data reports

CRYSTALLOGRAPHIC

OPEN d ACCESS

Crystal structure of ethyl 8-chloro-4-oxo-1,4-dihydroguinoline-3-carboxylate

Yoshinobu Ishikawa* and Nanako Yoshida

School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan. *Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

Received 8 July 2015; accepted 9 July 2015

Edited by E. R. T. Tiekink, University of Malaya, Malaysia

In the title compound, C₁₂H₁₀ClNO₃, the asymmetric unit comprises two independent molecules, and the dihedral angle between the least-square planes of the quinoline ring systems of these molecules is $73.30(5)^\circ$. In the crystal, N-H···O hydrogen bonds between the independent molecules lead to supramolecular layers parallel to $(\overline{110})$; both N-H H atoms are bifurcated.

Keywords: crystal structure; quinolone; hydrogen bonding.

CCDC reference: 1411658

1. Related literature

For the biological background of this study, see: Mugnaini et al. (2009); Ishikawa & Fujii (2011); Bisacchi (2015). For the synthesis of the title compound, see: Ozeki et al. (1987). For related structures, see: Garudachari et al. (2012, 2013); Ishikawa & Yoshida (2014).

2. Experimental

2.1. Crystal data

C ₁₂ H ₁₀ ClNO ₃
$M_r = 251.67$
Triclinic, $P\overline{1}$
a = 9.328 (5) Å
b = 11.043 (2) Å
c = 12.350 (4) Å
$\alpha = 73.298 \ (17)^{\circ}$
$\beta = 70.57 \ (3)^{\circ}$

 $\gamma = 77.22 \ (3)^{\circ}$ V = 1137.8 (7) Å³ Z = 4Cu K α radiation $\mu = 2.96 \text{ mm}^{-1}$ T = 298 K $0.25 \times 0.15 \times 0.15 \mbox{ mm}$ 2.2. Data collection

Rigaku AFC7R diffractometer
Absorption correction: ψ scan
(North et al., 1968)
$T_{\min} = 0.436, T_{\max} = 0.642$
5652 measured reflections
4147 independent reflections

2.3. Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.066$ $wR(F^2) = 0.184$ S = 1.054147 reflections

3328 reflections with $F^2 > 2.0\sigma(F^2)$ $R_{\rm int} = 0.047$ 3 standard reflections every 150 reflections intensity decay: -0.9%

309 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.49 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1A\cdots O4^{i}$ $N1-H1A\cdots O5^{i}$	0.86 0.86	1.98 2.51	2.748 (4) 3.035 (4)	148 121
$N2 - H2 \cdots O1^{ii}$ $N2 - H2 \cdots O2^{ii}$	0.86 0.86	2.04 2.48	2.777 (4) 3.064 (4)	144 126

Symmetry codes: (i) x - 1, y, z; (ii) x, y + 1, z.

Data collection: WinAFC (Rigaku, 1999); cell refinement: WinAFC; data reduction: WinAFC; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure.

Acknowledgements

This work was partly supported by JSPS KAKENHI grant No. 24590141. We acknowledge the University of Shizuoka for instrumental support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5374).

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Bisacchi, G. S. (2015). J. Med. Chem. 58, 4874-4882.
- Garudachari, B., Islor, A. M., Satyanarayan, M. N., Gerber, T., Hosten, E. & Betz, R. (2012). Acta Cryst. E68, 03304-03305.
- Garudachari, B., Islor, A. M., Satyanarayan, M. N., Gerber, T., Hosten, E. & Betz, R. (2013). Z. Kristallogr. 228, 301-302.
- Ishikawa, Y. & Fujii, S. (2011). Bioinformation, 6, 221-225.
- Ishikawa, Y. & Yoshida, N. (2014). Acta Cryst. E70, 0719.
- Mugnaini, C., Pasquini, S. & Corelli, F. (2009). Curr. Med. Chem. 16, 1746-1767.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Ozeki, K., Ishizuka, Y., Sawada, M., Ichikawa, T., Sato, M. & Yaginuma, H. (1987). Yakugaku Zasshi, 107, 123-134.
- Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2015). E71, o566 [https://doi.org/10.1107/S2056989015013171]

Crystal structure of ethyl 8-chloro-4-oxo-1,4-dihydroquinoline-3-carboxylate

Yoshinobu Ishikawa and Nanako Yoshida

S1. Comment

4-Quinolones show inhibition not only to Gram negative and Gram positive bacteria (Bisacchi, 2015), but also to human immunodeficiency virus (HIV) (Mugnaini *et al.*, 2009). The inhibition to HIV is derived from their chelating ability to metal ions in the active site of metalloenzyme HIV integrase. According to our inhibitor design targeting metalloenzyme influenza virus RNA polymerase (Ishikawa & Fujii, 2011), we synthesized the title compound as a synthetic intermediate of final products.

The asymmetric unit contains two independent molecules, as shown in Fig. 1. The dihedral angle between the leastsquare planes of the quinoline rings of the 4-quinolone units is 73.30 (5)°. In the crystal, face-to-face π - π stacking interactions are found between the molecules and their inversion-symmetry equivalents^{i,ii} [centroid–centroid distances between the benzene rings of the 4-quinolone units = 3.597 (3)ⁱ and 3.881 (3) Åⁱⁱ, i: -x + 1, -y + 1, -z + 2, ii: -x + 2, -y + 2, -z + 1]. Molecules A are further linked with the translation-symmetry equivalents of the molecules B through bidentate N–H…O hydrogen bonds, as shown in Fig. 2.

S2. Experimental

The title compound was synthesized according to the literature (Ozeki *et al.* 1987). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an *N*,*N*-dimethylforamide solution of the compound at room temperature.

