CRYSTALLOGRAPHIC COMMUNICATIONS

Received 9 July 2015
Accepted 17 July 2015

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; cobalt(III); acac ligand; bridging hydroxide ligand

CCDC reference: 1413567
Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of di- μ-hydroxido- $\kappa^{4} O: O$-bis-[bis(acetylacetonato- $\left.\kappa^{2} O, O^{\prime}\right)$ cobalt(III)]

Casseday P. Richers, Jeffery A. Bertke* and Thomas B. Rauchfuss

School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA. *Correspondence e-mail: jbertke@illinois.edu

The dinuclear title complex, $\left[\mathrm{Co}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{4}(\mu-\mathrm{OH})_{2}\right]$ or $\left[\mathrm{Co}(\mathrm{acac})_{2}(\mu-\mathrm{OH})\right]_{2}$, where acac is acetylacetonate, is centrosymmetric with half of the molecule per asymmetric unit. The molecular structure is a dimer of octahedrally coordinated $\mathrm{Co}^{\mathrm{III}}$ atoms with four O atoms from two chelating acac ligands and two O atoms from bridging hydroxide ligands. The crystal packing features weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions between neighboring molecules, leading to the formation of chains normal to the $a c$ plane. The hydroxide H atoms are not involved in hydrogen bonding because of the bulky acac ligands. This is the first crystal structure reported of a dimeric transition metal bis-acac complex with OH^{-}as the bridging group.

1. Chemical context

Well-defined cobalt(III) hydroxide complexes are relatively rare, especially in the absence of amine ligands (Bryndza \& Tam, 1988). One of the earliest examples is $\left[\mathrm{Co}(\mathrm{acac})_{2}(\mu\right.$ $\mathrm{OH})]_{2}\left(\mathrm{acac}\right.$ is acetylacetonate, $\left.\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)$, (I), which was prepared by oxidation of $\mathrm{Co}(\mathrm{II})(\mathrm{acac})_{2}$ with hydrogen peroxide. The complex reacts with 2,4-pentanedione to form $\mathrm{Co}^{\mathrm{III}}(\mathrm{acac})_{3}$ and may serve as a useful model for hydration and oxidation catalysts (Masłowska \& Baranovski, 1978; Bergquist et al., 2003; Zinn et al., 2007; Wang et al., 2009) Boucher and Herrington characterized the complex according to IR and ${ }^{1} \mathrm{H}$ NMR spectra (Boucher \& Herrington, 1971). These data indicated a single diastereoisomer, the identity of which was not clear from the spectra. We now report its crystal structure, confirming that it is centrosymmetric.

2. Structural commentary

The structure of (I) contains one crystallographically independent $\mathrm{Co}^{\mathrm{III}}$ atom with an approximately octahedral coord-

Figure 1
The molecular structure of (I), showing displacement ellipsoids at the 35% probability for non-H atoms and spheres of arbitrary size for H atoms. The unlabeled atoms are related by the symmetry operator ($-x$, $-y+2,-z+1)$.
ination environment. The coordination sphere of Co 1 is filled by the oxygen atoms of two $\kappa^{2}-O, O^{\prime}$ acac ligands [$\mathrm{Co1}-\mathrm{O} 2=$ 1.8830 (16) $\AA, \quad \mathrm{Co} 1-\mathrm{O} 3=1.8770(16) \AA, \quad \mathrm{Co} 1-\mathrm{O} 4=$ 1.8814 (16) $\AA, \mathrm{Co} 1-\mathrm{O} 5=1.8820(17) \AA$) and two μ_{2}-hydroxyl groups $\left[\mathrm{Co} 1-\mathrm{O} 1=1.9131(16) \AA, \mathrm{Co} 1-\mathrm{O}^{\mathrm{i}}=1.9087\right.$ (17) \AA; symmetry code: (i) $-\mathrm{x},-\mathrm{y}+2,-\mathrm{z}+1$]. The angles around Co 1 are distorted slightly from the ideal 90° and 180° of a perfect octahedron. The cis angles range from 82.07 (7) to 95.92 (7) ${ }^{\circ}$ while the trans angles range from 173.53 (7) to 178.37 (6) ${ }^{\circ}$.
The molecular structure of (I) contains a $\left[\mathrm{Co}_{2}\left(\mu_{2}-\mathrm{OH}\right)_{2}\right]$ motif with each metal coordinated by two acac ligands in a κ^{2} O, O^{\prime} mode (Fig. 1). The two halves of the dimer are related via inversion symmetry. The $\mathrm{Co} 1 \cdots$ Co1 ${ }^{\mathrm{i}}$ distance is 2.8829 (7) \AA. This distance falls within the range ($2.696-3.355 \AA$) of all Co \cdots Co distances reported in the Cambridge Crystallographic Database (Groom \& Allen, 2014) for OH^{-}-bridged Co complexes in which the metals are coordinated by six oxygen atoms. It is well below the average Co \cdots Co distance of 3.108 Å.

