

V = 574.73 (5) Å³

Mo $K\alpha$ radiation

 $0.26 \times 0.24 \times 0.09 \text{ mm}$

 $\mu = 0.09 \text{ mm}^{-1}$

T = 173 K

Z = 2

OPEN a ACCESS

Crystal structure of 2-[bis(1H-pyrazol-1yl)methyl]pyridine

Kyung-sun Son, Jong-Eun Park, Daeyoung Kim and Sung Kwon Kang*

Department of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea. *Correspondence e-mail: skkang@cnu.ac.kr

Received 7 July 2015; accepted 9 July 2015

Edited by E. R. T. Tiekink, University of Malaya, Malaysia

The title compound, $C_{12}H_{11}N_5$, was synthesized as a potential tridentate ligand to make catalytic metal complexes. The dihedral angle between the pyrazolyl rings is $67.9 (1)^{\circ}$. The most prominent feature in the crystal packing are $C-H \cdots N$ hydrogen-bonding interactions that link the molecules into a supramolecular tape along the *b*-axis direction.

Keywords: crystal structure; pyrazolyl; pyridyl; C—H···N interactions; crystal structure.

CCDC reference: 1411603

1. Related literature

For the synthesis of the title compound, see: Park et al. (2015); Hoffmann et al. (2010). For metal complexes of the similar ligands, see: Anderson et al. (2000); Liu et al. (2011); Xiao et al. (2012). For potential applications of similar ligands in catalysis, see: Park et al. (2015); Zhang et al. (2009).

2.1. Crystal data C12H11N5

 $M_r = 225.26$

Triclinic, $P\overline{1}$ a = 7.5723 (3) Å b = 8.6376(3) Å c = 9.7354 (5) Å $\alpha = 97.539 \ (2)^{\circ}$ $\beta = 106.123 (4)^{\circ}$ $\gamma = 105.510 (5)^{\circ}$

2.2. Data collection

Bruker SMART CCD area-detector	2870 independent reflections
diffractometer	1813 reflections with $I > 2\sigma(I)$
18045 measured reflections	$R_{\rm int} = 0.089$

2.3. Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ 153 parameters $wR(F^2) = 0.123$ H-atom parameters constrained S = 0.98 $\Delta \rho_{\rm max} = 0.32 \text{ e} \text{ A}^ \Delta \rho_{\rm min} = -0.26 \text{ e} \text{ Å}^{-3}$ 2870 reflections

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C1−H1···N8 ⁱ C10−H10···N13 ⁱⁱ	0.98 0.93	2.45 2.60	3.3974 (18) 3.496 (2)	162 161

Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) x, y + 1, z.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip,2010).

Acknowledgements

This work was supported by the research fund of Chungnam National University.

Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5373).

References

- Anderson, P. A., Astley, T., Hitchman, M. A., Keene, F. R., Moubaraki, B., Murray, K. S., Skelton, B. W., Tiekink, E. R. T., Toftlund, H. & White, A. H. (2000). J. Chem. Soc. Dalton Trans. pp. 3505-3512.
- Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

- Hoffmann, A., Flörke, U., Schürmann, M. & Herres-Pawlis, S. (2010). Eur. J. Org. Chem. pp. 4136-4144.
- Liu, J.-C., Guo, G.-Z., Xiao, C.-H., Song, X.-Y. & Li, M. (2011). Acta Cryst. E67, m1691.
- Park, J.-E., Kang, S. K., Woo, J. O. & Son, K.-s. (2015). Dalton Trans. 44, 9964-9969
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Xiao, C.-H., Song, X.-Y., Sun, Z., Cao, P. & Pang, T. (2012). Acta Cryst. E68, m857.

Zhang, J., Li, A. & Hor, T. S. A. (2009). Organometallics, 28, 2935-2937.

supporting information

Acta Cryst. (2015). E71, o567 [https://doi.org/10.1107/S2056989015013195] Crystal structure of 2-[bis(1*H*-pyrazol-1-yl)methyl]pyridine Kyung-sun Son, Jong-Eun Park, Daeyoung Kim and Sung Kwon Kang

S1. Experimental

S1.1. Synthesis and crystallization

In a 50 ml Schlenk flask, NaH (0.24 g, 10 mmol) was added in dry tetrahydrofuran (THF; 10 ml) and stirred at 0 °C. Pyrazole (0.68 g, 10 mmol) was added gradually to the mixture over 10 min. and the stirring was continued for 40 min. at 0 °C, resulting in a pale-yellow solution. Thionyl chloride (0.38 mL, 5 mmol) was added drop wise to this mixture at 0 °C. After stirring for 1 h, pyridine-2-aldehyde (0.48 ml, 5 mmol) and a catalytic amount of cobalt(II) chloride were added and the resulting solution was refluxed overnight. The reaction mixture was allowed to cool to room temperature, and diethyl ether and water (1:1) were added. The bi-phasic solution was stirred for 45 min. to quench the cobalt catalyst. The aqueous layer was extracted three times with diethyl ether. The combined organic layers were dried over sodium sulfate and filtered. The solvent in the filtrate was removed *in vacuo* and the resulting solid was obtained in 33% yield. Single crystals of the title compound were obtained by slow diffusion of hexane into a concentrated solution of the product in THF at room temperature.