S3. Refinement

The H atoms of secondary amine [N—H 0.86 Å, $U_{iso}(H) = 1.2U_{eq}(N)$], methylene [C—H = 0.97 Å, $U_{iso}(H) = 1.2U_{eq}(C)$], and phenyl groups [C—H 0.93 Å, $U_{iso}(H) = 1.2U_{eq}(C)$] were placed in their geometric positions, and refined using a riding model. A rotating group model was applied for the H atoms of the methyl groups [C—H = 0.96 Å, $U_{iso}(H) = 1.2U_{eq}(C)$].

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.

Figure 2

A crystal packing view of the title compound. Intermolecular hydrogen bonds are represented as dashed lines.

Ethyl 8-chloro-4-oxo-1,4-dihydroquinoline-3-carboxylate

-	
$C_{12}H_{10}CINO_3$	<i>a</i> = 9.328 (5) Å
$M_r = 251.67$	b = 11.043 (2) Å
$\Gammariclinic, P\overline{1}$	c = 12.350 (4) Å
Hall symbol: -P 1	$\alpha = 73.298 \ (17)^{\circ}$

Cell parameters from 25 reflections

3328 reflections with $F^2 > 2.0\sigma(F^2)$

3 standard reflections every 150 reflections

 $\theta = 25.0 - 29.3^{\circ}$ $\mu = 2.96 \text{ mm}^{-1}$

Prismatic, colorless

 $0.25 \times 0.15 \times 0.15$ mm

intensity decay: -0.9%

T = 298 K

 $R_{int} = 0.047$ $\theta_{max} = 68.0^{\circ}$ $h = -10 \rightarrow 11$ $k = -9 \rightarrow 13$ $l = -14 \rightarrow 14$

 $\beta = 70.57 (3)^{\circ}$ $\gamma = 77.22 (3)^{\circ}$ $V = 1137.8 (7) \text{ Å}^3$ Z = 4 F(000) = 520.00 $D_x = 1.469 \text{ Mg m}^{-3}$ Cu K α radiation, $\lambda = 1.54178 \text{ Å}$

Data collection

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
$R[F^2 > 2\sigma(F^2)] = 0.066$	map
$wR(F^2) = 0.184$	Hydrogen site location: inferred from
<i>S</i> = 1.05	neighbouring sites
4147 reflections	H-atom parameters constrained
309 parameters	$w = 1/[\sigma^2(F_o^2) + (0.1039P)^2 + 0.6522P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.49$ e Å ⁻³
	$\Delta \rho_{\rm min} = -0.41 \text{ e} \text{ Å}^{-3}$

Special details

Refinement. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on F^2 . *R*-factor (gt) are based on *F*. The threshold expression of $F^2 > 2.0 \sigma(F^2)$ is used only for calculating *R*-factor (gt).

Fractional atomic coordinates and	isotropic or e	quivalent isotropic	c displacement	parameters ($(Å^2)$
	1		1	1	. /

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.08408 (10)	0.65841 (10)	0.98364 (8)	0.0840 (4)	
Cl2	0.58312 (10)	1.16556 (10)	0.62449 (10)	0.0843 (4)	
01	0.6848 (3)	0.2777 (2)	0.82920 (19)	0.0660 (7)	
O2	0.8378 (3)	0.3772 (3)	0.5944 (2)	0.0701 (7)	
03	0.7027 (3)	0.5425 (2)	0.50191 (17)	0.0557 (6)	
O4	1.1706 (3)	0.7698 (2)	0.6817 (2)	0.0641 (7)	
05	1.3355 (3)	0.8720 (3)	0.7792 (3)	0.0807 (8)	
06	1.1962 (3)	1.0279 (3)	0.8650 (3)	0.0758 (8)	
N1	0.3633 (3)	0.5894 (2)	0.7925 (2)	0.0463 (6)	
N2	0.8636 (3)	1.0913 (2)	0.7116 (2)	0.0498 (6)	
C1	0.4819 (3)	0.5701 (3)	0.6996 (3)	0.0439 (6)	
C2	0.5972 (3)	0.4684 (3)	0.7047 (3)	0.0433 (6)	
C3	0.5924 (4)	0.3757 (3)	0.8155 (3)	0.0446 (6)	
C4	0.4510 (4)	0.3239 (3)	1.0303 (3)	0.0537 (7)	
C5	0.3293 (4)	0.3460 (4)	1.1246 (3)	0.0602 (8)	

