

Received 29 June 2015 Accepted 2 July 2015

Edited by M. Zeller, Youngstown State University, USA

Keywords: crystal structure; π - π stacking; hydrogen bond; halogen bond; halogenhalogen interaction

CCDC reference: 1410048 Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of 7,8-dichloro-4-oxo-4*H*-chromene-3-carbaldehyde

Yoshinobu Ishikawa

School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan. *Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

In the title compound, $C_{10}H_4Cl_2O_3$, a dichlorinated 3-formylchromone derivative, the fused-ring system is slightly puckered [dihedral angle between the benzene and pyran rings = 3.66 (10)°]. The dihedral angle between the pyran ring and the formyl plane is 8.64 (7)°. In the crystal, molecules are linked through π - π stacking interactions [centroid–centroid distance between the benzene and pyran rings = 3.727 (2) Å], C–H···O hydrogen bonds and short C···O contacts [2.838 (4) Å]. Halogen bonds between the formyl O atoms and the Cl atoms at the 7-position [Cl···O = 2.984 (3) Å, C–Cl···O = 170.83 (12)° and Cl···O-C = 116.05 (19)°] are also formed along the *a* axis, resulting in helical structures constructed by C–H···O hydrogen bonds and Cl···O halogen bonds along the *b* axis. In addition, type II halogen–halogen contacts between the chlorine atoms at the 7- and 8-positions [Cl···Cl = 3.519 (2) Å, C– Cl···Cl = 171.24 (10)° and 88.74 (11)°] are observed.

1. Chemical context

Halogen bonding and halogen-halogen interactions have recently attracted much attention in medicinal chemistry, chemical biology, supramolecular chemistry and crystal engineering (Auffinger *et al.*, 2004; Metrangolo *et al.*, 2005; Wilcken *et al.*, 2013; Sirimulla *et al.*, 2013; Persch *et al.*, 2015). Halogen bonding is defined as a net attractive interaction between an electrophilic region of a halogen atom in a molecule and a nucleophilic region of an atom in a molecule, and is characterized by a short contact between the two atoms. Halogen-halogen interactions are generally classified into two categories, type I ($\theta_1 = \theta_2$) and type II ($\theta_1 = 180, \theta_2 = 90$) where θ_1 and θ_2 are the two C—Cl···Cl angles. The type I contact is considered to be van der Waals, and the type II is halogen bonding, *i.e.*, an electrostatic interaction (Mukherjee *et al.*, 2014; Metrangolo *et al.*, 2014).

OPEN d ACCESS

CI

CI

I have recently reported the crystal structures of chlorinated 3-formylchromone derivatives 7-chloro-4-oxo-4*H*-chromene-3-carbaldehyde (Ishikawa, 2014*b*), 8-chloro-4-oxo-4*H*-chromene-3-carbaldehyde (Ishikawa, 2014*a*) and 6,8-dichloro-4-oxochromene-3-carbaldehyde (Ishikawa & Motohashi, 2013). As for the monochlorinated 3-formylchromones, a type I van

der Waals contact is observed in 7-chloro-4-oxo-4H-chro-

Figure 1

Sphere models of the crystal structures of (a) 7-chloro-4-oxo-4Hchromene-3-carbaldehyde (Ishikawa, 2014b), (b) 8-chloro-4-oxo-4Hchromene-3-carbaldehyde (Ishikawa, 2014a), (c) 6,8-dichloro-4-oxochromene-3-carbaldehyde (Ishikawa & Motohashi, 2013) and (d) the title compound.

mene-3-carbaldehyde (Fig. 1*a*), and a van der Waals contact is observed between the formyl oxygen atom and the chlorine atom in 8-chloro-4-oxo-4*H*-chromene-3-carbaldehyde (Fig. 1*b*). On the other hand, as for the dichlorinated 3-formylchromone, halogen bonding between the formyl oxygen atom and the chlorine atom at the 8-position and a type I short halogen-halogen contact between the chlorine atoms at the 6-position are observed in 6,8-dichloro-4oxochromene-3-carbaldehyde (Fig. 1*c*). As part of our investigation into these types of chemical bonding, I herein report the crystal structure of a dichlorinated 3-formylchromone, 7,8-dichloro-4-oxo-4*H*-chromene-3-carbaldehyde. The main objective of this study is to reveal the interaction modes of the chlorine substituents of the title compound in the solid state.