S1.2. Refinement

All H atoms were positioned geometrically and refined using riding model, with d(C-H) = 0.93-0.98 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Molecular structure of the title compound, showing the atom-numbering scheme and 30% probability displacement ellipsoids.

Part of the crystal structure of the title compound, showing supramolecular tapes aligned along the b axis and sustained by C—H···N hydrogen bonds (dashed lines).

2-[Bis(1H-pyrazol-1-yl)methyl]pyridine

Crystal data

 $C_{12}H_{11}N_5$ $M_r = 225.26$ Triclinic, $P\overline{1}$ a = 7.5723 (3) Å b = 8.6376 (3) Å c = 9.7354 (5) Å $\alpha = 97.539$ (2)° $\beta = 106.123$ (4)° $\gamma = 105.510$ (5)° V = 574.73 (5) Å³ Z = 2 F(000) = 236 $D_x = 1.302 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2704 reflections $\theta = 2.2-22.9^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 173 KPlate, colourless $0.26 \times 0.24 \times 0.09 \text{ mm}$ Data collection

 Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube φ and ω scans 18045 measured reflections 2870 independent reflections 	1813 reflections with $I > 2\sigma(I)$ $R_{int} = 0.089$ $\theta_{max} = 28.4^\circ, \ \theta_{min} = 2.2^\circ$ $h = -10 \rightarrow 10$ $k = -11 \rightarrow 11$ $l = -12 \rightarrow 13$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.123$ S = 0.98 2870 reflections 153 parameters 0 restraints	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0585P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.32$ e Å ⁻³ $\Delta\rho_{min} = -0.26$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and is	sotropic or equiv	alent isotropic displacer	nent parameters (Ų)
--------------------------------------	-------------------	---------------------------	---------------------

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.2525 (2)	0.40769 (18)	0.78430 (15)	0.0249 (3)
H1	0.3386	0.3778	0.8644	0.030*
N2	0.05923 (18)	0.35498 (16)	0.79587 (13)	0.0289 (3)
N3	-0.09589 (19)	0.34989 (18)	0.68237 (15)	0.0373 (4)
C4	-0.2452 (3)	0.3038 (2)	0.7301 (2)	0.0421 (4)
H4	-0.3725	0.2901	0.6753	0.051*
C5	-0.1886 (3)	0.2781 (2)	0.8731 (2)	0.0488 (4)
Н5	-0.2673	0.2452	0.9292	0.059*
C6	0.0106 (3)	0.3128 (2)	0.91191 (18)	0.0382 (4)
H6	0.0940	0.3078	1.0004	0.046*
N7	0.32364 (18)	0.58610 (15)	0.80514 (12)	0.0268 (3)
N8	0.50866 (18)	0.66766 (16)	0.89361 (13)	0.0311 (3)
C9	0.5303 (3)	0.8249 (2)	0.89025 (18)	0.0370 (4)
Н9	0.6438	0.9111	0.9418	0.044*
C10	0.3645 (3)	0.8456 (2)	0.80116 (18)	0.0420 (5)
H10	0.3457	0.9437	0.7819	0.050*
C11	0.2343 (3)	0.6900(2)	0.74763 (18)	0.0382 (4)
H11	0.1080	0.6612	0.6837	0.046*
C12	0.2556 (2)	0.31567 (18)	0.64180 (15)	0.0237 (3)
N13	0.24020 (19)	0.15718 (16)	0.64034 (14)	0.0323 (3)
C14	0.2372 (3)	0.0666 (2)	0.51714 (19)	0.0405 (4)
H14	0.2239	-0.0441	0.5137	0.049*
C15	0.2520 (3)	0.1246 (2)	0.3968 (2)	0.0456 (5)

