the phenyl rings is 46.13 (13) ° in molecule A and 44.97 (13)° in molecule B.

In the crystal, the individual molecules form A—A and B—B inversion dimers with R22(22) ring motifs (Table 1 and Fig. 2).

For the structural properties and biological potentials of carbothiamides, see: Wilkerson et al. (1996); Koca et al. (2013); Liu et al. (2012); Malik et al.(2013). For related structures, see: Park et al. (2012a,b).

Synthesis and crystallization top

To a solution of 3-iso­propyl-2,6-di­phenyl­piperidin-4-one O-acetyl oxime (0.5 g, 1.5 mmol) in dry DCM (5 ml), pyridine (1.5 eq) and allyl­iso­thio­cyanate (0.17 g, 1.75 mmol) were added drop wise over 5 min to a 50 ml Erlenmeyer flask. The reaction mixture was subjected to ultrasound irradiation for 1 h at ambient temperature and the progress of the reaction was monitored by TLC. Upon completion of the reaction, the mixture was slowly poured into crushed ice giving the crude product as a precipitate. It was subjected to recrystallization from absolute ethanol giving the title compound in good yield (0.62 g, 76%), as colourless block-like crystals.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. The positions of the hydrogen atoms bound to the N and C atoms were identified from difference electron density maps. The NH H atoms were refined with Uiso(H) = 1.2Ueq(N). The C-bound H atoms were refined as riding atoms: C—H = 0.93 - 0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. The atoms of the allyl groups (C19, C20 and C21) are disordered over two orientations in a 0.649 (9):0.351 (9) ratio for molecule A, and a 0.826 (10):0.174 (10) ratio for atom C21' in molecule B. They were modelled with restrained bonds and angles based on the average values found for a non-disordered allyl group.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of molecule A of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular structure of molecule B of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. A partial view of the crystal packing of the title compound, with the C—H···O hydrogen bonds shown as dashed lines (see Table 1 for details). Other H atoms and the minor components of the allyl groups have been omitted for clarity.
(E)-4-(Acetoxyimino)-N-allyl-3-isopropyl-2,6-diphenylpiperidine-1-carbothioamide top
Crystal data top
C26H31N3O2SZ = 4
Mr = 449.60F(000) = 960
Triclinic, P1Dx = 1.235 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.0434 (6) ÅCell parameters from 6065 reflections
b = 14.0479 (7) Åθ = 1.5–27.8°
c = 15.2740 (7) ŵ = 0.16 mm1
α = 82.161 (2)°T = 293 K
β = 72.463 (2)°Block, colourless
γ = 80.094 (2)°0.28 × 0.25 × 0.24 mm
V = 2417.4 (2) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
11303 independent reflections
