data reports

CRYSTALLOGRAPHIC

OPEN d ACCESS

Crystal structure of 8-bromo-4-oxo-4Hchromene-3-carbaldehyde

Yoshinobu Ishikawa

School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan. *Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

Received 9 July 2015; accepted 10 July 2015

Edited by M. Zeller, Youngstown State University, USA

In the title compound, C₁₀H₅BrO₃, a brominated 3-formylchromone, all atoms are essentially coplanar (r.m.s. = 0.0104 Å for the non-H atoms), with the largest deviation from the least-squares plane [0.028 (5) Å] being for one of the benzene C atoms. In the crystal, molecules are linked through C- $H \cdots O$ hydrogen bonds, which are further assembled by faceto-face π - π stacking interactions [centroid-centroid distance between the pyran rings = 3.854 (4) Å]. Shorter contacts than the sum of van der Waals radii are observed between the Br and formyl O atoms [Br···O = 3.046(4) Å, C-Br···O = $175.23 (18)^{\circ}$ and Br···O-C = 132.6 (3)°], features that do indicate halogen bonding.

Keywords: crystal structure; chromone; hydrogen bonding; halogen bonding; $\pi - \pi$ stacking.

CCDC reference: 1412014

1. Related literature

For related structures, see: Ishikawa (2014a,b). For halogen bonding, see: Auffinger et al. (2004); Metrangolo et al. (2005); Wilcken et al. (2013); Sirimulla et al. (2013); Persch et al. (2015); Metrangolo & Resnati (2014); Mukherjee & Desiraju (2014).

2. Experimental

2.1. Crystal data

C10H5BrO3

 $M_r = 253.05$

Monoclinic, C2/c a = 27.908 (14) Å b = 3.854 (3) Å c = 19.145(10) Å $\beta = 123.75 \ (4)^{\circ}$ V = 1712.1 (18) Å³

2.2. Data collection

Rigaku AFC-7R diffractometer Absorption correction: ψ scan (North et al., 1968) $T_{\rm min}=0.546,\ T_{\rm max}=0.715$ 2556 measured reflections 1940 independent reflections

2.3. Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.037$	127 parameters
$wR(F^2) = 0.102$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 1.40 \text{ e } \text{\AA}^{-3}$
1940 reflections	$\Delta \rho_{\rm min} = -1.27 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$\overline{D-\mathrm{H}\cdots A}$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} C10-H5\cdots O2^{i}\\ C7-Br1\cdots O3^{ii}\\ C10-O3\cdots Br1^{iii} \end{array}$	0.95 1.89 (1) 1.21 (1)	2.54 3.05 (1) 3.05 (1)	3.375 (5) 4.934 (6) 3.962 (6)	147 (1) 175 (1) 133 (1)
Symmetry codes: (i) $-x + 2, y + 1, -z + \frac{3}{2}$.	$-x + \frac{3}{2}, -y$	$+\frac{3}{2}, -z+1;$ ((ii) $-x + 2, y - 2$	$1, -z + \frac{3}{2};$ (iii)

Z = 8

Mo $K\alpha$ radiation

 $0.37 \times 0.10 \times 0.07 \text{ mm}$

1280 reflections with $F^2 > 2.0\sigma(F^2)$

3 standard reflections every 150

intensity decay: -0.8%

 $\mu = 4.79 \text{ mm}^-$

T = 100 K

 $R_{\rm int} = 0.020$

reflections

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure.

Acknowledgements

The University of Shizuoka is acknowledged for instrumental support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZL2634).

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Auffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789-16794.
- Ishikawa, Y. (2014a). Acta Cryst. E70, 0555.
- Ishikawa, Y. (2014b). Acta Cryst. E70, 0996.
- Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38. 386–395.
- Metrangolo, P. & Resnati, G. (2014). IUCrJ, 1, 5-7.
- Mukherjee, A. & Desiraju, G. R. (2014). IUCrJ, 1, 49-60.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359

Persch, E., Dumele, O. & Diederich, F. (2015). Angew. Chem. Int. Ed.. 54, 3290-3327.

- Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Sirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781–2791.
- Wilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363–1388.

supporting information

 Acta Cryst. (2015). E71, o572–o573 [https://doi.org/10.1107/S2056989015013250]

 Crystal structure of 8-bromo-4-oxo-4H-chromene-3-carbaldehyde

Yoshinobu Ishikawa

S1. Comment

Halogen bonding has attracted much attention in medicinal chemistry, chemical biology, supramolecular chemistry and crystal engineering (Auffinger *et al.*, 2004, Metrangolo *et al.*, 2005, Wilcken *et al.*, 2013, Sirimulla *et al.*, 2013, Metrangolo & Resnati, 2014, Mukherjee & Desiraju, 2014, Persch *et al.*, 2015). I have recently reported the crystal structures of monobrominated 3-formylchromones 6-bromo-4-oxo-4*H*-chromene-3-carbaldehyde (Ishikawa, 2014*a*) and 7-bromo-4-oxo-4*H*-chromene-3-carbaldehyde (Ishikawa, 2014*b*). Halogen bonding is observed between the formyl oxygen atom and the bromine atom at 6-position in 6-bromo-4-oxo-4*H*-chromene-3-carbaldehyde (Fig. 1*a*). On the other hand, a type II halogen…halogen contact (Metrangolo & Resnati, 2014, Mukherjee & Desiraju, 2014) is found between the bromine atoms at 7-position in 7-bromo-4-oxo-4*H*-chromene-3-carbaldehyde (Fig. 1*b*). As part of my investigation into these types of chemical bonding, I herein report the crystal structure of the monobrominated 3-formylchromone 8-bromo-4-oxo-4*H*-chromene-3-carbaldehyde. The objective of this study is to reveal whether short contacts are observed for the bromine atom at 8-position in the solid state.

The mean deviation of the least-square planes for the non-hydrogen atoms is 0.0104 Å, and the largest deviation is 0.028 (5) Å for the C6 atom. These mean that these atoms are essentially coplanar (Fig. 2). In the crystal, the molecules are linked through C–H···O hydrogen bonds between the inversion-symmetry equivalentsⁱ [i: -x + 3/2, -y + 3/2, -z + 1/2], which are further assembled by face-to-face π - π stacking interactions [centroid–centroidⁱⁱ distance between the pyran rings of the 4*H*-chromene units = 3.854 (4) Å, ii: x, y + 1, z], as shown in Fig. 3. Shorter contacts than the sum of van der Waals radii are observed between the bromine atoms at 8-position and the formyl O atoms [Br1···O3ⁱⁱⁱ = 3.046 (4) Å, C7–Br1···O3ⁱⁱⁱ = 175.23 (18)°, Br1···O3ⁱⁱⁱ = 132.6 (3)°, iii: -x + 2, y - 1, -z + 3/2, Fig. 1*c*], features that indicate halogen bonding.

S2. Experimental

To a solution of 3-bromo-2-hydroxyacetophenone (11.3 mmol) in *N*,*N*-dimethylformamide (20 ml) was added dropwise POCl₃ (28.3 mmol) at 0 °C. After the mixture was stirred for 15 h at room temperature, water (50 ml) was added. The precipitates were collected, washed with water and dried *in vacuo* (yield: 55%). ¹H NMR (400 MHz, CDCl₃): δ = 7.40 (t, 1H, *J* = 7.8 Hz), 7.99 (dd, 1H, *J* = 1.4 and 7.8 Hz), 8.26 (dd, 1H, *J* = 1.4 and 8.3 Hz), 8.62 (s, 1H), 10.38 (s, 1H). Single crystals suitable for X-ray diffraction were obtained from a 1,2-dimethoxyethane solution of the title compound at room temperature.