C6	0.2151 (4)	0.4483 (4)	1.1103 (3)	0.0631 (9)
C7	0.2249 (4)	0.5289 (3)	1.0010 (3)	0.0531 (7)
C8	0.4622 (3)	0.4037 (3)	0.9171 (3)	0.0433 (6)
C9	0.3498 (3)	0.5084 (3)	0.9022 (3)	0.0429 (6)
C10	0.7249 (3)	0.4555 (3)	0.5978 (3)	0.0455 (6)
C11	0.8225 (4)	0.5353 (4)	0.3913 (3)	0.0622 (9)
C12	0.7820 (5)	0.6430 (4)	0.2991 (3)	0.0687 (9)
C13	0.9825 (4)	1.0692 (3)	0.7539 (3)	0.0490 (7)
C14	1.0937 (4)	0.9640 (3)	0.7463 (3)	0.0472 (7)
C15	1.0809 (4)	0.8692 (3)	0.6907 (3)	0.0467 (7)
C16	0.9258 (4)	0.8116 (3)	0.5878 (3)	0.0522 (7)
C17	0.8017 (4)	0.8339 (4)	0.5473 (3)	0.0615 (8)
C18	0.6941 (4)	0.9426 (4)	0.5603 (4)	0.0662 (9)
C19	0.7149 (4)	1.0284 (3)	0.6131 (3)	0.0559 (8)
C20	0.9476 (3)	0.8971 (3)	0.6448 (3)	0.0446 (6)
C21	0.8410 (3)	1.0076 (3)	0.6566 (3)	0.0444 (6)
C22	1.2215 (4)	0.9479 (3)	0.7954 (3)	0.0544 (7)
C23	1.3084 (5)	1.0104 (5)	0.9282 (5)	0.0885 (13)
C24	1.2729 (6)	1.1118 (5)	0.9879 (5)	0.0966 (14)
H1	0.4869	0.6285	0.6276	0.0527*
H1A	0.2936	0.6539	0.7837	0.0555*
H2	0.7989	1.1595	0.7187	0.0597*
H4	0.5272	0.2552	1.0411	0.0645*
Н5	0.3230	0.2921	1.1988	0.0723*
H6	0.1319	0.4623	1.1747	0.0757*
H11A	0.8290	0.4551	0.3713	0.0747*
H11B	0.9212	0.5406	0.3986	0.0747*
H12A	0.7703	0.7216	0.3219	0.0824*
H12B	0.6873	0.6341	0.2893	0.0824*
H12C	0.8619	0.6438	0.2260	0.0824*
H13	0.9916	1.1284	0.7909	0.0588*
H16	0.9973	0.7392	0.5779	0.0626*
H17	0.7882	0.7763	0.5106	0.0738*
H18	0.6086	0.9569	0.5333	0.0794*
H23A	1.3054	0.9287	0.9850	0.1062*
H23B	1.4107	1.0114	0.8733	0.1062*
H24A	1.1696	1.1130	1.0390	0.1159*
H24B	1.2828	1.1918	0.9308	0.1159*
H24C	1.3426	1.0985	1.0338	0.1159*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0547 (5)	0.0919 (7)	0.0693 (6)	0.0301 (5)	0.0002 (4)	-0.0157 (5)
Cl2	0.0593 (6)	0.0814 (7)	0.1179 (8)	0.0357 (5)	-0.0449 (6)	-0.0431 (6)
01	0.0787 (15)	0.0485 (12)	0.0563 (12)	0.0336 (11)	-0.0233 (11)	-0.0177 (10)
O2	0.0536 (13)	0.0670 (15)	0.0664 (14)	0.0276 (11)	-0.0103 (11)	-0.0157 (12)
O3	0.0501 (11)	0.0544 (12)	0.0470 (11)	0.0140 (9)	-0.0064 (9)	-0.0133 (9)

O4	0.0712 (15)	0.0492 (12)	0.0719 (14)	0.0318 (11)	-0.0349 (12)	-0.0278 (11)
05	0.0585 (14)	0.0736 (16)	0.121 (3)	0.0266 (12)	-0.0419 (15)	-0.0473 (16)
06	0.0698 (15)	0.0779 (16)	0.0975 (19)	0.0253 (13)	-0.0478 (14)	-0.0465 (15)
N1	0.0419 (12)	0.0399 (12)	0.0469 (13)	0.0165 (10)	-0.0136 (10)	-0.0108 (10)
N2	0.0472 (13)	0.0390 (12)	0.0579 (14)	0.0169 (10)	-0.0176 (11)	-0.0178 (11)
C1	0.0434 (14)	0.0378 (13)	0.0445 (14)	0.0077 (11)	-0.0132 (11)	-0.0101 (11)
C2	0.0427 (14)	0.0377 (13)	0.0486 (15)	0.0086 (11)	-0.0157 (12)	-0.0165 (11)
C3	0.0499 (15)	0.0351 (13)	0.0489 (15)	0.0107 (11)	-0.0202 (12)	-0.0155 (11)
C4	0.0640 (19)	0.0403 (14)	0.0541 (17)	0.0024 (13)	-0.0219 (14)	-0.0082 (13)
C5	0.070 (2)	0.0568 (18)	0.0477 (16)	-0.0097 (16)	-0.0160 (15)	-0.0036 (14)
C6	0.0553 (18)	0.073 (3)	0.0500 (17)	-0.0062 (16)	-0.0034 (14)	-0.0135 (15)
C7	0.0410 (15)	0.0563 (17)	0.0541 (17)	0.0060 (13)	-0.0095 (12)	-0.0153 (14)
C8	0.0478 (15)	0.0354 (13)	0.0473 (15)	0.0018 (11)	-0.0166 (12)	-0.0128 (11)
C9	0.0433 (14)	0.0390 (13)	0.0459 (14)	0.0024 (11)	-0.0140 (11)	-0.0140 (11)
C10	0.0423 (14)	0.0408 (14)	0.0508 (15)	0.0066 (11)	-0.0143 (12)	-0.0151 (12)
C11	0.0510 (18)	0.070 (2)	0.0513 (17)	0.0107 (15)	-0.0031 (14)	-0.0209 (15)
C12	0.071 (3)	0.065 (2)	0.0568 (19)	0.0050 (17)	-0.0084 (16)	-0.0161 (16)
C13	0.0484 (16)	0.0412 (14)	0.0547 (16)	0.0092 (12)	-0.0160 (13)	-0.0174 (12)
C14	0.0468 (15)	0.0405 (14)	0.0492 (15)	0.0089 (12)	-0.0147 (12)	-0.0129 (12)
C15	0.0494 (15)	0.0368 (13)	0.0441 (14)	0.0140 (11)	-0.0128 (12)	-0.0104 (11)
C16	0.0624 (18)	0.0424 (15)	0.0464 (15)	0.0067 (13)	-0.0138 (13)	-0.0149 (12)
C17	0.070 (2)	0.0594 (19)	0.0595 (19)	-0.0027 (16)	-0.0224 (16)	-0.0203 (15)
C18	0.0578 (19)	0.076 (3)	0.069 (2)	0.0039 (17)	-0.0299 (17)	-0.0203 (18)
C19	0.0485 (16)	0.0542 (17)	0.0586 (18)	0.0124 (13)	-0.0173 (14)	-0.0162 (14)
C20	0.0473 (15)	0.0372 (13)	0.0392 (13)	0.0068 (11)	-0.0082 (11)	-0.0085 (11)
C21	0.0424 (14)	0.0389 (13)	0.0436 (14)	0.0086 (11)	-0.0102 (11)	-0.0106 (11)
C22	0.0505 (17)	0.0473 (16)	0.0614 (18)	0.0093 (13)	-0.0188 (14)	-0.0155 (14)
C23	0.077 (3)	0.091 (3)	0.115 (4)	0.020 (3)	-0.054 (3)	-0.044 (3)
C24	0.102 (4)	0.101 (4)	0.108 (4)	-0.009 (3)	-0.053 (3)	-0.034 (3)