3. Supramolecular features

There are no significant supramolecular features to discuss with the extended structure of (I). There are weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular interactions (Table 1) between one methyl group of an acac ligand and the hydroxide oxygen atom. These interactions result in the formation of chains normal to the $a c$ plane (Fig. 2). It should be noted that the hydroxyl H atom does not participate in hydrogen bonding. Examination of the packing diagram shows that the bulky acac ligands prevent any hydrogen-bonding interactions with neighboring molecules.

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 B \cdots \mathrm{O}^{\mathrm{i}}$	0.98	2.42	$3.395(3)$	174

Symmetry code: (i) $x, y-1, z$.

4. Database survey

One closely related crystal structure, $\left[\mathrm{Co}(L)_{2}(\mu-\mathrm{OH})\right]_{2} ; L=1$ -(dibenzylamino)-5,5-dimethyl-1,4-dioxohex-2-en-2-olate, has been reported previously (Wang et al., 2009). The ligand in this complex is a modified acac with a tert-butyl group in place of one methyl and a $\left\{\mathrm{CON}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}\right\}$ group in place of the other methyl group. The coordination environment of the $\mathrm{Co}^{\mathrm{II}}$ atoms is the same as in (I). The average $\mathrm{Co}-\mathrm{O}_{L}$ distance of $1.890 \AA$ is similar to the average $\mathrm{Co}-\mathrm{O}_{\text {acac }}$ distance in (I) of $1.881 \AA$. The average $\mathrm{Co}-\mathrm{OH}$ distance of $1.907 \AA$ is also comparable to that of (I) ($1.911 \AA$).
A search of the Cambridge Crystallographic Database (Groom \& Allen, 2014) returned 13 dimeric complexes with the general formula $\left[T M(\mathrm{acac})_{2}(\mu-X)\right]_{2} ; T M=$ transition metal, and $X=\mathrm{O}, \mathrm{OR}, \mathrm{NO}$, or S (Bottomley et al., 1982; Nakahanada et al., 1992; Smith et al., 1972; Sokolov et al., 1999). Complex (I) is the first crystal structure reported that fits this general formula in which the bridging group is OH^{-}.

Figure 2
A view along the a axis of the crystal structure of (I), showing extended chains normal to the $a c$ plane. The weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions are shown as red dashed lines. All H atoms except the hydroxide H atom (H1) and the interacting H atoms ($\mathrm{H} 1 B$) have been omitted for clarity. Color code: blue $=\mathrm{Co}$, red $=\mathrm{O}$, gray $=\mathrm{C}$, green $=\mathrm{H}$.

5. Synthesis and crystallization

The title complex was synthesized according to the procedures reported by Boucher \& Herrington (1971). To a mixture of $\mathrm{Co}(\mathrm{acac})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\left(2 \mathrm{~g}, 7.27 \times 10^{-3} \mathrm{~mol}, 1\right.$ equiv) and KOAc ($3.2 \mathrm{~g}, 3.26 \times 10^{-2} \mathrm{~mol}, 4.5$ equiv) in methanol $(125 \mathrm{ml})$ was added a solution of $\mathrm{H}_{2} \mathrm{O}_{2}$ in water $\left(30 \%_{\mathrm{wt}}, 2 \mathrm{ml}\right)$. The resulting solution changed color from pink to green. The reaction was stirred at room temperature for 1 h under an ambient atmosphere. The reaction was then concentrated to dryness on a rotary evaporator. The residual green solid was washed with water ($3 \times 20 \mathrm{ml}$) and then acetone ($3 \times 20 \mathrm{ml}$), and then dried in air, leaving the product ($0.85 \mathrm{~g}, 1.55 \times 10^{-3} \mathrm{~mol}, 43 \%$ yield). Crystals, suitable for X-ray diffraction, were grown by slow diffusion of pentane into chloroform solutions of the green product.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The hydroxyl H atom was located in a difference map and its position was allowed to refine freely. Methyl H atom positions, $R-\mathrm{CH}_{3}$, were optimized by rotation about $R-\mathrm{C}$ bonds with idealized $\mathrm{C}-\mathrm{H}, R-\mathrm{H}$ and $\mathrm{H} \cdots \mathrm{H}$ distances. Remaining H atoms were included as riding idealized contributors. Methyl and hydroxide H atom $U_{\text {iso }}$'s were assigned as $1.5 U_{\text {eq }}$ of the carrier atom; remaining H atom $U_{\text {iso }}$'s were assigned as $1.2 U_{\text {eq }}$ of the carrier atom.