2. Structure commentary

The molecular structure of the title compound is shown in Fig. 2. The fused-ring system is slightly puckered [dihedral angle between the benzene and pyran rings = $3.66 (10)^{\circ}$]. The

Table 1		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C1-H1\cdots O2^i$	0.95	2.28	3.113 (4)	146(1)
$C4-H2\cdots O3^{ii}$	0.95	2.47	3.398 (4)	167 (1)
$C6-Cl1\cdots O3^{iii}$	1.72(1)	2.98(1)	4.693 (4)	171 (1)
$C10-O3\cdots Cl1^{iv}$	1.21 (1)	2.98 (1)	3.678 (4)	116 (1)
$C6-Cl1\cdots Cl2^{v}$	1.72 (1)	3.52 (1)	3.884 (4)	89 (1)
$C7 - Cl2 \cdot \cdot \cdot Cl1^{vi}$	1.72 (1)	3.52 (1)	5.229 (4)	171 (1)

Symmetry codes: (i) $-x + \frac{1}{2}, y - 1, z - \frac{1}{2}$; (ii) $-x + \frac{1}{2}, y + 1, z + \frac{1}{2}$; (iii) $x - \frac{1}{2}, -y, z$; (iv) $x + \frac{1}{2}, -y, z$; (v) $-x, -y, z + \frac{1}{2}$; (vi) $-x, -y, z - \frac{1}{2}$

dihedral angle between the pyran ring and the formyl plane is $8.64 (7)^{\circ}$.

3. Supramolecular features

In the crystal, the molecules are linked through π - π stacking interactions between molecules related by translation-symmetryⁱ [centroid-centroid distance between the benzene and pyran rings of the 4*H*-chromene units = 3.727 (2) Å; symmetry code: (i) x, y + 1, z], and through C-H···O hydrogen bonds that involve C1/O2 and C4/O3 atoms, as shown in Fig. 3 and listed in Table 1.

Halogen bonds are formed between the chlorine atom at the 7-position and the formyl oxygen atomⁱⁱ along the *a*-axis direction $[C11\cdots O3^{ii} = 2.984 (3) \text{ Å}, C6-C11\cdots O3^{ii} =$ $170.83 (12)^{\circ}, C11\cdots O3^{ii}-C10^{ii} = 116.05 (19)^{\circ};$ symmetry code (ii) $x - \frac{1}{2}, -y, z$], resulting in helical structures constructed by $C-H\cdots O$ hydrogen bonds and $C1\cdots O$ halogen bonds along the *b*-axis direction, as shown in Figs. 3 and 4. In addition, type II halogen–halogen contacts are observed between the chlorine atoms at the 7- and 8-positionⁱⁱⁱ $[C11\cdots C12^{iii} =$ $3.519 (2) \text{ Å}, C7^{iii}-C12^{iii}\cdots C11 = 171.24 (10)^{\circ}, C6-C11\cdots C12^{iii} =$ $88.74 (11)^{\circ};$ symmetry code (iii) $-x, -y, z + \frac{1}{2}$], as shown in Fig. 1*d*. These electrostatic interactions around the chlorine atoms in the title compound are likely due to the cooperativity of the electron-withdrawing chlorine atoms at the 7- and 8-

Figure 2

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.

research communications

Figure 3

A packing view of the title compound. $C-H\cdots O$ hydrogen bonds and $Cl\cdots O$ halogen bonds are represented as dashed lines.

positions. Thus, it is suggested that the chlorine atoms should make their σ -holes larger, and their electropositive regions contact the electronegative regions of the oxygen and chlorine atoms.

In addition to the C-H···O hydrogen bonds, halogen bonds and type II halogen-halogen contacts, an unusually short contact is revealed between the α,β -unsaturated carbonyl O2 and the C-H group of C1^{iv} [2.838 (4) Å; symmetry code (iv) $-x + \frac{1}{2}$, $y, z + \frac{1}{2}$; Fig. 1*d*]. This interesting feature is possibly caused by a dipole-dipole interaction between the O atom and the C-H group that is enhanced by the polarizing effect of the two chlorine atoms at the 7- and 8positions of the chromone ring. These observations should be helpful in understanding interactions of halogenated ligands with proteins, and thus valuable for rational drug design.

Figure 4

A helical structure constructed by $C-H\cdots O$ hydrogen bonds and $Cl\cdots O$ halogen bonds in the crystal packing.