Geometric parameters (Å, °)

Cl1—C7	1.731 (3)	C15—C20	1.471 (5)	
Cl2—C19	1.734 (4)	C16—C17	1.356 (6)	
O1—C3	1.234 (4)	C16—C20	1.410 (5)	
O2—C10	1.203 (4)	C17—C18	1.394 (5)	
O3—C10	1.338 (4)	C18—C19	1.371 (7)	
O3—C11	1.459 (4)	C19—C21	1.398 (5)	
O4—C15	1.233 (4)	C20—C21	1.403 (4)	
O5—C22	1.197 (4)	C23—C24	1.434 (9)	
O6—C22	1.336 (5)	N1—H1A	0.860	
O6—C23	1.452 (7)	N2—H2	0.860	
N1-C1	1.333 (4)	C1—H1	0.930	
N1-C9	1.375 (4)	C4—H4	0.930	
N2-C13	1.325 (5)	С5—Н5	0.930	
N2-C21	1.380 (5)	С6—Н6	0.930	
C1—C2	1.376 (4)	C11—H11A	0.970	
C2—C3	1.448 (4)	C11—H11B	0.970	

C2-C10	1.472 (4)	C12—H12A	0.960
C3—C8	1.479 (4)	C12—H12B	0.960
C4—C5	1.366 (5)	C12—H12C	0.960
C4—C8	1.406 (4)	C13—H13	0.930
C5—C6	1.386 (5)	C16—H16	0.930
C6-C7	1 374 (5)	C17—H17	0.930
C7 - C9	1 412 (4)	C18—H18	0.930
C8-C9	1 393 (4)	C23—H23A	0.930
C11-C12	1 470 (5)	C23—H23B	0.970
C13 - C14	1 378 (4)	C24_H24A	0.970
C13 - C14	1.578(4)	C_{24} H24B	0.960
C14 - C13	1.451 (5)	C_{24} H24C	0.900
014-022	1.405 (0)	024—11240	0.900
Cl1…N1	3.000 (3)	C9····H4 ^{ix}	3.3960
Cl2…N2	3.015 (4)	C9····H12B ^{xiv}	3.3338
01…02	2.786 (3)	C9····H24B ^x	3.5847
01…C1	3.593 (4)	C10···H2 ^{iv}	3.2052
01···C4	2.795 (4)	C10···H11B ^v	3.3254
01···C10	2.924(4)	C10····H16 ^v	3 5387
02···C1	3584(4)	C10H17	3 5173
02C3	2920(4)	$C11\cdots H6^{xvi}$	3 3472
02···C11	2.520(1) 2 641 (4)	$C11\cdots H16^{v}$	3 1099
03····C1	2.664 (4)	C11···H17	3 3049
0405	2.806 (5)	$C12\cdots H6^{xvi}$	3 5409
04 ···C13	2.000(3)	C12H13 ^{viii}	3 3546
04···C16	2 786 (5)	C12H17	3 3672
$04 \cdots C22$	2,917 (5)	$C12 \cdots H24B^{\text{viii}}$	3.0707
04 022	2.517(3) 3 579(4)	C12 H124D C13 H124V	3 3475
05 - C15	2,935(5)	$C13 \cdots H17^{\text{viii}}$	3 4514
05	2.935(5)	$C13 \cdots H23 A^{XV}$	3 1111
05 023	2.659 (7)	$C13 \cdots H24 A^{XY}$	2 01/6
N1…C3	2.009(3)	$C14\cdots H1 \Delta^{vi}$	3 5009
N1 C3 N2C15	2.829(4)	C14 H1A	3 0131
N2 C13 C1C8	2.850 (4)	$C15 \dots H1 A^{Vi}$	2 0607
C^{2}	2.739 (4)	$C15 \cdots H24 A^{XY}$	2.9007
C2C3	2.810(4)	C16H5ix	3.4101
C4C7	2.702(3)	C16Heix	3.0022
C5C9	2.767(4)		2 2211
C0C3	2.760 (4)	C10····HIIA	2.0925
C13····C20	2.732(3)	C17112A	2.9633
$C14\cdots C21$	2.818 (3)	C19 USix	5.4729
C16C19	2.763 (5)		3.3207
C1/···C21	2.787 (6)		5.2551
$C18 \cdots C20$	2.783 (6)	C19····H23B ⁴	3.49/5
C22···C24	3.5/4 (8)		3.3515
	3.445 (3)	C_{21} ···H16 ^{vm}	3.5751
	3.539 (3)	$C_2 1 \cdots H_2 4 A^{xv}$	3.5848
CI1C22 ¹	3.582 (4)	C21···H24C ^{xv}	3.5887
Cl2…Ol ⁿ	3.569 (4)	C22···H1A ^{v1}	3.2020