Radiation source: fine-focus sealed tube6065 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω & φ scansθmax = 27.8°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1515
Tmin = 0.956, Tmax = 0.962k = 1818
74637 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: mixed
wR(F2) = 0.146H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0578P)2 + 0.7614P]
where P = (Fo2 + 2Fc2)/3
11303 reflections(Δ/σ)max = 0.001
627 parametersΔρmax = 0.19 e Å3
93 restraintsΔρmin = 0.24 e Å3
Crystal data top
C26H31N3O2Sγ = 80.094 (2)°
Mr = 449.60V = 2417.4 (2) Å3
Triclinic, P1Z = 4
a = 12.0434 (6) ÅMo Kα radiation
b = 14.0479 (7) ŵ = 0.16 mm1
c = 15.2740 (7) ÅT = 293 K
α = 82.161 (2)°0.28 × 0.25 × 0.24 mm
β = 72.463 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
11303 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
6065 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.962Rint = 0.050
74637 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04993 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.01Δρmax = 0.19 e Å3
11303 reflectionsΔρmin = 0.24 e Å3
627 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.9104 (2)0.32104 (16)0.16483 (16)0.0505 (6)
H10.82870.32930.18230.061*
C20.9726 (3)0.25361 (18)0.10359 (18)0.0634 (7)
H20.93240.21680.08040.076*
C31.0929 (3)0.24062 (19)0.07682 (18)0.0679 (8)
H31.13470.19570.03500.082*
C41.1506 (2)0.29384 (19)0.11184 (19)0.0666 (8)
H41.23240.28480.09420.080*
C51.0898 (2)0.36120 (17)0.17328 (17)0.0546 (6)
H51.13090.39680.19670.065*
C60.96801 (19)0.37627 (15)0.20040 (14)0.0414 (5)
C70.89823 (17)0.44607 (15)0.27223 (14)0.0392 (5)
H70.87770.40690.33150.047*
C80.96601 (18)0.52344 (15)0.28429 (14)0.0398 (5)
H81.03860.48990.29710.048*
C91.00053 (18)0.58243 (14)0.19289 (14)0.0394 (5)
C100.91588 (18)0.59728 (15)0.13722 (14)0.0410 (5)
H10C0.94160.55090.09110.049*
H10D0.91670.66180.10520.049*
C110.78954 (17)0.58595 (14)0.19439 (13)0.0375 (5)
H110.76060.63970.23380.045*
C120.71303 (18)0.59542 (15)0.13008 (14)0.0400 (5)
C130.7181 (2)0.52194 (17)0.07673 (16)0.0521 (6)
H130.76910.46470.07990.063*
C140.6473 (2)0.5336 (2)0.01873 (18)0.0650 (7)
H140.65090.48390.01680.078*
C150.5724 (2)0.6170 (2)0.01290 (19)0.0692 (8)
H150.52400.62350.02550.083*
C160.5684 (2)0.6912 (2)0.06366 (19)0.0648 (7)
H160.51840.74870.05880.078*
C170.6389 (2)0.68088 (17)0.12239 (16)0.0514 (6)
H170.63620.73160.15660.062*
C180.68301 (18)0.46797 (15)0.31362 (14)0.0403 (5)
C190.4679 (7)0.5156 (14)0.3736 (6)0.055 (2)0.649 (9)
H19A0.43220.57100.40890.066*0.649 (9)
H19B0.47410.45910.41710.066*0.649 (9)
C200.3887 (7)0.5005 (5)0.3198 (4)0.073 (2)0.649 (9)
H20A0.30970.50170.35230.088*0.649 (9)
C210.4150 (8)0.4867 (6)0.2373 (4)0.107 (3)0.649 (9)
H21A0.49260.48470.20110.129*0.649 (9)
H21B0.35700.47820.21150.129*0.649 (9)
C19A0.4658 (12)0.509 (2)0.3549 (12)0.051 (4)0.351 (9)
H19C0.41260.56850.37110.061*0.351 (9)