S3. Refinement

The C(*sp*²)-bound hydrogen atoms were placed in geometrical positions [C–H 0.95 Å, U_{iso} (H) = 1.2 U_{eq} (C)], and refined using a riding model.

Figure 1

Sphere models of the crystal structures of (*a*) 6-bromo-4-oxo-4*H*-chromene-3-carbaldehyde (Ishikawa, 2014*a*), (*b*) 7-bromo-4-oxo-4*H*-chromene-3-carbaldehyde (Ishikawa, 2014*b*) and (*c*) the title compound (this work).

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.

Figure 3

A packing view of the title compound. C—H···O hydrogen bonds and Br···O halogen bonds are represented by dashed lines.

8-Bromo-4-oxo-4H-chromene-3-carbaldehyde

Crystal data	
$C_{10}H_5BrO_3$	<i>c</i> = 19.145 (10) Å
$M_r = 253.05$	$\beta = 123.75 \ (4)^{\circ}$
Monoclinic, $C2/c$	$V = 1712.1 (18) \text{ Å}^3$
Hall symbol: -C 2yc	Z = 8
a = 27.908 (14) Å	F(000) = 992.00
b = 3.854 (3) Å	$D_{\rm x} = 1.963 {\rm Mg} {\rm m}^{-3}$

Mo *Ka* radiation, $\lambda = 0.71069$ Å Cell parameters from 25 reflections $\theta = 15.0-17.3^{\circ}$ $\mu = 4.79 \text{ mm}^{-1}$

Data collection

Rigaku AFC-7R
diffractometer
ω scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\min} = 0.546, \ T_{\max} = 0.715$
2556 measured reflections
1940 independent reflections

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier $R[F^2 > 2\sigma(F^2)] = 0.037$ map $wR(F^2) = 0.102$ Hydrogen site location: inferred from S = 1.02neighbouring sites 1940 reflections H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0578P)^2 + 0.244P]$ 127 parameters where $P = (F_o^2 + 2F_c^2)/3$ 0 restraints Primary atom site location: structure-invariant $(\Delta/\sigma)_{\rm max} = 0.004$ $\Delta \rho_{\rm max} = 1.40 \text{ e } \text{\AA}^{-3}$ direct methods $\Delta \rho_{\rm min} = -1.27 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Refinement. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on F^2 . *R*-factor (gt) are based on *F*. The threshold expression of $F^2 > 2.0 \sigma(F^2)$ is used only for calculating *R*-factor (gt).

T = 100 K

Plate, yellow

 $R_{int} = 0.020$ $\theta_{max} = 27.5^{\circ}$ $h = -20 \rightarrow 36$ $k = -4 \rightarrow 2$ $l = -24 \rightarrow 20$

 $0.37 \times 0.10 \times 0.07 \text{ mm}$

intensity decay: -0.8%

1280 reflections with $F^2 > 2.0\sigma(F^2)$

3 standard reflections every 150 reflections

Fractional atomic coordinates and isotropic or equivalent isotr	tropic displacement parameters $(Å^2)$
---	--

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	1.005108 (15)	-0.24742 (12)	0.90755 (2)	0.01865 (14)	
01	0.93556 (11)	0.0942 (8)	0.73881 (17)	0.0180 (6)	
O2	0.76802 (12)	0.4314 (9)	0.60186 (18)	0.0261 (8)	
03	0.86856 (12)	0.5554 (9)	0.50725 (18)	0.0277 (8)	
C1	0.91204 (17)	0.2414 (12)	0.6633 (3)	0.0188 (8)	
C2	0.85673 (18)	0.3611 (12)	0.6140 (3)	0.0188 (9)	
C3	0.81785 (19)	0.3273 (11)	0.6431 (3)	0.0199 (10)	
C4	0.81361 (17)	0.1171 (13)	0.7636 (3)	0.0220 (10)	
C5	0.83890 (17)	-0.0311 (12)	0.8415 (3)	0.0201 (10)	
C6	0.89618 (18)	-0.1386 (13)	0.8849 (3)	0.0212 (10)	
C7	0.92747 (16)	-0.0988 (12)	0.8491 (3)	0.0161 (9)	
C8	0.84441 (18)	0.1649 (11)	0.7261 (3)	0.0171 (10)	
C9	0.90209 (16)	0.0568 (11)	0.7709 (3)	0.0165 (9)	
C10	0.83814 (19)	0.5220 (12)	0.5332 (3)	0.0216 (10)	
H1	0.9357	0.2646	0.6422	0.0226*	
H2	0.7745	0.1891	0.7345	0.0264*	
H3	0.8174	-0.0606	0.8659	0.0241*	