Acknowledgements

This research was conducted under contract DEFG0290ER14146 with the US Department of Energy by its Division of Chemical Sciences, Office of Basic Energy Sciences.

References

Bergquist, C., Fillebeen, T., Morlok, M. M. \& Parkin, G. (2003). J. Am. Chem. Soc. 125, 6189-6199.
Bottomley, F., White, P. S. \& Mukaida, M. (1982). Acta Cryst. B38, 2674-2676.
Boucher, L. J. \& Herrington, D. R. (1971). J. Inorg. Nucl. Chem. 33, 4349-4351.
Bruker (2013). APEX2, SAINT, SADABS and XCIF. Bruker AXS, Inc., Madison, Wisconsin, USA.
Bryndza, H. E. \& Tam, W. (1988). Chem. Rev. 88, 1163-1188.
CrystalMaker (1994). CrystalMaker. CrystalMaker Software Ltd, Oxford, England (www.CrystalMaker.com).

Table 2
Experimental details.

Crystal data	
Chemical formula	$\left[\mathrm{Co}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{4}(\mathrm{OH})_{2}\right]$
$M_{\text {r }}$	548.30
Crystal system, space group	Triclinic, $P \overline{1}$
Temperature (K)	173
$a, b, c(\AA)$	$\begin{aligned} & 7.8610(11), 8.2481(11), \\ & 9.8372(13) \end{aligned}$
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	100.786 (8), 106.708 (8), 99.492 (9)
$V\left(\AA^{3}\right)$	583.67 (14)
Z	1
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	1.47
Crystal size (mm)	$0.23 \times 0.19 \times 0.04$
Data collection	
Diffractometer	Bruker Kappa APEXII CCD
Absorption correction	Integration (SADABS; Bruker, 2012)
$T_{\text {min }}, T_{\text {max }}$	0.776, 0.945
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	16164, 2617, 2228
$R_{\text {int }}$	0.083
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.646
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.036, 0.093, 1.05
No. of reflections	2617
No. of parameters	152
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.39, -0.53

Computer programs: APEX2 and SAINT (Bruker, 2013), SHELXS and SHELXTL (Sheldrick, 2008), SHELXL2013/4 (Sheldrick, 2015), CrystalMaker (CrystalMaker, 1994), XCIF (Bruker, 2013) and publCIF (Westrip, 2010).

Groom, C. R. \& Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662671.

Masłowska, J. \& Baranovski, J. B. (1978). J. Mol. Struct. 47, 405-416.
Nakahanada, M., Fujihara, T., Fuyuhiro, A. \& Kaizaki, S. (1992). Inorg. Chem. 31, 1315-1316.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Smith, D., Caughlan, C. N. \& Campbell, J. A. (1972). Inorg. Chem. 11, 2989-2993.
Sokolov, M., Imoto, H., Saito, T. \& Fedorov, V. (1999). J. Chem. Soc. Dalton Trans. pp. 85-90.
Wang, J., Morra, N. A., Zhao, H., Gorman, J. S. T., Lynch, V., McDonald, R., Reichwein, J. F. \& Pagenkopf, B. L. (2009). Can. J. Chem. 87, 328-334.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Zinn, P. J., Sorrell, T. N., Powell, D. R., Day, V. W. \& Borovik, A. S. (2007). Inorg. Chem. 46, 10120-10132.

supporting information

Acta Cryst. (2015). E71, 983-985 [https://doi.org/10.1107/S2056989015013663]

Crystal structure of di- μ-hydroxido- $\kappa^{4} \mathrm{O}: \mathrm{O}$-bis[bis(acetylacetonato$\left.\kappa^{2} O, O^{\prime}\right)$ cobalt(III)]

Casseday P. Richers, Jeffery A. Bertke and Thomas B. Rauchfuss

Computing details

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013/4 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008), CrystalMaker (CrystalMaker, 1994); software used to prepare material for publication: XCIF (Bruker, 2013) and publCIF (Westrip, 2010).