H19D0.45970.46560.41060.061*0.351 (9)
C20A0.4303 (10)0.4633 (11)0.2866 (13)0.080 (4)0.351 (9)
H20C0.48640.41760.25310.096*0.351 (9)
C21A0.3336 (10)0.4799 (8)0.2700 (9)0.094 (4)0.351 (9)
H21C0.27440.52500.30170.113*0.351 (9)
H21D0.32050.44710.22590.113*0.351 (9)
C221.2103 (2)0.71539 (19)0.0584 (2)0.0602 (7)
C231.2410 (3)0.7428 (2)0.1369 (2)0.0812 (9)
H23A1.28080.68690.16420.122*
H23B1.17070.76720.18190.122*
H23C1.29160.79210.11570.122*
C240.9001 (2)0.58617 (17)0.36463 (15)0.0495 (6)
H240.83090.62450.34990.059*
C250.9766 (2)0.65575 (19)0.37572 (18)0.0647 (7)
H25A1.04890.62000.38380.097*
H25B0.93620.69070.42870.097*
H25C0.99340.70070.32170.097*
C260.8579 (3)0.5235 (2)0.45415 (17)0.0723 (8)
H26A0.92270.47800.46490.108*
H26B0.79780.48900.44990.108*
H26C0.82670.56400.50420.108*
N10.78573 (14)0.49402 (11)0.25558 (11)0.0373 (4)
N20.58584 (15)0.53170 (13)0.31824 (13)0.0453 (5)
H2A0.590 (2)0.5882 (13)0.2876 (15)0.054*
N31.10177 (16)0.60888 (13)0.16899 (12)0.0471 (5)
S10.67667 (6)0.35980 (4)0.37701 (5)0.05813 (19)
O11.12691 (13)0.65613 (12)0.07647 (11)0.0552 (4)
O21.25123 (18)0.74278 (16)0.02053 (15)0.0901 (7)
C1'0.6908 (2)0.82063 (16)0.39025 (18)0.0530 (6)
H1'0.68870.82890.32930.064*
C2'0.6264 (2)0.75462 (18)0.4523 (2)0.0675 (8)
H2'0.58120.71920.43280.081*
C3'0.6292 (3)0.7414 (2)0.5417 (2)0.0747 (9)
H3'0.58520.69760.58330.090*
C4'0.6960 (3)0.7921 (2)0.56967 (19)0.0746 (8)
H4'0.69880.78220.63050.090*
C5'0.7602 (2)0.85858 (17)0.50906 (16)0.0579 (7)
H5'0.80540.89310.52960.069*
C6'0.75794 (18)0.87427 (14)0.41829 (15)0.0418 (5)
C7'0.83309 (19)0.94263 (15)0.34869 (14)0.0407 (5)
H7'0.90520.90250.31680.049*
C8'0.87150 (18)1.01997 (15)0.39090 (15)0.0430 (5)
H8'0.90980.98620.43690.052*
C9'0.76054 (19)1.08015 (15)0.44174 (15)0.0413 (5)
C10'0.66016 (18)1.09535 (15)0.40147 (14)0.0418 (5)
H10A0.61821.16010.41170.050*
H10B0.60641.04950.43340.050*
C11'0.69701 (17)1.08337 (14)0.29862 (14)0.0376 (5)
H11'0.74061.13690.26660.045*
C12'0.58795 (18)1.09288 (15)0.26641 (13)0.0387 (5)
C13'0.5171 (2)1.02040 (17)0.28710 (17)0.0523 (6)
H13'0.53630.96350.32150.063*
C14'0.4187 (2)1.0319 (2)0.2571 (2)0.0654 (7)
H14'0.37180.98270.27150.078*
C15'0.3888 (2)1.1149 (2)0.20649 (19)0.0663 (7)
H15'0.32281.12170.18540.080*
C16'0.4564 (2)1.1878 (2)0.18714 (18)0.0644 (7)
H16'0.43561.24500.15370.077*
C17'0.5557 (2)1.17704 (17)0.21699 (15)0.0513 (6)
H17'0.60121.22720.20350.062*
C18'0.82442 (18)0.96574 (15)0.18875 (15)0.0426 (5)
C19'0.8314 (2)1.0136 (2)0.02547 (16)0.0624 (7)
H19E0.89620.96100.01350.075*
H19F0.85921.07130.01130.075*
C20'0.7370 (4)0.9896 (3)0.0056 (3)0.1015 (12)
H20E0.75190.99360.06930.122*0.826 (10)
H20F0.73530.92490.01740.122*0.174 (10)
C21'0.6441 (5)0.9659 (5)0.0372 (5)0.130 (3)0.826 (10)
H21E0.62250.96020.10130.156*0.826 (10)
H21F0.59310.95300.00640.156*0.826 (10)