Experimental details.	
rystal data	
chemical formula	$C_{10}H_4Cl_2O_3$
M _r	243.05
Crystal system, space group	Orthorhombic, $Pca2_1$
Femperature (K)	100
a, b, c (A)	23.091 (7), 3.7704 (18), 10.729 (5)
$V(\dot{A}^3)$	934.1 (7)
Z	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.67
Crystal size (mm)	$0.41 \times 0.12 \times 0.05$
Data collection	
Diffractometer	Rigaku AFC-7R
No. of measured, independent and observed $[F^2 > 2.0\sigma(F^2)]$	1571, 1291, 1155
	0.015
Λ_{int}	0.013
$\sin \theta / \lambda $ _{max} (A)	0.650
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.025, 0.057, 1.05
No. of reflections	1291
No. of parameters	136
No. of restraints	1
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.24, -0.27
Absolute structure	Flack (1983), 169 Friedel pairs
Absolute structure parameter	0.06 (8)

Computer programs: WinAFC Diffractometer Control Software (Rigaku, 1999), SIR2008 (Burla et al., 2007), SHELXL97 (Sheldrick, 2008) and CrystalStructure (Rigaku, 2010).

4. Synthesis and crystallization

3',4'-Dichloro-2'-hydroxyacetophenone was prepared from 2,3-dichlorophenol by a Fries rearrangement reaction. To a solution of 3',4'-dichloro-2'-hydroxyacetophenone (5.9 mmol) in *N*,*N*-dimethylformamide (20 ml) was added dropwise POCl₃ (11.7 mmol) at 273 K. After the mixture had been stirred for 14 h at room temperature, water (100 ml) was added. The precipitates were collected, washed with water, and dried *in vacuo* (yield: 64%). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.82$ (*d*, 1H, J = 8.8 Hz), 8.08 (*d*, 1H, J = 8.8 Hz), 9.05 (*s*, 1H), 10.10 (*s*, 1H). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a tetrahydrofuran solution of the title compound at room temperature.

5. Refinement

Table 2

Crystal data, data collection and structure refinement details are summarized in Table 2. The C-bound hydrogen atoms were placed in geometrical positions and refined using a riding model [C-H 0.95 Å, $U_{iso}(H) = 1.2U_{eq}(C)$].

Acknowledgements

The University of Shizuoka is acknowledged for instrumentation support.

References

Auffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, **101**, 16789–16794.

- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Ishikawa, Y. (2014*a*). Acta Cryst. E70, 0743.
- Ishikawa, Y. (2014b). Acta Cryst. E70, 0831.
- Ishikawa, Y. & Motohashi, Y. (2013). Acta Cryst. E69, 01416.
- Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395.
- Metrangolo, P. & Resnati, G. (2014). IUCrJ, 1, 5-7.
- Mukherjee, A. & Desiraju, G. R. (2014). IUCrJ, 1, 49-60.

- Persch, E., Dumele, O. & Diederich, F. (2015). *Angew. Chem. Int. Ed.*. **54**, 3290–3327.
- Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.

Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Sirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781–2791.
- Wilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363–1388.

supporting information

Acta Cryst. (2015). E71, 902-905 [https://doi.org/10.1107/S205698901501275X]

Crystal structure of 7,8-dichloro-4-oxo-4H-chromene-3-carbaldehyde

Yoshinobu Ishikawa

Computing details

Data collection: *WinAFC Diffractometer Control Software* (Rigaku, 1999); cell refinement: *WinAFC Diffractometer Control Software* (Rigaku, 1999); data reduction: *WinAFC Diffractometer Control Software* (Rigaku, 1999); program(s) used to solve structure: *SIR2008* (Burla *et al.*, 2007); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *CrystalStructure* (Rigaku, 2010); software used to prepare material for publication: *CrystalStructure* (Rigaku, 2010).