supporting information

H15	0.2493	0.0558	0.3138	0.055*
C16	0.2709 (3)	0.2866 (2)	0.40071 (18)	0.0421 (4)
H16	0.2829	0.3305	0.3202	0.050*
C17	0.2721 (2)	0.3854 (2)	0.52497 (16)	0.0326 (4)
H17	0.2837	0.4960	0.5294	0.039*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0240 (8)	0.0233 (8)	0.0262 (7)	0.0089 (6)	0.0048 (6)	0.0061 (6)
N2	0.0294 (8)	0.0300 (7)	0.0288 (7)	0.0111 (6)	0.0106 (6)	0.0055 (5)
N3	0.0264 (8)	0.0442 (9)	0.0416 (8)	0.0144 (7)	0.0078 (6)	0.0116 (7)
C4	0.0279 (9)	0.0368 (10)	0.0615 (12)	0.0103 (8)	0.0176 (8)	0.0040 (8)
C5	0.0579 (13)	0.0362 (10)	0.057	0.0060 (9)	0.0400 (8)	-0.0013 (9)
C6	0.0504 (12)	0.0311 (10)	0.0332 (9)	0.0075 (8)	0.0206 (8)	0.0036 (7)
N7	0.0300 (7)	0.0242 (7)	0.0237 (6)	0.0098 (6)	0.0043 (5)	0.0039 (5)
N8	0.0312 (8)	0.0285 (8)	0.0274 (7)	0.0044 (6)	0.0069 (6)	0.0018 (5)
C9	0.0483 (11)	0.0250 (9)	0.0334 (8)	0.0043 (8)	0.0155 (8)	0.0023 (7)
C10	0.0662 (13)	0.0265 (9)	0.0376 (9)	0.0196 (9)	0.0186 (9)	0.0082 (7)
C11	0.0457 (11)	0.0321 (9)	0.0368 (9)	0.0210 (8)	0.0053 (8)	0.0078 (7)
C12	0.0180 (8)	0.0244 (8)	0.0268 (7)	0.0076 (6)	0.0049 (6)	0.0029 (6)
N13	0.0332 (8)	0.0259 (7)	0.0347 (7)	0.0081 (6)	0.0103 (6)	0.0018 (6)
C14	0.0416 (11)	0.0320 (10)	0.0421 (10)	0.0088 (8)	0.0128 (8)	-0.0035 (8)
C15	0.0471 (12)	0.0455 (12)	0.0410 (10)	0.0153 (9)	0.0141 (8)	-0.0009 (8)
C16	0.0478 (11)	0.0506 (12)	0.0324 (9)	0.0205 (9)	0.0162 (8)	0.0076 (8)
C17	0.0371 (10)	0.0318 (9)	0.0321 (8)	0.0152 (8)	0.0119 (7)	0.0076 (7)

Geometric parameters (Å, °)

C1—N2	1.4527 (19)	C9—C10	1.384 (2)	
C1—N7	1.4559 (18)	С9—Н9	0.9300	
C1—C12	1.515 (2)	C10—C11	1.368 (2)	
С1—Н1	0.9800	C10—H10	0.9300	
N2—C6	1.346 (2)	C11—H11	0.9300	
N2—N3	1.3570 (17)	C12—N13	1.3403 (19)	
N3—C4	1.323 (2)	C12—C17	1.375 (2)	
C4—C5	1.404 (3)	N13—C14	1.334 (2)	
C4—H4	0.9300	C14—C15	1.354 (3)	
С5—С6	1.386 (2)	C14—H14	0.9300	
С5—Н5	0.9300	C15—C16	1.362 (3)	
С6—Н6	0.9300	C15—H15	0.9300	
N7—C11	1.3502 (19)	C16—C17	1.382 (2)	
N7—N8	1.3578 (16)	C16—H16	0.9300	
N8—C9	1.330 (2)	C17—H17	0.9300	
N2-C1-N7	110.59 (12)	N8—C9—H9	123.9	
N2-C1-C12	110.54 (12)	С10—С9—Н9	123.9	
N7—C1—C12	113.54 (12)	C11—C10—C9	104.88 (15)	

N2—C1—H1	107.3	C11—C10—H10	127.6
N7—C1—H1	107.3	С9—С10—Н10	127.6
С12—С1—Н1	107.3	N7—C11—C10	107.06 (15)
C6—N2—N3	112.85 (14)	N7—C11—H11	126.5
C6—N2—C1	127.42 (13)	C10-C11-H11	126.5
N3—N2—C1	119.70 (12)	N13—C12—C17	122.77 (14)
C4—N3—N2	104.30 (14)	N13—C12—C1	113.00 (12)
N3—C4—C5	112.05 (16)	C17—C12—C1	124.22 (13)
N3—C4—H4	124.0	C14—N13—C12	116.65 (14)
С5—С4—Н4	124.0	N13—C14—C15	124.63 (17)
C6—C5—C4	104.55 (16)	N13—C14—H14	117.7
С6—С5—Н5	127.7	C15—C14—H14	117.7
С4—С5—Н5	127.7	C14—C15—C16	118.08 (17)
N2—C6—C5	106.26 (15)	C14—C15—H15	121.0
N2—C6—H6	126.9	C16—C15—H15	121.0
С5—С6—Н6	126.9	C15—C16—C17	119.63 (16)
C11—N7—N8	111.66 (13)	C15—C16—H16	120.2
C11—N7—C1	130.08 (13)	C17—C16—H16	120.2
N8—N7—C1	118.25 (11)	C12—C17—C16	118.22 (15)
C9—N8—N7	104.15 (13)	С12—С17—Н17	120.9
N8—C9—C10	112.24 (15)	С16—С17—Н17	120.9

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
C1—H1···N8 ⁱ	0.98	2.45	3.3974 (18)	162
C10—H10…N13 ⁱⁱ	0.93	2.60	3.496 (2)	161

Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x, y+1, z.