Cl2…O2 ⁱⁱ	3.552 (4)	C22····H4 ^{vii}	3.5808
Cl2…C12 ⁱⁱⁱ	3.575 (4)	C22····H12A ^{viii}	3.5259
O1…Cl2 ^{iv}	3.569 (4)	C23····H4 ^{vii}	2.9753
O1…N2 ^{iv}	2.777 (4)	C23····H24C ^{xvii}	3.3501
O1…C13 ^{iv}	3.250 (4)	C24····H4 ^{xi}	3.4444
O2…Cl2 ^{iv}	3.552 (4)	C24…H12C ^{viiii}	3.5293
O2…N2 ^{iv}	3.064 (4)	H1···Cl2 ⁱⁱⁱ	3.4520
02…C11 ^v	3.582 (6)	$H1\cdots O4^{i}$	2.9724
02…C16 ^v	3.411 (4)	H1…O5 ⁱ	3.4911
O4…Cl1 ^{vi}	3.445 (3)	H1…H5 ^{ix}	3.5789
04…N1 ^{vi}	2,748 (4)	H1···H11A ^{xiv}	3 2713
04···C1 ^{vi}	3 264 (4)	H1···H12B ^{xiv}	3 3710
05····Cl1 ^{vi}	3 539 (3)	H1H17	3 2601
O5…N1 ^{vi}	3,035(4)	$H1A\cdots O4^{i}$	1 9806
$05 \cdots C1^{vi}$	3 595 (4)	$H1405^{i}$	2 5061
$05 \cdot C4^{\text{vii}}$	3,530 (5)	$H1A \cdots C14^{i}$	3 5009
N1O4 ⁱ	2.748(4)	$H1AC15^{i}$	2.0607
N1O5	2.748(4)		2.9007
N201ii	3.033(4)		3.2020
N2Oi	2.777(4)		2.2095
N2C16viii	5.004(4)		5.1525 2.5002
	3.330(4)		5.5005 2.0254
	5.204 (4) 2.505 (4)		2.0554
$C_1 \cdots C_2$	5.595 (4) 2.201 (C)		2.4827
	3.391 (6)		3.4993
	3.530 (5)		2.9860
	3.561 (5)		3.2052
	3.320 (6)	H2…H16 ^{vm}	3.4976
C4···C24 ^x	3.394 (8)	H2···H23A ^{xv}	3.3595
C5…C8 ^{1x}	3.547 (6)	H4···O5 ^{vn}	2.8000
C5…C9 ^{1x}	3.580 (6)	$H4\cdots N1^{ix}$	3.5232
C6···C3 ^{ix}	3.391 (6)	H4····C7 ^{ix}	3.4967
C8····C4 ^{ix}	3.561 (5)	H4····C9 ^{ix}	3.3960
C8····C5 ^{ix}	3.547 (6)	H4…C22 ^{vii}	3.5808
C9····C4 ^{ix}	3.320 (6)	H4····C23 ^{vii}	2.9753
C9····C5 ^{ix}	3.580 (6)	H4····C24 ^x	3.4444
C11O2 ^v	3.582 (6)	H4…H1A ^{ix}	3.5893
C12···Cl2 ⁱⁱⁱ	3.575 (4)	H4····H23A ^{vii}	2.3028
C13····O1 ⁱⁱ	3.250 (4)	H4…H23B ^{vii}	2.8255
C13····C17 ^{viii}	3.565 (5)	H4…H24B ^x	3.2960
C15····C18 ^{viii}	3.496 (5)	H4···H24C ^x	2.7346
C15····C19 ^{viii}	3.569 (4)	H5…O5 ^{vii}	3.3522
C16…O2 ^v	3.411 (4)	H5…N1 ^{ix}	3.5029
C16…N2 ^{viii}	3.536 (4)	H5…C1 ^{ix}	3.3232
C16…C21 ^{viii}	3.452 (4)	H5…C2 ^{ix}	3.4991
C17····C13 ^{viii}	3.565 (5)	H5…C16 ^{ix}	3.0022
C18····C15 ^{viii}	3.496 (5)	H5…C17 ^{ix}	2.9835
C19····C15 ^{viii}	3.569 (4)	H5…C18 ^{ix}	3.3207
C20····C20 ^{viii}	3.592 (4)	H5…C20 ^{ix}	3.3515

C20····C21 ^{viii}	3.555 (4)	H5····H1 ^{ix}	3.5789
C21····C16 ^{viii}	3.452 (4)	H5…H16 ^{ix}	3.3282
C21····C20 ^{viii}	3.555 (4)	H5…H17 ^{ix}	3.2919
C22····Cl1 ^{vi}	3.582 (4)	H5····H24C ^x	3.2924
C24····C4 ^{xi}	3.394 (8)	H6…C3 ^{ix}	3.4919
Cl1…H1A	2.5955	H6····C11 ^{xii}	3.3472
Cl1…H6	2.7913	H6····C12 ^{xii}	3.5409
C12…H2	2.6194	H6…C16 ^{ix}	3.5518
Cl2…H18	2.7763	H6…H11A ^{xii}	3.0507
01…H4	2.5092	H6···H11B ^{xii}	3.0432
02…H11A	2.6635	H6…H12C ^{xii}	2.8622
02…H11B	2.5628	H6···H16 ^{ix}	3.2512
03…H1	2 2987	$H11A\cdots O4^{v}$	2 7435
03···H12A	2.5189	H11AN1 ^{xiv}	3 3055
03···H12B	2.5684	H11A····C1 ^{xiv}	3 3821
03···H12C	3 2006	H11A····C16 ^v	3 3311
03 H120 04…H16	2 4985	$H11A \cdots H1^{xiv}$	3 2713
04 III0 05H23A	2.4985		3 1323
05 H23R	2.0999		3.0507
О5 1125Б Об.:::Ш13	2.3010		2 4474
06H24A	2.5150		2.4474
06H24R	2.5027		2.0385
06Н24Б	2.3333	нпв…сто цирцахуі	3.3234
О0 H24C С2H1 A	5.1612 2.1494		2 1224
C2HIA	3.1464		3.1324
C3…HI	5.2749		2.9670
С3…Н4	2.0439		3.1192
С4…Н6	3.2247		3.1/24
C6…H4	3.2250		3.0510
C/···HIA	2.5766	H12AC13	3.34/5
С/…Н5	3.2255		3.4729
C8···HIA	3.1641		3.5259
С8…Н5	3.2474	H12A…H13 ^{vm}	2.8037
C9···HI	3.1894	H12A···H17	2.6339
С9…Н4	3.2535	H12A···H24B ^{vm}	3.1621
С9…Н6	3.2616	H12B····Cl2 ^m	3.0802
C10···HI	2.5882		3.0986
C10…H11A	2.6394	$H12B\cdots C1^{xiv}$	2.9743
C10···H11B	2.5927	$H12B\cdots C2^{xiv}$	3.0787
С14…Н2	3.1480	H12B····C3 ^{xiv}	3.3085
С15…Н13	3.2727	$H12B\cdots C8^{XIV}$	3.4431
C15…H16	2.6415	$H12B\cdots C9^{XIV}$	3.3338
C16…H18	3.2230	$H12B\cdots H1^{xiv}$	3.3710
C18…H16	3.2258	H12B…H1A ^{xiv}	3.5003
С19…Н2	2.5841	H12B···H24B ^{viii}	2.8090
C19…H17	3.2289	H12C…Cl1 ^{xvi}	3.0035
С20…Н2	3.1707	H12C···O6 ^{viii}	3.4495
C20…H17	3.2437	H12C····C24 ^{viii}	3.5293
C21…H13	3.1862	H12C…H6 ^{xvi}	2.8622