7,8-Dichloro-4-oxo-4H-chromene-3-carbaldehyde

Crystal data	
$C_{10}H_4Cl_2O_3$ $M_r = 243.05$ Orthorhombic, <i>Pca2</i> ₁ Hall symbol: P 2c -2ac a = 23.091 (7) Å b = 3.7704 (18) Å c = 10.729 (5) Å V = 934.1 (7) Å ³ Z = 4	F(000) = 488.00 $D_x = 1.728 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71069 \text{ Å}$ Cell parameters from 22 reflections $\theta = 15.8-17.3^{\circ}$ $\mu = 0.67 \text{ mm}^{-1}$ T = 100 K Plate, yellow $0.41 \times 0.12 \times 0.05 \text{ mm}$
Data collection	
Rigaku AFC-7R diffractometer ω scans 1571 measured reflections 1291 independent reflections 1155 reflections with $F^2 > 2.0\sigma(F^2)$ $R_{int} = 0.015$	$\theta_{\text{max}} = 27.5^{\circ}$ $h = 0 \rightarrow 29$ $k = -4 \rightarrow 2$ $l = -7 \rightarrow 13$ 3 standard reflections every 150 reflections intensity decay: 1.1%
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.057$ S = 1.05 1291 reflections 136 parameters 1 restraint Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0252P)^2 + 0.2201P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.24$ e Å ⁻³ $\Delta\rho_{min} = -0.27$ e Å ⁻³ Absolute structure: Flack (1983), 169 Friedel pairs Absolute structure parameter: 0.06 (8)

Special details

Refinement. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on F^2 . *R*-factor (gt) are based on *F*. The threshold expression of $F^2 > 2.0 \sigma(F^2)$ is used only for calculating *R*-factor (gt).

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cl1	-0.02754 (3)	0.3441 (2)	0.16617 (7)	0.02008 (17)
Cl2	0.05650 (3)	-0.0003 (3)	-0.03533 (8)	0.01821 (16)
01	0.17307 (8)	-0.0690 (6)	0.04845 (18)	0.0137 (5)
O2	0.24923 (9)	0.3154 (5)	0.36500 (17)	0.0179 (5)
O3	0.34477 (9)	-0.3040 (6)	0.12579 (19)	0.0254 (6)
C1	0.22935 (12)	-0.1270 (8)	0.0740 (3)	0.0136 (7)
C2	0.25652 (12)	-0.0155 (7)	0.1782 (3)	0.0140 (6)
C3	0.22568 (13)	0.1862 (9)	0.2724 (3)	0.0149 (7)
C4	0.12566 (13)	0.3790 (8)	0.3362 (3)	0.0156 (7)
C5	0.06756 (13)	0.4108 (8)	0.3106 (3)	0.0169 (7)
C6	0.04536 (12)	0.2967 (8)	0.1961 (3)	0.0156 (7)
C7	0.08124 (12)	0.1435 (8)	0.1075 (3)	0.0132 (7)
C8	0.16288 (12)	0.2231 (8)	0.2485 (3)	0.0116 (7)
C9	0.13996 (12)	0.1023 (8)	0.1362 (3)	0.0127 (7)
C10	0.31843 (13)	-0.1099 (9)	0.1950 (3)	0.0195 (7)
H1	0.2515	-0.2554	0.0145	0.0163*
H2	0.1406	0.4626	0.4133	0.0187*
H3	0.0423	0.5109	0.3710	0.0203*
H4	0.3385	-0.0119	0.2642	0.0233*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement para	meters (Ų)
--------------------------	------------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0144 (3)	0.0234 (4)	0.0224 (4)	0.0021 (3)	0.0007 (4)	0.0024 (4)
C12	0.0181 (3)	0.0216 (4)	0.0149 (3)	-0.0005 (4)	-0.0043 (4)	-0.0019 (4)
01	0.0147 (10)	0.0162 (12)	0.0102 (10)	0.0015 (9)	-0.0001 (9)	-0.0031 (9)
O2	0.0218 (10)	0.0199 (11)	0.0122 (11)	-0.0014 (10)	-0.0039 (10)	-0.0028 (11)
03	0.0199 (12)	0.0330 (14)	0.0233 (13)	0.0064 (11)	-0.0001 (9)	-0.0089 (12)
C1	0.0154 (13)	0.0113 (16)	0.0140 (15)	0.0000 (12)	0.0013 (13)	0.0014 (13)
C2	0.0152 (14)	0.0118 (14)	0.0148 (15)	0.0014 (11)	0.0005 (13)	0.0027 (16)
C3	0.0214 (15)	0.0128 (16)	0.0106 (14)	-0.0016 (13)	-0.0019 (13)	0.0040 (14)
C4	0.0224 (15)	0.0113 (16)	0.0130 (16)	-0.0017 (13)	0.0003 (13)	-0.0023 (13)
C5	0.0209 (15)	0.0161 (18)	0.0137 (15)	-0.0012 (14)	0.0064 (13)	-0.0008 (13)
C6	0.0148 (13)	0.0111 (15)	0.0208 (18)	0.0000 (12)	0.0011 (12)	0.0024 (14)
C7	0.0152 (14)	0.0106 (15)	0.0139 (15)	-0.0045 (13)	-0.0033 (12)	0.0026 (13)
C8	0.0149 (14)	0.0112 (16)	0.0087 (14)	-0.0025 (12)	-0.0002 (12)	-0.0002 (12)
C9	0.0193 (14)	0.0093 (14)	0.0095 (14)	0.0016 (12)	0.0030 (12)	0.0016 (12)
C10	0.0209 (15)	0.0208 (17)	0.0166 (16)	0.0003 (14)	0.0012 (13)	-0.0017 (14)