Di- μ-hydroxido- $\kappa^{4} O: O$-bis[bis(acetylacetonato- $\left.\kappa^{2} O, O^{\prime}\right)$ cobalt(III)]

Crystal data

$\left[\mathrm{Co}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{4}(\mathrm{OH})_{2}\right]$
$M_{r}=548.30$
Triclinic, $P \overline{1}$
$a=7.8610$ (11) \AA
$b=8.2481$ (11) \AA
$c=9.8372(13) \AA$
$\alpha=100.786(8)^{\circ}$
$\beta=106.708(8)^{\circ}$
$\gamma=99.492(9)^{\circ}$
$V=583.67(14) \AA^{3}$

Data collection

Bruker Kappa APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
profile data from φ and ω scans
Absorption correction: integration
(SADABS; Bruker, 2012)
$T_{\text {min }}=0.776, T_{\text {max }}=0.945$

$$
Z=1
$$

$F(000)=284$
$D_{\mathrm{x}}=1.560 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3791 reflections
$\theta=2.6-25.5^{\circ}$
$\mu=1.47 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Plate, blue
$0.23 \times 0.19 \times 0.04 \mathrm{~mm}$

16164 measured reflections
2617 independent reflections
2228 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.083$
$\theta_{\text {max }}=27.3^{\circ}, \theta_{\text {min }}=2.2^{\circ}$
$h=-10 \rightarrow 10$
$k=-10 \rightarrow 10$
$l=-12 \rightarrow 12$

Refinement

```
Refinement on \(F^{2}\)
Least-squares matrix: full
\(R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036\)
\(w R\left(F^{2}\right)=0.093\)
\(S=1.05\)
2617 reflections
152 parameters
0 restraints
```

Hydrogen site location: mixed
H atoms treated by a mixture of independent
\quad and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0366 P)^{2}+0.1984 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.39$ e \AA^{-3}
$\Delta \rho_{\min }=-0.53$ e \AA^{-3}