C21…H16	3.2643	H12C···H13 ^{viii}	3.0454
C21…H18	3.2495	H12C···H24B ^{viii}	2.7388
C22…H13	2.5883	H13…O1 ⁱⁱ	2.9311
С22…Н23А	2.6455	H13…O2 ⁱⁱ	3.4981
C22…H23B	2.5678	H13····C12 ^{viii}	3.3546
H1…H1A	2.1951	H13…H12A ^{viii}	2.8037
H2…H13	2.1819	H13…H12C ^{viii}	3.0454
H4…H5	2.2876	H13…H17 ^{viii}	3.5783
H5…H6	2.3133	H13…H23A ^{xv}	3.2242
H11A…H12A	2.7948	H13···H24A ^{xv}	3.1982
H11A…H12B	2 2943	$H16\cdots O2^{v}$	2.6581
H11A···H12C	2 3285	H16···N2 ^{viii}	3 4800
H11BH12A	2 3300	$H16 \cdot C10^{v}$	3 5387
H11B…H12B	2.3300	$H16\cdots C11^{v}$	3 1099
H11B····H12C	2.7947		3 5751
H16H17	2.2929	H16H2viii	3.076
H10 H17 H17H18	2.2784	H16 H2 H16H5 ^{ix}	2 2 2 2 2 2
	2.3222		2 2512
H22AH24A	2.2932		5.2512 2.4474
$H22A \dots H24C$	2.7047		2.4474
H22D H24A	2.2330		2.9070
П23D - Ц24A	2.7030	H17. 02	2.0059
H23BH24B	2.2578	H1703	2.9058
	2.2908		3.51/3
	3.0035		3.3049
	3.0728		3.3672
	3.4138		3.4514
	3.4520		3.2601
Cl2···H12A ^m	3.1724		3.2919
Cl2···H12B ^m	3.0802	H17…H11B	3.1192
Cl2···H23B ¹	3.1372	H17…H12A	2.6339
O1···H2 ^{IV}	2.0354	H17…H13 ^{vin}	3.5783
O1…H13 ^{iv}	2.9311	H18····O5 ¹	3.2961
O1···H23A ^{vn}	2.7404	H18····C18 ^m	3.2531
O2···H2 ^{iv}	2.4827	H18…H18 ⁱⁱⁱ	2.3421
O2…H11B ^v	2.6385	H23A···O1 ^{vii}	2.7404
O2…H13 ^{iv}	3.4981	H23A…N2 ^{xv}	3.5095
O2…H16 ^v	2.6581	H23A…C4 ^{vii}	3.1923
O2…H17 ^v	3.5157	H23A····C13 ^{xv}	3.4444
O3…H17	2.9058	H23A····H2 ^{xv}	3.3595
O4…H1 ^{vi}	2.9724	H23A…H4 ^{vii}	2.3028
O4…H1A ^{vi}	1.9806	H23A…H13 ^{xv}	3.2242
O4…H11A ^v	2.7435	H23A…H24C ^{xvii}	3.1658
O5…H1 ^{vi}	3.4911	H23B····Cl2 ^{vi}	3.1372
O5…H1A ^{vi}	2.5061	H23B····C19 ^{vi}	3.4975
O5…H4 ^{vii}	2.8000	H23B…H4 ^{vii}	2.8255
O5…H5 ^{vii}	3.3522	H23B····H24C ^{xvii}	2.7935
O5…H18 ^{vi}	3.2961	H24A…Cl1 ^{xiii}	3.0728
O6…H12A ^{viii}	3.0510	H24A…N2 ^{xv}	3.2174