Geometric parameters (Å, °)

Cl1—C6	1.723 (3)	C4—C5	1.375 (5)
Cl2—C7	1.723 (3)	C4—C8	1.403 (4)
O1—C1	1.346 (4)	C5—C6	1.399 (5)
O1—C9	1.374 (4)	C6—C7	1.387 (4)
O2—C3	1.233 (4)	С7—С9	1.399 (4)
O3—C10	1.207 (4)	C8—C9	1.393 (4)
C1—C2	1.349 (5)	C1—H1	0.950
C2—C3	1.452 (4)	C4—H2	0.950
C2—C10	1.484 (5)	С5—Н3	0.950
C3—C8	1.479 (4)	C10—H4	0.950
Cl1···Cl2	3.1821 (13)	Cl1…H3	2.7981
Cl2…O1	2.850 (3)	O2…H2	2.6203
O1…C3	2.860 (4)	O2…H4	2.6344
O2…C1	3.570 (4)	O3…H1	2.4697
O2…C4	2.880 (4)	C1…H4	3.2719
O2…C10	2.907 (4)	C3…H1	3.2841
O3…C1	2.803 (4)	C3…H2	2.6882
C1…C7	3.587 (4)	С3…Н4	2.7113
C1…C8	2.758 (5)	C6…H2	3.2648
C2…C9	2.765 (4)	С7…Н3	3.2742
C4…C7	2.803 (4)	С8…Н3	3.2642
C5…C9	2.766 (4)	С9…Н1	3.1865
C6…C8	2.785 (4)	С9…Н2	3.2686
Cl1····Cl2 ⁱ	3.5191 (17)	C10…H1	2.5378
Cl1…O3 ⁱⁱ	2.984 (3)	H1…H4	3.4723
Cl2…Cl1 ⁱⁱⁱ	3.5191 (17)	H2…H3	2.3217
O1…O2 ^{iv}	3.533 (3)	Cl1····H3 ^{xi}	3.2315
O1…O2 ^v	3.032 (3)	Cl1····H4 ⁱⁱ	3.4992
O1····C8 ^{vi}	3.434 (4)	Cl2···H3 ⁱⁱⁱ	3.1499
O1····C9 ^{vi}	3.352 (4)	Cl2····H3 ^{xi}	3.1018
O2…O1 ^{vii}	3.032 (3)	Cl2…H4 ^v	3.2415
O2…O1 ^{viii}	3.533 (3)	O1…H1 ^{ix}	3.5807
O2…C1 ^{vii}	2.838 (4)	O1···H4 ^v	3.0689
O2…C1 ^{viii}	3.113 (4)	O2…H1 ^{vii}	2.6840
O2····C2 ^{ix}	3.227 (4)	O2…H1 ^{viii}	2.2789
O2····C2 ^{vii}	3.586 (4)	O2…H4 ^{ix}	3.4425
O2····C3 ^{ix}	3.473 (4)	O3…H2 ^{iv}	2.4674
O2…C10 ^{ix}	3.252 (4)	O3····H4 ^{vi}	3.0577
O3…Cl1 ^x	2.984 (3)	C1…H1 _{ix}	3.3865
O3····C2 ^{vi}	3.415 (4)	C2…H1 ^{ix}	3.3630
O3…C4 ^{iv}	3.398 (4)	C3…H1 ^{ix}	3.5280
O3…C10 ^{vi}	3.186 (5)	C3····H1 ^{vii}	3.1298
C1····O2 ^{iv}	3.113 (4)	C3····H1 ^{viii}	3.3849
C1…O2 ^v	2.838 (4)	C4····H2 ^{vi}	3.5694
C1····C2 ^{vi}	3.587 (5)	C5····H3 ^{vi}	3.5033