Special details

Experimental. One distinct cell was identified using APEX2 (Bruker, 2013). Fourteen frame series were integrated and filtered for statistical outliers using SAINT (Bruker, 2013) then corrected for absorption by integration using SAINT/SADABS, v2012/1 (Bruker, 2012) to sort, merge, and scale the combined data. No decay correction was applied.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Structure was phased by direct methods (Sheldrick, 2008). Systematic conditions suggested the ambiguous space group. The space group choice was confirmed by successful convergence of the full-matrix least-squares refinement on F^{2}. The final map had no significant features. A final analysis of variance between observed and calculated structure factors showed little dependence on amplitude and resolution.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\text {eq }}$
Co1	$0.08356(4)$	$0.96491(4)$	$0.63894(3)$	$0.01839(12)$
O1	$0.0955(2)$	$1.1492(2)$	$0.54669(18)$	$0.0197(4)$
H1	$0.182(4)$	$1.158(4)$	$0.530(3)$	0.030^{*}
O2	$0.0442(2)$	$0.7772(2)$	$0.71880(18)$	$0.0244(4)$
O3	$0.2682(2)$	$0.9024(2)$	$0.56955(18)$	$0.0220(4)$
C1	$0.0467(4)$	$0.5042(3)$	$0.7559(3)$	$0.0294(6)$
H1A	0.1238	0.5263	0.8584	0.044^{*}
H1B	0.0576	0.3969	0.7002	0.044^{*}
H1C	-0.0808	0.4967	0.7508	0.044^{*}
C2	$0.1074(3)$	$0.6460(3)$	$0.6920(2)$	$0.0216(5)$
C3	$0.2293(3)$	$0.6301(3)$	$0.6154(3)$	$0.0239(5)$
H3	0.2605	0.5236	0.5962	0.029^{*}
C4	$0.3092(3)$	$0.7594(3)$	$0.5647(2)$	$0.0204(5)$
C5	$0.4588(3)$	$0.7360(3)$	$0.5010(3)$	$0.0291(6)$
H5A	0.4703	0.8171	0.4411	0.044^{*}
H5B	0.4290	0.6201	0.4398	0.044^{*}
H5C	0.5745	0.7556	0.5805	0.044^{*}
O4	$-0.1041(2)$	$1.0298(2)$	$0.70365(18)$	$0.0211(3)$
O5	$0.2764(2)$	$1.0871(2)$	$0.81009(18)$	$0.0258(4)$
C6	$-0.2501(3)$	$1.1417(4)$	$0.8641(3)$	$0.0302(6)$
H6A	-0.2682	1.2526	0.8490	0.045^{*}
H6B	-0.2371	1.1397	0.9658	0.045^{*}
H6C	-0.3556	1.0527	0.045^{*}	
C7	$-0.0812(3)$	$1.1114(3)$	$0.8328(3)$	$0.0216(5)$
C8	$0.0873(3)$	$1.1769(3)$	$0.9434(3)$	$0.0265(5)$
H8	0.0877	1.2323	1.0373	0.032^{*}
C9	$0.2534(3)$	$1.1666(3)$	$0.9258(3)$	$0.0245(5)$
C10	$0.4268(4)$	$1.2530(4)$	$1.0500(3)$	$0.0383(7)$
H10A	0.4992	1.1698	0.057^{*}	
H10B	0.3972	1.3033	0.057^{*}	
H10C	0.4973	1.3424	1.0215	0.057^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co1	$0.01960(18)$	$0.01881(19)$	$0.02005(19)$	$0.00636(13)$	$0.01007(13)$	$0.00540(13)$
O1	$0.0196(8)$	$0.0184(8)$	$0.0237(9)$	$0.0052(7)$	$0.0118(7)$	$0.0033(7)$
O2	$0.0309(9)$	$0.0253(9)$	$0.0253(9)$	$0.0113(7)$	$0.0164(7)$	$0.0102(7)$
O3	$0.0223(8)$	$0.0223(9)$	$0.0267(9)$	$0.0086(7)$	$0.0130(7)$	$0.0083(7)$
C1	$0.0407(15)$	$0.0259(13)$	$0.0245(13)$	$0.0060(11)$	$0.0144(11)$	$0.0090(10)$
C2	$0.0227(12)$	$0.0217(12)$	$0.0162(11)$	$0.0041(9)$	$0.0015(9)$	$0.0035(9)$
C3	$0.0276(12)$	$0.0198(12)$	$0.0253(13)$	$0.0091(10)$	$0.0091(10)$	$0.0041(10)$
C4	$0.0199(11)$	$0.0214(12)$	$0.0166(11)$	$0.0057(9)$	$0.0023(9)$	$0.0018(9)$
C5	$0.0292(13)$	$0.0297(14)$	$0.0366(15)$	$0.0149(11)$	$0.0175(11)$	$0.0099(11)$
O4	$0.0210(8)$	$0.0233(9)$	$0.0218(8)$	$0.0066(7)$	$0.0114(7)$	$0.0042(7)$
O5	$0.0216(9)$	$0.0323(10)$	$0.0231(9)$	$0.0069(7)$	$0.0088(7)$	$0.0033(7)$
C6	$0.0301(13)$	$0.0399(15)$	$0.0278(14)$	$0.0147(12)$	$0.0167(11)$	$0.0085(12)$
C7	$0.0292(12)$	$0.0188(12)$	$0.0231(12)$	$0.0075(10)$	$0.0155(10)$	$0.0080(9)$
C8	$0.0317(13)$	$0.0303(14)$	$0.0196(12)$	$0.0094(11)$	$0.0120(10)$	$0.0034(10)$
C9	$0.0282(13)$	$0.0260(13)$	$0.0214(12)$	$0.0074(10)$	$0.0098(10)$	$0.0074(10)$
C10	$0.0313(14)$	$0.0479(18)$	$0.0277(15)$	$0.0049(13)$	$0.0074(12)$	$-0.0021(13)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