supporting information

H4	0.9138	-0.2392	0.9391	0.0254*
H5	0.7997	0.6051	0.4991	0.0260*

Atomic displacement parameters (A^2)	eters (\tilde{A}^2)	cement paramete	Atomic displ
--	-----------------------	-----------------	--------------

U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
0.0141 (2)	0.0192 (3)	0.0204 (2)	0.0019 (2)	0.00822 (16)	0.0016 (2)
0.0123 (13)	0.0238 (16)	0.0188 (14)	0.0028 (13)	0.0093 (12)	0.0037 (14)
0.0140 (15)	0.034 (2)	0.0266 (17)	0.0055 (15)	0.0090 (13)	0.0042 (16)
0.0218 (16)	0.039 (3)	0.0243 (16)	0.0025 (16)	0.0139 (14)	0.0031 (16)
0.0189 (19)	0.022 (3)	0.0196 (18)	0.002 (3)	0.0131 (16)	-0.000 (3)
0.019 (2)	0.020 (3)	0.017 (2)	0.0013 (18)	0.0104 (18)	-0.0010 (17)
0.021 (2)	0.017 (3)	0.022 (2)	-0.0013 (16)	0.0120 (18)	-0.0011 (16)
0.0107 (19)	0.027 (3)	0.027 (3)	-0.0006 (19)	0.0094 (18)	-0.003 (2)
0.018 (2)	0.024 (3)	0.023 (2)	-0.0074 (19)	0.0137 (18)	-0.0038 (19)
0.020 (2)	0.024 (3)	0.018 (2)	-0.0038 (19)	0.0097 (18)	-0.0027 (18)
0.0126 (19)	0.0132 (19)	0.022 (2)	-0.0012 (18)	0.0095 (17)	0.0004 (18)
0.0148 (19)	0.015 (3)	0.018 (2)	-0.0004 (16)	0.0071 (17)	-0.0004 (15)
0.0137 (19)	0.020 (3)	0.018 (2)	-0.0004 (18)	0.0102 (17)	-0.0031 (18)
0.024 (3)	0.021 (3)	0.020(2)	0.0023 (19)	0.0115 (18)	0.0006 (19)
	$\begin{array}{c} U^{11} \\ \hline 0.0141\ (2) \\ 0.0123\ (13) \\ 0.0140\ (15) \\ 0.0218\ (16) \\ 0.0189\ (19) \\ 0.019\ (2) \\ 0.021\ (2) \\ 0.0107\ (19) \\ 0.018\ (2) \\ 0.020\ (2) \\ 0.0126\ (19) \\ 0.0148\ (19) \\ 0.0137\ (19) \\ 0.024\ (3) \end{array}$	$\begin{array}{c ccccc} U^{11} & U^{22} \\ \hline 0.0141 (2) & 0.0192 (3) \\ \hline 0.0123 (13) & 0.0238 (16) \\ \hline 0.0140 (15) & 0.034 (2) \\ \hline 0.0218 (16) & 0.039 (3) \\ \hline 0.0189 (19) & 0.022 (3) \\ \hline 0.019 (2) & 0.020 (3) \\ \hline 0.021 (2) & 0.017 (3) \\ \hline 0.0107 (19) & 0.027 (3) \\ \hline 0.018 (2) & 0.024 (3) \\ \hline 0.0126 (19) & 0.0132 (19) \\ \hline 0.0137 (19) & 0.020 (3) \\ \hline 0.024 (3) & 0.021 (3) \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	U^{11} U^{22} U^{33} U^{12} U^{13} 0.0141 (2)0.0192 (3)0.0204 (2)0.0019 (2)0.00822 (16)0.0123 (13)0.0238 (16)0.0188 (14)0.0028 (13)0.0093 (12)0.0140 (15)0.034 (2)0.0266 (17)0.0055 (15)0.0090 (13)0.0218 (16)0.039 (3)0.0243 (16)0.0025 (16)0.0139 (14)0.0189 (19)0.022 (3)0.0196 (18)0.002 (3)0.0131 (16)0.019 (2)0.020 (3)0.017 (2)0.0013 (18)0.0104 (18)0.021 (2)0.017 (3)0.022 (2) -0.0013 (16)0.0120 (18)0.0107 (19)0.027 (3)0.023 (2) -0.0074 (19)0.0137 (18)0.0126 (19)0.0132 (19)0.022 (2) -0.0012 (18)0.0095 (17)0.0148 (19)0.015 (3)0.018 (2) -0.0004 (16)0.0071 (17)0.0137 (19)0.020 (3)0.018 (2) -0.0004 (18)0.0102 (17)0.024 (3)0.020 (2)0.021 (3)0.018 (2) -0.0004 (18)0.0102 (17)