C21B0.6593 (18)1.003 (2)0.0433 (18)0.111 (9)0.174 (10)
H21G0.64141.06340.07300.133*0.174 (10)
H21H0.61780.95270.04240.133*0.174 (10)
C22'0.6484 (3)1.21816 (19)0.6224 (2)0.0672 (8)
C23'0.7637 (3)1.2480 (3)0.6141 (3)0.1040 (12)
H23D0.75291.29700.65510.156*
H23E0.79731.27350.55180.156*
H23F0.81541.19280.62990.156*
C24'0.9607 (2)1.07945 (18)0.32045 (17)0.0546 (6)
H24'0.92671.10840.27060.066*
C25'1.0733 (3)1.0147 (2)0.2795 (3)0.0981 (11)
H25D1.13021.05350.23990.147*
H25E1.05810.96930.24430.147*
H25F1.10330.98000.32810.147*
C26'0.9864 (3)1.1606 (2)0.3641 (2)0.0795 (9)
H26D1.01061.13430.41790.119*
H26E0.91681.20690.38130.119*
H26F1.04811.19200.32070.119*
N1'0.77728 (14)0.99094 (12)0.27709 (11)0.0382 (4)
N2'0.80050 (17)1.03032 (14)0.12168 (12)0.0464 (5)
H2B0.7510 (18)1.0837 (13)0.1341 (16)0.056*
N3'0.76056 (18)1.10743 (14)0.51771 (13)0.0514 (5)
S1'0.90805 (6)0.85825 (5)0.16427 (5)0.0636 (2)
O1'0.64564 (15)1.15591 (12)0.56286 (11)0.0583 (4)
O2'0.5553 (2)1.24742 (16)0.67412 (15)0.0951 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0547 (15)0.0396 (13)0.0555 (14)0.0050 (11)0.0158 (12)0.0004 (11)
C20.088 (2)0.0427 (14)0.0590 (16)0.0050 (14)0.0216 (15)0.0058 (12)
C30.086 (2)0.0431 (15)0.0578 (16)0.0035 (14)0.0022 (15)0.0052 (12)
C40.0585 (17)0.0486 (15)0.0714 (18)0.0025 (13)0.0057 (14)0.0008 (13)
C50.0480 (14)0.0438 (13)0.0638 (16)0.0055 (11)0.0050 (12)0.0031 (12)
C60.0415 (12)0.0338 (11)0.0417 (12)0.0031 (9)0.0059 (10)0.0050 (9)
C70.0349 (11)0.0383 (11)0.0395 (11)0.0034 (9)0.0082 (9)0.0054 (9)
C80.0346 (11)0.0421 (12)0.0419 (12)0.0029 (9)0.0131 (9)0.0005 (9)
C90.0368 (12)0.0357 (11)0.0448 (12)0.0053 (9)0.0092 (10)0.0056 (9)
C100.0421 (12)0.0394 (12)0.0401 (12)0.0113 (10)0.0103 (10)0.0049 (9)
C110.0417 (12)0.0317 (11)0.0370 (11)0.0052 (9)0.0108 (9)0.0032 (9)
C120.0372 (12)0.0403 (12)0.0396 (12)0.0087 (9)0.0096 (9)0.0076 (9)
C130.0595 (15)0.0462 (14)0.0549 (14)0.0103 (11)0.0240 (12)0.0026 (11)
C140.0779 (19)0.0685 (18)0.0614 (16)0.0261 (15)0.0349 (15)0.0058 (14)
C150.0659 (18)0.089 (2)0.0623 (17)0.0299 (17)0.0349 (15)0.0215 (16)
C160.0457 (15)0.0737 (19)0.0645 (17)0.0002 (13)0.0165 (13)0.0205 (15)
C170.0465 (14)0.0527 (14)0.0488 (14)0.0010 (11)0.0122 (11)0.0061 (11)
C180.0397 (12)0.0403 (12)0.0406 (12)0.0073 (10)0.0117 (10)0.0002 (9)
C190.037 (3)0.066 (5)0.054 (4)0.012 (3)0.005 (2)0.007 (3)
C200.051 (4)0.082 (4)0.083 (4)0.012 (3)0.013 (3)0.001 (3)
C210.088 (6)0.156 (6)0.080 (5)0.053 (4)0.022 (4)0.025 (4)
C19A0.039 (6)0.047 (6)0.059 (7)0.001 (5)0.009 (5)0.004 (6)
C20A0.049 (6)0.090 (7)0.091 (8)0.012 (5)0.012 (6)0.009 (7)
C21A0.066 (7)0.134 (9)0.099 (8)0.039 (6)0.037 (7)0.001 (6)
C220.0421 (14)0.0560 (15)0.0750 (19)0.0132 (12)0.0036 (13)0.0016 (14)
C230.0684 (19)0.076 (2)0.106 (2)0.0324 (16)0.0274 (18)0.0004 (18)