supporting information

C1···C3 ^{vi}	3.354 (5)	C6…H3 ^{vi}	3.5082
C1···C3 ^v	3.597 (5)	C8····H2 ^{vi}	3.4070
C1···C8 ^{vi}	3.445 (5)	C10····H2 ^{iv}	3.5538
C2····O2 ^{vi}	3.227 (4)	C10…H4 ^{vi}	3.5117
C2…O2 ^v	3.586 (4)	H1···O1 ^{vi}	3.5807
C2···O3 ^{ix}	3.415 (4)	H1····O2 ^{iv}	2.2789
C2…C1 ^{ix}	3.587 (5)	H1…O2 ^v	2.6840
C2···C3 ^{vi}	3.254 (5)	H1····C1 ^{vi}	3.3865
C3…O2 ^{vi}	3.473 (4)	H1····C2 ^{vi}	3.3630
C3····C1 ^{ix}	3.354 (5)	H1····C3 ^{vi}	3.5280
C3····C1 ^{vii}	3.597 (5)	H1····C3 ^{iv}	3.3849
C3····C2 ^{ix}	3.254 (5)	H1····C3 ^v	3.1298
C3…C10 ^{ix}	3.510 (5)	H1···H2 ^{iv}	2.9187
C4···O3 ^{viii}	3.398 (4)	$H1\cdots H4^{v}$	3.5172
C4···C8 ^{ix}	3.428 (5)	H2····O3 ^{viii}	2.4674
C4…C9 ^{ix}	3.486 (4)	H2····C4 ^{ix}	3.5694
C5····C6 ^{ix}	3.596 (5)	H2···C8 ^{ix}	3.4070
C5····C7 ^{ix}	3 532 (5)	$H2\cdots C10^{viii}$	3 5538
C6····C5 ^{vi}	3,596 (5)	H2···H1 ^{viii}	2.9187
C6····C7 ^{ix}	3,432(5)	H3····Cl1 ^{xii}	3 2315
C7···C5 ^{vi}	3 532 (5)	H3…Cl2 ⁱ	3 1499
C7…C6 ^{vi}	3432(5)	H3····Cl2 ^{xii}	3 1018
C8…O1 ^{ix}	3,132(0) 3,434(4)	H3···C5 ^{ix}	3 5033
C8····C1 ^{ix}	3 445 (5)	H3···C6 ^{ix}	3 5082
	3 428 (5)	H4···Cl1×	3 4992
	3,567 (5)	H4···Cl2 ^{vii}	3 2415
$C9\cdots O1^{ix}$	3.367(3) 3.352(4)	$H4\cdots O1^{vii}$	3.0689
	3.332(4) 3.486(4)	$H4\cdots O2^{vi}$	3 4425
	3,567 (5)	$H4\cdots O3^{ix}$	3.0577
$C10\cdots O2^{vi}$	3.507(5) 3.252(4)	H4····C10 ^{ix}	3 5117
$C10 \cdot O2$	3 186 (5)	$H4 \cdots H1^{vii}$	3 5172
$C10 \cdot C3^{vi}$	3,510 (5)	114 111	5.5172
010 05	5.510(5)		
$C1_01_0$	118 3 (3)	C_{3} C_{8} C_{4}	1216(3)
01 - 01 - 02	110.5(3) 124 5(3)	C_{3} C_{8} C_{9}	121.0(3) 1195(3)
C1 C2 C3	124.5(3) 120.8(3)	$C_1 = C_2 = C_2$	119.5(3)
C1 - C2 - C3	120.0(3)	$C_{1} = C_{3} = C_{3}$	119.0 (3)
C1 - C2 - C10	110.5(3) 120.9(3)	01 - 02 - 03	110.2(3) 122.3(3)
C_{3} C_{2} C_{10}	120.9(3) 123.5(3)	C7 C9 C8	122.5(3) 121.5(3)
02 - C3 - C2	123.3(3) 122.4(2)	$C_{1} = C_{2} = C_{3}$	121.3(3) 122.8(2)
02 - C3 - C8	122.4(3)	03-010-02	123.8 (3)
$C_2 - C_3 - C_8$	114.2(3) 1200(2)	$C_1 = C_1 = H_1$	117.710
$C_4 = C_5 = C_4$	120.0(3)	$C_2 - C_1 - H_1$	11/./19
C4 - C5 - C6	120.4(3)	$C^{\circ} = C^{4} = H^{2}$	119.983
CII - C0 - C3	119.5 (3)	C_{4} C_{5} H_{2}	119.980
CII - Cb - C'	120.0(3)	C4-C5-H3	119.801
$C_{0} = C_{0} = C_{1}$	120.7 (3)	$C_0 - C_3 - H_3$	119./90
C12-C'/-C6	122.8 (3)	03—C10—H4	118.100
CI2—C7—C9	118.8 (2)	C2—C10—H4	118.125