Geometric parameters (Å, °)

Br1—C7	1.892 (4)	C4—C8	1.405 (9)
01—C1	1.337 (5)	C5—C6	1.393 (6)
O1—C9	1.381 (7)	C6—C7	1.387 (9)
O2—C3	1.224 (6)	С7—С9	1.387 (6)
O3—C10	1.205 (8)	C8—C9	1.402 (6)
C1—C2	1.367 (6)	C1—H1	0.950
C2—C3	1.475 (9)	C4—H2	0.950
C2-C10	1.469 (7)	С5—Н3	0.950
С3—С8	1.469 (7)	C6—H4	0.950
C4—C5	1.370 (7)	С10—Н5	0.950
Br1…O1	2.995 (4)	Br1···H1 ⁱ	2.9874
01···C3	2.875 (6)	Br1…H1 ⁱⁱ	3.0464
O2…C1	3.581 (7)	Br1…H4 ^{xii}	3.2048
O2…C4	2.881 (6)	Br1…H4 ^{xiii}	3.1419
O2…C10	2.922 (8)	O1…H1 ⁱⁱ	3.0722
O3…C1	2.799 (6)	O2····H3 ^{xiv}	2.7748
C1…C7	3.585 (8)	O2…H5 ^v	2.7432
C1…C8	2.760 (9)	O2····H5 ^{vi}	2.5376
C2…C9	2.787 (7)	O3…H1 ^{iv}	3.5037
C4…C7	2.773 (6)	O3····H3 ^{viiii}	2.9507
C5…C9	2.775 (9)	O3····H3 ^{ix}	2.9772
C6…C8	2.796 (7)	O3…H4 ^{viii}	2.5712
$Br1 \cdots O3^{i}$	3.046 (4)	O3····H4 ^{ix}	3.4743
01…01 ⁱⁱ	3.378 (6)	C2···H5 ⁱⁱⁱ	3.4598