C240.0475 (14)0.0577 (14)0.0440 (13)0.0017 (11)0.0181 (11)0.0066 (11)
C250.082 (2)0.0597 (16)0.0582 (16)0.0085 (14)0.0262 (14)0.0105 (13)
C260.083 (2)0.090 (2)0.0461 (15)0.0248 (17)0.0142 (14)0.0060 (14)
N10.0339 (9)0.0341 (9)0.0401 (9)0.0045 (7)0.0079 (8)0.0038 (7)
N20.0362 (10)0.0399 (10)0.0519 (11)0.0051 (8)0.0049 (8)0.0056 (9)
N30.0432 (11)0.0488 (11)0.0482 (11)0.0119 (9)0.0106 (9)0.0017 (9)
S10.0500 (4)0.0464 (4)0.0679 (4)0.0117 (3)0.0092 (3)0.0180 (3)
O10.0488 (10)0.0606 (10)0.0535 (10)0.0221 (8)0.0063 (8)0.0031 (8)
O20.0786 (14)0.0983 (16)0.0796 (14)0.0437 (12)0.0075 (11)0.0099 (12)
C1'0.0465 (14)0.0403 (13)0.0686 (16)0.0029 (11)0.0137 (12)0.0027 (11)
C2'0.0510 (16)0.0415 (14)0.103 (2)0.0102 (12)0.0095 (15)0.0049 (14)
C3'0.0719 (19)0.0481 (16)0.081 (2)0.0151 (14)0.0111 (16)0.0051 (15)
C4'0.098 (2)0.0552 (16)0.0550 (16)0.0142 (16)0.0009 (15)0.0055 (13)
C5'0.0719 (18)0.0496 (14)0.0477 (14)0.0159 (13)0.0100 (12)0.0041 (11)
C6'0.0385 (12)0.0332 (11)0.0475 (13)0.0010 (9)0.0066 (10)0.0008 (9)
C7'0.0386 (12)0.0395 (12)0.0406 (12)0.0016 (9)0.0112 (10)0.0024 (9)
C8'0.0409 (12)0.0457 (13)0.0456 (12)0.0117 (10)0.0191 (10)0.0078 (10)
C9'0.0489 (13)0.0355 (11)0.0422 (12)0.0136 (10)0.0163 (10)0.0040 (9)
C10'0.0425 (12)0.0398 (12)0.0432 (12)0.0039 (10)0.0122 (10)0.0062 (9)
C11'0.0349 (11)0.0360 (11)0.0397 (11)0.0048 (9)0.0088 (9)0.0005 (9)
C12'0.0367 (12)0.0424 (12)0.0350 (11)0.0028 (9)0.0089 (9)0.0026 (9)
C13'0.0481 (14)0.0465 (13)0.0650 (15)0.0091 (11)0.0236 (12)0.0052 (11)
C14'0.0520 (16)0.0669 (17)0.0841 (19)0.0182 (13)0.0278 (14)0.0013 (15)
C15'0.0500 (15)0.087 (2)0.0677 (17)0.0101 (15)0.0309 (14)0.0058 (15)
C16'0.0554 (16)0.0728 (18)0.0589 (16)0.0044 (14)0.0223 (13)0.0232 (14)
C17'0.0439 (13)0.0552 (14)0.0501 (14)0.0078 (11)0.0123 (11)0.0093 (11)
C18'0.0393 (12)0.0427 (12)0.0438 (13)0.0063 (10)0.0095 (10)0.0013 (10)
C19'0.0799 (19)0.0606 (16)0.0440 (14)0.0020 (14)0.0168 (13)0.0070 (12)
C20'0.119 (3)0.099 (3)0.105 (3)0.018 (3)0.064 (3)0.042 (2)
C21'0.084 (4)0.188 (6)0.134 (6)0.001 (4)0.034 (4)0.085 (5)
C21B0.079 (14)0.18 (2)0.103 (19)0.013 (13)0.059 (13)0.060 (15)
C22'0.104 (2)0.0535 (16)0.0520 (16)0.0091 (16)0.0336 (17)0.0069 (13)
C23'0.122 (3)0.087 (2)0.136 (3)0.003 (2)0.077 (3)0.047 (2)
C24'0.0420 (13)0.0625 (15)0.0613 (15)0.0185 (12)0.0199 (12)0.0140 (12)
C25'0.0522 (18)0.098 (2)0.124 (3)0.0241 (17)0.0116 (18)0.011 (2)
C26'0.074 (2)0.0738 (19)0.097 (2)0.0384 (16)0.0282 (17)0.0160 (17)
N1'0.0372 (10)0.0382 (10)0.0376 (10)0.0009 (8)0.0109 (8)0.0029 (8)
N2'0.0531 (12)0.0440 (11)0.0381 (10)0.0011 (9)0.0098 (9)0.0040 (9)
N3'0.0611 (13)0.0496 (11)0.0488 (12)0.0132 (10)0.0211 (10)0.0031 (9)
S1'0.0723 (5)0.0507 (4)0.0573 (4)0.0123 (3)0.0119 (3)0.0111 (3)
O1'0.0712 (12)0.0580 (10)0.0489 (9)0.0131 (9)0.0154 (9)0.0144 (8)
O2'0.126 (2)0.0888 (16)0.0640 (13)0.0094 (14)0.0098 (13)0.0324 (12)