С6—С7—С9	118.3 (3)		
C1—O1—C9—C7	-177.5 (3)	C8—C4—C5—C6	-1.6 (5)
C1—O1—C9—C8	1.3 (4)	С8—С4—С5—Н3	178.4
C9—O1—C1—C2	-2.9 (4)	H2—C4—C5—C6	178.4
C9—O1—C1—H1	177.1	H2—C4—C5—H3	-1.6
O1—C1—C2—C3	-0.8 (5)	H2-C4-C8-C3	-0.4
O1—C1—C2—C10	178.1 (3)	H2—C4—C8—C9	180.0
H1—C1—C2—C3	179.2	C4—C5—C6—Cl1	-179.4 (3)
H1-C1-C2-C10	-1.9	C4—C5—C6—C7	1.3 (5)
C1—C2—C3—O2	-174.8 (3)	H3-C5-C6-Cl1	0.6
C1—C2—C3—C8	5.5 (4)	Н3—С5—С6—С7	-178.7
C1—C2—C10—O3	-6.0 (5)	Cl1—C6—C7—Cl2	1.0 (4)
C1-C2-C10-H4	173.9	Cl1—C6—C7—C9	-178.62 (18)
C3—C2—C10—O3	172.8 (3)	C5—C6—C7—Cl2	-179.7 (3)
С3—С2—С10—Н4	-7.2	С5—С6—С7—С9	0.7 (5)
C10—C2—C3—O2	6.3 (5)	Cl2—C7—C9—O1	-3.2 (4)
C10—C2—C3—C8	-173.4 (3)	Cl2—C7—C9—C8	178.01 (18)
O2—C3—C8—C4	-6.1 (5)	C6—C7—C9—O1	176.4 (3)
O2—C3—C8—C9	173.5 (3)	C6—C7—C9—C8	-2.4 (4)
C2—C3—C8—C4	173.6 (3)	C3—C8—C9—O1	3.7 (4)
C2—C3—C8—C9	-6.8 (4)	C3—C8—C9—C7	-177.6 (3)
C5—C4—C8—C3	179.6 (3)	C4—C8—C9—O1	-176.7 (3)
C5—C4—C8—C9	-0.0 (4)	C4—C8—C9—C7	2.0 (4)

Symmetry codes: (i) -*x*, -*y*, *z*+1/2; (ii) *x*-1/2, -*y*, *z*; (iii) -*x*, -*y*, *z*-1/2; (iv) -*x*+1/2, *y*-1, *z*-1/2; (v) -*x*+1/2, *y*, *z*-1/2; (vi) *x*, *y*-1, *z*; (vii) -*x*+1/2, *y*, *z*+1/2; (viii) -*x*+1/2, *y*, *z*+1/2; (ix) *x*, *y*+1, *z*; (x) *x*+1/2, -*y*, *z*; (xi) -*x*, -*y*+1, *z*-1/2; (xii) -*x*, -*y*+1, *z*+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
C1—H1····O2 ^{iv}	0.95	2.28	3.113 (4)	146 (1)
C4—H2···O3 ^{viii}	0.95	2.47	3.398 (4)	167 (1)
C6—Cl1···O3 ⁱⁱ	1.72 (1)	2.98 (1)	4.693 (4)	171 (1)
C10—O3···Cl1 ^x	1.21 (1)	2.98 (1)	3.678 (4)	116(1)
C6—Cl1···Cl2 ⁱ	1.72 (1)	3.52 (1)	3.884 (4)	89 (1)
C7—Cl2···Cl1 ⁱⁱⁱ	1.72 (1)	3.52 (1)	5.229 (4)	171 (1)

Symmetry codes: (i) -*x*, -*y*, *z*+1/2; (ii) *x*-1/2, -*y*, *z*; (iii) -*x*, -*y*, *z*-1/2; (iv) -*x*+1/2, *y*-1, *z*-1/2; (viii) -*x*+1/2, *y*+1, *z*+1/2; (x) *x*+1/2, -*y*, *z*.