O6…H12C ^{viii}	3.4495	H24A····C13 ^{xv}	2.9146
N1…H4 ^{ix}	3.5232	H24A····C14 ^{xv}	3.0131
N1…H5 ^{ix}	3.5029	H24A…C15 ^{xv}	3.4101
N1…H11A ^{xiv}	3.3055	H24A···C21 ^{xv}	3.5848
N1…H12B ^{xiv}	3.0986	H24A…H13 ^{xv}	3.1982
N2…H16 ^{viii}	3,4800	H24B…Cl1 ^{xiii}	3.4138
N2···H23A ^{xv}	3,5095	H24B····C3 ^{xi}	3.5623
N2···H24A ^{xv}	3.2174	H24B····C4 ^{xi}	3.0695
N2····H24C ^{xv}	3,4565	H24B···C5 ^{xi}	3.4891
C1···H5 ^{ix}	3 3232	$H24B\cdots C8^{xi}$	3 1021
$C1 \cdots H11 A^{xiv}$	3 3821	$H24B\cdots C9^{xi}$	3 5847
$C1 \cdots H12B^{xiv}$	2 9743	$H24B\cdots C12^{viii}$	3 0707
C2····H2 ^{iv}	3 4993	$H24B\cdots H4^{xi}$	3 2960
$C2 \cdots H5^{ix}$	3 4991	$H24B \cdot H12A^{viii}$	3 1621
$C2 \cdots H12B^{xiy}$	3.0787	$H24B \cdot H12R^{iii}$	2 8090
C3···H2iv	2 9860	$H24B \cdot H12C^{viii}$	2.0090
C3H6 ^{ix}	2.9800	$H24C \dots N2^{xy}$	3 4565
$C_3 \dots H_{12} \mathbf{P}_{xiv}$	3.4919	$H24C \dots C4^{xi}$	2 8703
C3H24Px	3.5005	$H24CC5^{xi}$	2.8703
	2 1022		2 5222
$C4 \cdots H23A$	3.1923	H_24CC_{21xy}	2 5 9 9 7
	3.0093		2.2501
C4H24C	2.8703	H_24CH_{xi}	2 7246
C5H24G ^x	2 2022		2.7540
C7 LLAix	3.2032		3.2924
C^{2} L12Dxiv	3.490/		3.1038
$C_8 H_2 A D_x$	3.4431	$H24C H24B^{AAA}$	2.7935
$C_8 \cdots H_2 4B^{*}$	3.1021	H24C···H24C ^{AVA}	3.2614
C8H24C*	5.5552		
C10—O3—C11	116.0 (3)	O5—C22—O6	122.1 (4)
C22—O6—C23	116.2 (3)	O5—C22—C14	126.0 (4)
C1—N1—C9	121.5 (3)	O6—C22—C14	111.8 (3)
C13—N2—C21	121.6 (3)	O6—C23—C24	108.7 (4)
N1—C1—C2	123.5 (3)	C1—N1—H1A	119.268
C1—C2—C3	119.6 (3)	C9—N1—H1A	119.263
C1-C2-C10	119.8 (3)	C13—N2—H2	119.225
C3—C2—C10	120.7 (3)	C21—N2—H2	119.224
O1—C3—C2	125.2 (3)	N1-C1-H1	118.267
O1—C3—C8	119.6 (3)	C2—C1—H1	118.268
C2—C3—C8	115.1 (3)	C5—C4—H4	119.631
C5—C4—C8	120.7 (3)	C8—C4—H4	119.632
C4—C5—C6	120.4 (3)	C4—C5—H5	119.785
C5—C6—C7	119.9 (3)	C6—C5—H5	119.782
Cl1—C7—C6	119.9 (3)	С5—С6—Н6	120.055
Cl1—C7—C9	119.3 (3)	С7—С6—Н6	120.052
С6—С7—С9	120.8 (3)	O3—C11—H11A	110.210
C3—C8—C4	119.9 (3)	O3—C11—H11B	110.206
С3—С8—С9	120.7 (3)	C12—C11—H11A	110.205

C4—C8—C9	119.3 (3)	C12—C11—H11B	110.201
N1—C9—C7	121.7 (3)	H11A—C11—H11B	108.495
N1—C9—C8	119.6 (3)	C11—C12—H12A	109.473
С7—С9—С8	118.8 (3)	C11—C12—H12B	109.470
O2—C10—O3	122.5 (3)	C11—C12—H12C	109.478
O2—C10—C2	125.3 (3)	H12A—C12—H12B	109.463
O3—C10—C2	112.2 (3)	H12A—C12—H12C	109.472
O3—C11—C12	107.5 (3)	H12B—C12—H12C	109.471
N2-C13-C14	124.1 (4)	N2—C13—H13	117.980
C13—C14—C15	119.1 (4)	C14—C13—H13	117.965
C13—C14—C22	120.1 (4)	C17—C16—H16	119.658
C15—C14—C22	120.8 (3)	C20—C16—H16	119.643
O4—C15—C14	125.0 (4)	C16—C17—H17	119.773
O4—C15—C20	119.7 (4)	C18—C17—H17	119.776
C14—C15—C20	115.3 (3)	C17—C18—H18	120.092
C17—C16—C20	120.7 (3)	C19—C18—H18	120.094
C16—C17—C18	120.5 (4)	O6—C23—H23A	109.956
C17—C18—C19	119.8 (4)	O6—C23—H23B	109.955
Cl2—C19—C18	119.2 (3)	C24—C23—H23A	109.957
Cl2—C19—C21	119.7 (3)	C24—C23—H23B	109.953
C18—C19—C21	121.1 (3)	H23A—C23—H23B	108.342
C15-C20-C16	119.7 (3)	C23—C24—H24A	109.475
C15-C20-C21	121.1 (3)	C23—C24—H24B	109.472
$C_{16} - C_{20} - C_{21}$	119.1 (3)	C23—C24—H24C	109.473
N_{2} - C ₂₁ - C ₁₉	122.4 (3)	H24A—C24—H24B	109.472
N2-C21-C20	118.9 (3)	H24A - C24 - H24C	109.470
$C_{19} - C_{21} - C_{20}$	118.8 (4)	H24B— $C24$ — $H24C$	109.466
		112.12 02.1 112.10	10,1100
C10-03-C11-C12	-176.3(3)	C3—C8—C9—N1	-2.5(5)
C10-O3-C11-H11A	63.6	C3—C8—C9—C7	177.9 (3)
C10-O3-C11-H11B	-56.2	C4—C8—C9—N1	177.7 (3)
$C_{11} = O_{3} = C_{10} = O_{2}$	1.3 (5)	C4—C8—C9—C7	-1.9(5)
C11-O3-C10-C2	-178.9(3)	03-C11-C12-H12A	56.7
C22-06-C23-C24	173.8 (3)	O3—C11—C12—H12B	-63.3
C22—O6—C23—H23A	-65.8	O3—C11—C12—H12C	176.7
C22—O6—C23—H23B	53.4	H11A—C11—C12—H12A	176.8
C23—O6—C22—O5	-5.1 (4)	H11A—C11—C12—H12B	56.8
C23—O6—C22—C14	173.6 (3)	H11A—C11—C12—H12C	-63.2
C1 - N1 - C9 - C7	179.6 (3)	H11B—C11—C12—H12A	-63.5
C1 - N1 - C9 - C8	-0.0(5)	H11B-C11-C12-H12B	176.6
C9 - N1 - C1 - C2	12(5)	H11B-C11-C12-H12C	56.5
C9-N1-C1-H1	-178.8	N2-C13-C14-C15	-1.0(4)
H1A - N1 - C1 - C2	-178.8	N_2 —C13—C14—C22	179.8 (2)
H1A—N1—C1—H1	1.2	H13—C13—C14—C15	179.0
H1A-N1-C9-C7	-0.4	H13-C13-C14-C22	-0.2
H1A—N1—C9—C8	-180.0	C13—C14—C15—O4	-177.9(3)
C_{13} N2 C_{21} C_{19}	179.0 (2)	C_{13} C_{14} C_{15} C_{20}	1.0 (4)
C13—N2—C21—C20	-0.4 (4)	C13—C14—C22—O5	-168.2(3)
			· · · - 、• /