O1…C1 ⁱⁱⁱ	3.503 (6)	C3…H5 ^v	3.3207
O1…C2 ⁱⁱⁱ	3.562 (6)	C4···H2 ^{xv}	2.9781
O2···C8 ^{iv}	3.544 (6)	C4····H2 ^{xiv}	3.3174
O2…C10 ^v	3.163 (5)	C4····H3 ^{xiv}	3.3139
O2…C10 ^{vi}	3.375 (5)	C5····H2 ⁱⁱⁱ	3.5171
O3…Br1 ^{vii}	3.046 (4)	C5…H2 ^{xv}	2.8601
O3····C5 ^{viii}	3.452 (6)	C5····H4 ^{iv}	3.5832
O3····C5 ^{ix}	3.347 (6)	C6…H4 ^{iv}	3.5732
O3····C6 ^{viii}	3.266 (8)	C10····H3 ^{viii}	3.4200
C1…O1 ^{iv}	3.503 (6)	C10····H3 ^{ix}	3.5839
C1…C10 ⁱⁱⁱ	3.527 (6)	H1…Br1 ⁱⁱ	3.0464
C2…O1 ^{iv}	3.562 (6)	H1…Br1 ^{vii}	2.9874
C2…C10 ⁱⁱⁱ	3,497 (7)	H1…O1 ⁱⁱ	3.0722
C3···C8 ^{iv}	3.491 (7)	H1···O3 ⁱⁱⁱ	3.5037
C4···C5 ^{iv}	3.511 (7)	H1…H4 ^{viii}	3.5860
C5O3x	3,452 (6)	H2····C4 ^{xv}	3 3174
C5O3 ^{xi}	3 347 (6)	H2····C4 ^{xiv}	2.9781
C5…C4 ⁱⁱⁱ	3,511 (7)	H2···C5 ^{iv}	3 5171
C6···O3 ^x	3.266 (8)	H2····C5 ^{xiv}	2 8601
C7C8 ⁱⁱⁱ	3,592 (6)	H2H2 ^{xv}	2.6001
$C7 \cdots C9^{iii}$	3.392(0) 3.486(7)	$H2 \cdots H2^{xiv}$	2.0150
C8O2 ⁱⁱⁱ	3.544 (6)	H2H3 ^{iv}	3 5746
C8C3 ⁱⁱⁱ	3.491 (7)	H2H3xiv	2 3021
	3.592 (6)	$H_2 \cdots \Omega^{2^{XY}}$	2.3721
	3.392(0)	H3···O2	2.7740
C_{10}	3.460(7)		2.9307
$C10O2^{vi}$	3.103(5)		2.9772
C10C1	3.575 (5)	H_{3} C10x	3.3139
	3.327(0)		2 5 8 2 0
Dr1	3.497 (7) 2.0274		2.5746
02	2.9274	H2H2xy	2 2021
02	2.0133	П5 П2 Н2Н5×	2.5921
0211	2.0303		2 2 5 2 5
	2.4020		5.5525 2.2049
	3.2749		5.2048 2.1410
	3.3008		5.1419 2.5712
C3H2	2.0755		2.3/12
	2.7288		3.4/43
	3.2489		3.5832
CoH2	3.2487		3.5752
C/H3	3.2654		3.5860
C8H3	3.2750		2.7432
	3.1865		2.5576
C9H2	3.2660		3.4598
C9H4	3.2581		3.3207
C10…H1	2.5371		3.5442
	5.4755		3.3525
H2···H3	2.3112	H5…H5 ^{vi}	3.0057
H3…H4	2.3430		