Geometric parameters (Å, º) top
C1—C61.380 (3)N2—H2A0.866 (15)
C1—C21.381 (3)N3—O11.444 (2)
C1—H10.9300C1'—C6'1.383 (3)
C2—C31.369 (4)C1'—C2'1.387 (3)
C2—H20.9300C1'—H1'0.9300
C3—C41.357 (4)C2'—C3'1.361 (4)
C3—H30.9300C2'—H2'0.9300
C4—C51.379 (3)C3'—C4'1.351 (4)
C4—H40.9300C3'—H3'0.9300
C5—C61.385 (3)C4'—C5'1.381 (3)
C5—H50.9300C4'—H4'0.9300
C6—C71.525 (3)C5'—C6'1.382 (3)
C7—N11.484 (2)C5'—H5'0.9300
C7—C81.527 (3)C6'—C7'1.521 (3)
C7—H70.9800C7'—N1'1.481 (3)
C8—C91.504 (3)C7'—C8'1.534 (3)
C8—C241.543 (3)C7'—H7'0.9800
C8—H80.9800C8'—C9'1.506 (3)
C9—N31.268 (3)C8'—C24'1.542 (3)
C9—C101.485 (3)C8'—H8'0.9800
C10—C111.532 (3)C9'—N3'1.271 (3)
C10—H10C0.9700C9'—C10'1.486 (3)
C10—H10D0.9700C10'—C11'1.523 (3)
C11—N11.486 (2)C10'—H10A0.9700
C11—C121.516 (3)C10'—H10B0.9700
C11—H110.9800C11'—N1'1.490 (3)
C12—C171.381 (3)C11'—C12'1.515 (3)
C12—C131.382 (3)C11'—H11'0.9800
C13—C141.380 (3)C12'—C17'1.376 (3)
C13—H130.9300C12'—C13'1.383 (3)
C14—C151.360 (4)C13'—C14'1.371 (3)
C14—H140.9300C13'—H13'0.9300
C15—C161.368 (4)C14'—C15'1.366 (4)
C15—H150.9300C14'—H14'0.9300
C16—C171.388 (3)C15'—C16'1.363 (4)
C16—H160.9300C15'—H15'0.9300
C17—H170.9300C16'—C17'1.381 (3)
C18—N21.335 (3)C16'—H16'0.9300
C18—N11.363 (2)C17'—H17'0.9300
C18—S11.687 (2)C18'—N2'1.338 (3)
C19—N21.455 (5)C18'—N1'1.367 (3)
C19—C201.490 (8)C18'—S1'1.685 (2)
C19—H19A0.9700C19'—N2'1.445 (3)
C19—H19B0.9700C19'—C20'1.459 (4)
C20—C211.238 (7)C19'—H19E0.9700
C20—H20A0.9300C19'—H19F0.9700
C21—H21A0.9300C20'—C21'1.192 (5)
C21—H21B0.9300C20'—C21B1.216 (9)
C19A—N21.457 (7)C20'—H20E0.9300
C19A—C20A1.495 (10)C20'—H20F0.9300
C19A—H19C0.9700C21'—H21E0.9300
C19A—H19D0.9700C21'—H21F0.9300
C20A—C21A1.242 (9)C21B—H21G0.9300
C20A—H20C0.9300C21B—H21H0.9300
C21A—H21C0.9300C22'—O2'1.203 (3)
C21A—H21D0.9300C22'—O1'1.355 (3)
C22—O21.194 (3)C22'—C23'1.483 (4)
C22—O11.355 (3)C23'—H23D0.9600
C22—C231.470 (4)C23'—H23E0.9600
C23—H23A0.9600C23'—H23F0.9600
C23—H23B0.9600C24'—C25'1.509 (4)
C23—H23C0.9600C24'—C26'1.514 (4)
C24—C251.511 (3)C24'—H24'0.9800
C24—C261.520 (3)C25'—H25D0.9600
C24—H240.9800C25'—H25E0.9600
C25—H25A0.9600C25'—H25F0.9600
C25—H25B0.9600C26'—H26D0.9600
C25—H25C0.9600C26'—H26E0.9600
C26—H26A0.9600C26'—H26F0.9600
C26—H26B0.9600N2'—H2B0.878 (16)
C26—H26C0.9600N3'—O1'1.443 (3)
C6—C1—C2120.9 (2)C19—N2—H2A114.8 (17)
C6—C1—H1119.5C19A—N2—H2A113 (2)
C2—C1—H1119.5C9—N3—O1110.22 (17)
C3—C2—C1120.4 (3)C22—O1—N3113.05 (18)
C3—C2—H2119.8C6'—C1'—C2'120.5 (3)
C1—C2—H2119.8C6'—C1'—H1'119.7
C4—C3—C2119.3 (3)C2'—C1'—H1'119.7
C4—C3—H3120.3C3'—C2'—C1'120.4 (3)
C2—C3—H3120.3C3'—C2'—H2'119.8
C3—C4—C5120.9 (3)C1'—C2'—H2'119.8
C3—C4—H4119.5C4'—C3'—C2'119.7 (3)
C5—C4—H4119.5C4'—C3'—H3'120.1
C4—C5—C6120.6 (2)C2'—C3'—H3'120.1
C4—C5—H5119.7C3'—C4'—C5'120.8 (3)
C6—C5—H5119.7C3'—C4'—H4'119.6
C1—C6—C5117.8 (2)C5'—C4'—H4'119.6