C21—N2—C13—C14	0.7 (4)	C13—C14—C22—O6	13.1 (4)
C21—N2—C13—H13	-179.3	C15—C14—C22—O5	12.6 (4)
H2—N2—C13—C14	-179.3	C15—C14—C22—O6	-166.0 (2)
H2—N2—C13—H13	0.7	C22—C14—C15—O4	1.4 (4)
H2—N2—C21—C19	-1.0	C22—C14—C15—C20	-179.8 (2)
H2—N2—C21—C20	179.6	O4—C15—C20—C16	-1.9 (4)
N1—C1—C2—C3	0.2 (5)	O4-C15-C20-C21	178.2 (2)
N1-C1-C2-C10	-179.2 (3)	C14—C15—C20—C16	179.21 (19)
H1—C1—C2—C3	-179.8	C14—C15—C20—C21	-0.7 (3)
H1-C1-C2-C10	0.8	C17—C16—C20—C15	178.5 (3)
C1-C2-C3-O1	176.1 (3)	C17—C16—C20—C21	-1.6 (4)
C1—C2—C3—C8	-2.5 (5)	C20-C16-C17-C18	0.7 (4)
C1—C2—C10—O2	173.2 (4)	C20-C16-C17-H17	-179.3
C1—C2—C10—O3	-6.5 (5)	H16-C16-C17-C18	-179.3
C3—C2—C10—O2	-6.2 (6)	H16—C16—C17—H17	0.7
C3—C2—C10—O3	174.1 (3)	H16-C16-C20-C15	-1.5
C10—C2—C3—O1	-4.5 (6)	H16—C16—C20—C21	178.4
C10—C2—C3—C8	176.9 (3)	C16—C17—C18—C19	0.8 (5)
O1—C3—C8—C4	4.8 (5)	C16—C17—C18—H18	-179.2
O1—C3—C8—C9	-175.0 (3)	H17—C17—C18—C19	-179.2
C2—C3—C8—C4	-176.5 (3)	H17—C17—C18—H18	0.8
C2—C3—C8—C9	3.6 (5)	C17—C18—C19—Cl2	178.0 (3)
C5—C4—C8—C3	-178.1 (4)	C17-C18-C19-C21	-1.3 (5)
C5—C4—C8—C9	1.7 (6)	H18-C18-C19-Cl2	-2.0
C8—C4—C5—C6	-0.4 (6)	H18-C18-C19-C21	178.7
C8—C4—C5—H5	179.6	Cl2—C19—C21—N2	1.6 (4)
H4—C4—C5—C6	179.6	Cl2—C19—C21—C20	-179.00 (16)
H4—C4—C5—H5	-0.4	C18—C19—C21—N2	-179.0 (3)
H4—C4—C8—C3	1.9	C18—C19—C21—C20	0.4 (4)
H4—C4—C8—C9	-178.2	C15—C20—C21—N2	0.4 (4)
C4—C5—C6—C7	-0.7 (7)	C15—C20—C21—C19	-178.99 (19)
С4—С5—С6—Н6	179.3	C16—C20—C21—N2	-179.5 (2)
H5—C5—C6—C7	179.3	C16—C20—C21—C19	1.1 (4)
Н5—С5—С6—Н6	-0.7	O6—C23—C24—H24A	56.6
C5—C6—C7—Cl1	-178.8 (4)	O6—C23—C24—H24B	-63.4
C5—C6—C7—C9	0.5 (7)	O6—C23—C24—H24C	176.6
H6—C6—C7—Cl1	1.2	H23A—C23—C24—H24A	-63.8
Н6—С6—С7—С9	-179.5	H23A—C23—C24—H24B	176.2
Cl1—C7—C9—N1	0.6 (5)	H23A—C23—C24—H24C	56.2
Cl1—C7—C9—C8	-179.8 (3)	H23B—C23—C24—H24A	177.0
C6—C7—C9—N1	-178.7 (4)	H23B—C23—C24—H24B	57.0
C6—C7—C9—C8	0.9 (6)	H23B—C23—C24—H24C	-63.0

Symmetry codes: (i) x-1, y, z; (ii) x, y+1, z; (iii) -x+1, -y+2, -z+1; (iv) x, y-1, z; (v) -x+2, -y+1, -z+1; (vi) x+1, y, z; (vii) -x+2, -y+1, -z+2; (viii) -x+2, -y+2, -z+2; (xiv) -x+1, -y+1, -z+2; (xiv) -x+2, -y+2, -z+2; (xiv) -x+1, -y+1, -z+1; (xv) -x+2, -y+2, -z+2; (xvi) x+1, y, z-1; (xvii) -x+3, -y+2, -z+2.

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1—H1A····O4 ⁱ	0.86	1.98	2.748 (4)	148
N1—H1A····O5 ⁱ	0.86	2.51	3.035 (4)	121
N2—H2···O1 ⁱⁱ	0.86	2.04	2.777 (4)	144
N2—H2…O2 ⁱⁱ	0.86	2.48	3.064 (4)	126

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*, *y*+1, *z*.