Co1-O3	1.8770 (16)	C4-C5	1.506 (3)
Col-O4	1.8814 (16)	C5-H5A	0.9800
Col-O5	1.8820 (17)	C5-H5B	0.9800
Col-O2	1.8830 (16)	C5-H5C	0.9800
$\mathrm{Col}-\mathrm{Ol}^{\text {i }}$	1.9087 (17)	O4-C7	1.268 (3)
Col-O1	1.9131 (16)	O5-C9	1.279 (3)
Col-Col ${ }^{\text {i }}$	2.8829 (7)	C6-C7	1.495 (3)
$\mathrm{O} 1-\mathrm{Col}^{1}$	1.9087 (17)	C6-H6A	0.9800
$\mathrm{O} 1-\mathrm{H} 1$	0.74 (3)	C6-H6B	0.9800
$\mathrm{O} 2-\mathrm{C} 2$	1.278 (3)	C6-H6C	0.9800
O3-C4	1.269 (3)	C7-C8	1.395 (3)
$\mathrm{C} 1-\mathrm{C} 2$	1.502 (3)	C8-C9	1.380 (3)
C1-H1A	0.9800	C8-H8	0.9500
C1-H1B	0.9800	C9-C10	1.502 (3)
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	0.9800	C10-H10A	0.9800
C2-C3	1.387 (3)	C10-H10B	0.9800
C3-C4	1.393 (3)	C10-H10C	0.9800
C3-H3	0.9500		
O3-Col-O4	178.37 (6)	C2-C3-C4	124.5 (2)
O3-Col-O5	85.06 (7)	C2-C3-H3	117.8
O4-Co1-O5	95.92 (7)	C4-C3-H3	117.8
$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{O} 2$	95.73 (7)	O3-C4-C3	125.0 (2)
$\mathrm{O} 4-\mathrm{Co} 1-\mathrm{O} 2$	85.55 (7)	$\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 5$	115.1 (2)
O5-Co1-O2	91.96 (7)	C3-C4-C5	120.0 (2)
$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{O} 1^{\text {i }}$	90.26 (7)	C4-C5-H5A	109.5

$\mathrm{O} 4-\mathrm{Co} 1-\mathrm{Ol}^{\text {i }}$	88.67 (7)	C4-C5-H5B	109.5
$\mathrm{O} 5-\mathrm{Col-O1}{ }^{\text {i }}$	173.53 (7)	H5A-C5-H5B	109.5
$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{Ol}^{\text {i }}$	92.95 (7)	C4-C5-H5C	109.5
$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{O} 1$	88.10 (7)	H5A-C5-H5C	109.5
O4-Co1-O1	90.54 (7)	H5B-C5-H5C	109.5
O5-Col-O1	93.29 (7)	C7-O4-Co1	124.45 (16)
$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{O} 1$	173.75 (7)	C9-O5- Co 1	123.82 (16)
$\mathrm{Ol}^{\mathrm{i}}-\mathrm{Col-O1}$	82.07 (7)	C7-C6-H6A	109.5
$\mathrm{O} 3-\mathrm{Col-Co1}{ }^{\text {i }}$	88.91 (5)	C7-C6-H6B	109.5
$\mathrm{O} 4-\mathrm{Co} 1-\mathrm{Co} 1^{\text {i }}$	89.47 (5)	H6A-C6-H6B	109.5
$\mathrm{O} 5-\mathrm{Col-Co1}{ }^{\text {i }}$	134.10 (5)	C7-C6-H6C	109.5
$\mathrm{O} 2-\mathrm{Col}-\mathrm{Col}^{\text {i }}$	133.93 (6)	H6A-C6-H6C	109.5
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{Col}{ }^{\mathrm{i}}$	41.09 (5)	H6B-C6-H6C	109.5
$\mathrm{O} 1-\mathrm{Col}-\mathrm{Col}^{\text {i }}$	40.98 (5)	O4-C7-C8	125.1 (2)
Col- ${ }^{\text {i }}$ O1- Col	97.93 (7)	O4-C7-C6	116.0 (2)
Col ${ }^{\text {i }}$ - $\mathrm{O} 1-\mathrm{H} 1$	103 (2)	C8-C7-C6	118.9 (2)
$\mathrm{Co1-O1-H1}$	106 (2)	C9-C8-C7	124.4 (2)
$\mathrm{C} 2-\mathrm{O} 2-\mathrm{Co} 1$	123.65 (15)	C9-C8-H8	117.8
$\mathrm{C} 4-\mathrm{O} 3-\mathrm{Co} 1$	124.41 (15)	C7-C8-H8	117.8
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5	O5-C9-C8	125.7 (2)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	O5-C9-C10	114.7 (2)
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	C8-C9-C10	119.6 (2)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	C9-C10-H10A	109.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	C9-C10-H10B	109.5
$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	H10A-C10-H10B	109.5
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	125.1 (2)	C9-C10-H10C	109.5
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 1$	115.2 (2)	H10A-C10-H10C	109.5
C3-C2-C1	119.6 (2)	H10B-C10-H10C	109.5

Symmetry code: (i) $-x,-y+2,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1 — \mathrm{H} 1 B \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.98	2.42	$3.395(3)$	174

Symmetry code: (ii) $x, y-1, z$.