C1—C6—C7120.21 (19)C4'—C5'—C6'120.7 (3)
C5—C6—C7121.8 (2)C4'—C5'—H5'119.7
N1—C7—C6112.82 (17)C6'—C5'—H5'119.7
N1—C7—C8109.01 (16)C5'—C6'—C1'117.9 (2)
C6—C7—C8114.69 (17)C5'—C6'—C7'121.8 (2)
N1—C7—H7106.6C1'—C6'—C7'120.1 (2)
C6—C7—H7106.6N1'—C7'—C6'112.90 (17)
C8—C7—H7106.6N1'—C7'—C8'108.90 (16)
C9—C8—C7106.97 (17)C6'—C7'—C8'114.75 (17)
C9—C8—C24112.95 (17)N1'—C7'—H7'106.6
C7—C8—C24114.39 (17)C6'—C7'—H7'106.6
C9—C8—H8107.4C8'—C7'—H7'106.6
C7—C8—H8107.4C9'—C8'—C7'106.51 (17)
C24—C8—H8107.4C9'—C8'—C24'114.19 (18)
N3—C9—C10126.87 (19)C7'—C8'—C24'113.71 (19)
N3—C9—C8116.60 (19)C9'—C8'—H8'107.4
C10—C9—C8116.37 (17)C7'—C8'—H8'107.4
C9—C10—C11113.67 (17)C24'—C8'—H8'107.4
C9—C10—H10C108.8N3'—C9'—C10'126.9 (2)
C11—C10—H10C108.8N3'—C9'—C8'116.2 (2)
C9—C10—H10D108.8C10'—C9'—C8'116.81 (19)
C11—C10—H10D108.8C9'—C10'—C11'113.53 (18)
H10C—C10—H10D107.7C9'—C10'—H10A108.9
N1—C11—C12113.53 (16)C11'—C10'—H10A108.9
N1—C11—C10111.00 (16)C9'—C10'—H10B108.9
C12—C11—C10109.06 (16)C11'—C10'—H10B108.9
N1—C11—H11107.7H10A—C10'—H10B107.7
C12—C11—H11107.7N1'—C11'—C12'113.42 (16)
C10—C11—H11107.7N1'—C11'—C10'111.21 (16)
C17—C12—C13119.0 (2)C12'—C11'—C10'109.08 (16)
C17—C12—C11119.2 (2)N1'—C11'—H11'107.6
C13—C12—C11121.78 (19)C12'—C11'—H11'107.6
C14—C13—C12120.0 (2)C10'—C11'—H11'107.6
C14—C13—H13120.0C17'—C12'—C13'118.3 (2)
C12—C13—H13120.0C17'—C12'—C11'119.51 (19)
C15—C14—C13120.9 (3)C13'—C12'—C11'122.16 (18)
C15—C14—H14119.6C14'—C13'—C12'120.4 (2)
C13—C14—H14119.6C14'—C13'—H13'119.8
C14—C15—C16119.8 (2)C12'—C13'—H13'119.8
C14—C15—H15120.1C15'—C14'—C13'120.8 (2)
C16—C15—H15120.1C15'—C14'—H14'119.6
C15—C16—C17120.2 (3)C13'—C14'—H14'119.6
C15—C16—H16119.9C16'—C15'—C14'119.5 (2)
C17—C16—H16119.9C16'—C15'—H15'120.3
C12—C17—C16120.1 (2)C14'—C15'—H15'120.3
C12—C17—H17120.0C15'—C16'—C17'120.3 (2)
C16—C17—H17120.0C15'—C16'—H16'119.9
N2—C18—N1117.20 (17)C17'—C16'—H16'119.9
N2—C18—S1120.64 (16)C12'—C17'—C16'120.7 (2)
N1—C18—S1122.16 (16)C12'—C17'—H17'119.6
N2—C19—C20114.7 (7)C16'—C17'—H17'119.6
N2—C19—H19A108.6N2'—C18'—N1'116.93 (19)
C20—C19—H19A108.6N2'—C18'—S1'120.93 (17)
N2—C19—H19B108.6N1'—C18'—S1'122.13 (16)
C20—C19—H19B108.6N2'—C19'—C20'115.6 (3)
H19A—C19—H19B107.6N2'—C19'—H19E108.4
C21—C20—C19128.1 (9)C20'—C19'—H19E108.4
C21—C20—H20A115.9N2'—C19'—H19F108.4
C19—C20—H20A115.9C20'—C19'—H19F108.4
C20—C21—H21A120.0H19E—C19'—H19F107.4
C20—C21—H21B120.0C21'—C20'—C19'130.6 (5)
H21A—C21—H21B120.0C21B—C20'—C19'157.3 (15)
N2—C19A—C20A111.5 (10)C21'—C20'—H20E114.7
N2—C19A—H19C109.3C19'—C20'—H20E114.7
C20A—C19A—H19C109.3C21B—C20'—H20F101.3
N2—C19A—H19D109.3C19'—C20'—H20F101.3
C20A—C19A—H19D109.3C20'—C21'—H21E120.0
H19C—C19A—H19D108.0C20'—C21'—H21F120.0
C21A—C20A—C19A126.9 (17)H21E—C21'—H21F120.0
C21A—C20A—H20C116.6C20'—C21B—H21G120.0
C19A—C20A—H20C116.6C20'—C21B—H21H120.0