C1—O1—C9	118.5 (4)	C4—C8—C9	118.0 (4)
O1—C1—C2	125.2 (6)	O1—C9—C7	117.3 (4)
C1—C2—C3	119.7 (5)	O1—C9—C8	121.9 (4)
C1—C2—C10	118.2 (6)	C7—C9—C8	120.8 (5)
C3—C2—C10	122.1 (4)	O3—C10—C2	124.2 (4)
O2—C3—C2	122.5 (5)	O1—C1—H1	117.386
O2—C3—C8	123.2 (6)	C2—C1—H1	117.377
C2—C3—C8	114.3 (4)	C5—C4—H2	119.373
C5—C4—C8	121.3 (4)	C8—C4—H2	119.362
C4—C5—C6	120.0 (6)	С4—С5—Н3	120.002
C5—C6—C7	120.1 (5)	С6—С5—Н3	120.002
Br1—C7—C6	120.2 (3)	С5—С6—Н4	119.976
Br1—C7—C9	120.0 (4)	C7—C6—H4	119.964
С6—С7—С9	119.8 (4)	O3—C10—H5	117.902
C3—C8—C4	121.6 (4)	С2—С10—Н5	117.903
C3—C8—C9	120.4 (6)		
C1—O1—C9—C7	179.6 (4)	C8—C4—C5—C6	-0.2 (7)
C1—O1—C9—C8	0.7 (6)	C8—C4—C5—H3	179.8
C9—O1—C1—C2	0.1 (6)	H2-C4-C5-C6	179.8
C9—O1—C1—H1	-179.9	H2—C4—C5—H3	-0.2
O1—C1—C2—C3	-0.9 (7)	H2—C4—C8—C3	0.7
O1—C1—C2—C10	178.9 (4)	H2—C4—C8—C9	179.8
H1—C1—C2—C3	179.1	C4—C5—C6—C7	-0.6 (7)
H1-C1-C2-C10	-1.1	C4—C5—C6—H4	179.4
C1—C2—C3—O2	179.6 (4)	H3—C5—C6—C7	179.4
C1—C2—C3—C8	0.7 (6)	H3—C5—C6—H4	-0.6
C1—C2—C10—O3	0.1 (7)	C5—C6—C7—Br1	-179.6 (4)
C1—C2—C10—H5	-179.9	C5—C6—C7—C9	1.8 (7)
C3—C2—C10—O3	179.8 (4)	H4—C6—C7—Br1	0.4
С3—С2—С10—Н5	-0.2	Н4—С6—С7—С9	-178.2
C10—C2—C3—O2	-0.1 (7)	Br1-C7-C9-O1	0.4 (6)
C10—C2—C3—C8	-179.0 (4)	Br1—C7—C9—C8	179.2 (3)
O2—C3—C8—C4	0.3 (6)	C6—C7—C9—O1	179.1 (4)
O2—C3—C8—C9	-178.8 (4)	C6—C7—C9—C8	-2.1 (7)
C2—C3—C8—C4	179.1 (4)	C3—C8—C9—O1	-0.8 (6)
C2—C3—C8—C9	0.1 (6)	C3—C8—C9—C7	-179.6 (4)
C5—C4—C8—C3	-179.3 (4)	C4—C8—C9—O1	-179.9 (4)
C5—C4—C8—C9	-0.2 (7)	C4—C8—C9—C7	1.3 (6)

Symmetry codes: (i) -x+2, y-1, -z+3/2; (ii) -x+2, y, -z+3/2; (iii) x, y-1, z; (iv) x, y+1, z; (v) -x+3/2, -y+1/2, -z+1; (vi) -x+3/2, -y+3/2, -z+1; (vii) -x+2, y+1, -z+3/2; (viii) x, -y, z-1/2; (ix) x, -y+1, z-1/2; (ix) x, -y, z+1/2; (iii) -x+2, -y-1, -z+2; (iii) -x+2, -y, -z+2; (iv) -x+3/2, -y+1/2, -z+3/2; (vi) -x+3/2, -y-1/2, -z+3/2; (iv) -x+3/2; (iv) -x+3/2;

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C10—H5…O2 ^{vi}	0.95	2.54	3.375 (5)	147 (1)

			supportin	supporting information		
C7—Br1···O3 ⁱ	1.89(1)	3.05 (1)	4.934 (6)	175 (1)		
C10—O3···Br1 ^{vii}	1.21 (1)	3.05 (1)	3.962 (6)	133 (1)		

Symmetry codes: (i) -x+2, y-1, -z+3/2; (vi) -x+3/2, -y+3/2, -z+1; (vii) -x+2, y+1, -z+3/2.