C20A—C21A—H21C120.0H21G—C21B—H21H120.0
C20A—C21A—H21D120.0O2'—C22'—O1'116.2 (3)
H21C—C21A—H21D120.0O2'—C22'—C23'126.3 (3)
O2—C22—O1116.7 (3)O1'—C22'—C23'117.4 (3)
O2—C22—C23125.3 (2)C22'—C23'—H23D109.5
O1—C22—C23118.0 (2)C22'—C23'—H23E109.5
C22—C23—H23A109.5H23D—C23'—H23E109.5
C22—C23—H23B109.5C22'—C23'—H23F109.5
H23A—C23—H23B109.5H23D—C23'—H23F109.5
C22—C23—H23C109.5H23E—C23'—H23F109.5
H23A—C23—H23C109.5C25'—C24'—C26'110.1 (2)
H23B—C23—H23C109.5C25'—C24'—C8'110.5 (2)
C25—C24—C26110.5 (2)C26'—C24'—C8'111.3 (2)
C25—C24—C8110.79 (19)C25'—C24'—H24'108.3
C26—C24—C8111.3 (2)C26'—C24'—H24'108.3
C25—C24—H24108.0C8'—C24'—H24'108.3
C26—C24—H24108.0C24'—C25'—H25D109.5
C8—C24—H24108.0C24'—C25'—H25E109.5
C24—C25—H25A109.5H25D—C25'—H25E109.5
C24—C25—H25B109.5C24'—C25'—H25F109.5
H25A—C25—H25B109.5H25D—C25'—H25F109.5
C24—C25—H25C109.5H25E—C25'—H25F109.5
H25A—C25—H25C109.5C24'—C26'—H26D109.5
H25B—C25—H25C109.5C24'—C26'—H26E109.5
C24—C26—H26A109.5H26D—C26'—H26E109.5
C24—C26—H26B109.5C24'—C26'—H26F109.5
H26A—C26—H26B109.5H26D—C26'—H26F109.5
C24—C26—H26C109.5H26E—C26'—H26F109.5
H26A—C26—H26C109.5C18'—N1'—C7'118.81 (17)
H26B—C26—H26C109.5C18'—N1'—C11'121.76 (16)
C18—N1—C7118.77 (16)C7'—N1'—C11'116.86 (16)
C18—N1—C11121.97 (16)C18'—N2'—C19'125.3 (2)
C7—N1—C11116.89 (15)C18'—N2'—H2B121.5 (16)
C18—N2—C19125.1 (8)C19'—N2'—H2B112.1 (16)
C18—N2—C19A125.4 (13)C9'—N3'—O1'110.08 (18)
C18—N2—H2A120.1 (16)C22'—O1'—N3'113.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.932.593.298 (4)133
C2—H2···O2ii0.932.593.332 (4)137
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.932.593.298 (4)133
C2'—H2'···O2'ii0.932.593.332 (4)137
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y+2, z+1.
 

Acknowledgements

The authors thank Dr Babu Varghese, Senior Scientific Officer SAIF, IIT Madras, India, for the data collection.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKoca, İ, Özgür, A., Coşkun, K. A. & Tutar, Y. (2013). Bioorg. Med. Chem. 21, 3859–3865.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLiu, W., Zhou, J., Zhang, T., Zhu, H., Qian, H., Zhang, H., Huang, W. & Gust, R. (2012). Bioorg. Med. Chem. Lett. 22, 2701–2704.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMalik, S., Bahare, R. S. & Khan, S. A. (2013). Eur. J. Med. Chem. 67, 1–13.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPark, D. H., Ramkumar, V. & Parthiban, P. (2012a). Acta Cryst. E68, o524.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPark, D. H., Ramkumar, V. & Parthiban, P. (2012b). Acta Cryst. E68, o525.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilkerson, M. W., Akamike, E., Cheatham, W. W., Hollis, Y. A., Collins, R. D., DeLucca, I. L., Lam, P. Y. S. & Ru, Y. (1996). J. Med. Chem. 39, 4299–4312.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds