data reports

OPEN a ACCESS

Crystal structure of ethyl 2-(4-chlorophenyl)-3-cyclopentyl-4-oxo-1-propylimidazolidine-5-carboxylate

Mohamed Ali Tabarki,^a Youssef Ben Smida,^b* Abderrahmen Guesmi^{b,c} and Rafâa Besbes^a

^aLaboratoire de Chimie Analytique et Electrochimie. Faculté des Sciences de Tunis. Université de Tunis El Manar, 2092 Manar II, Tunis, Tunisia, ^bLaboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Manar II Tunis, Tunisia, and ^cInstitut Préparatoire aux Etudes d'Ingénieurs d'El Manar, El Manar II, 2092 Tunis, Tunisia. *Correspondence e-mail: youssef_smida@yahoo.fr

Received 15 August 2015; accepted 17 August 2015

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

The title compound, C₂₀H₂₇ClN₂O₃, was obtained via an original synthesis method. The central heterocyclic ring adopts a shallow envelope conformation, with the N atom bearing the cyclopentane ring as the flap [deviation from the other atoms = 0.442 (2) Å]. The cyclopentane ring adopts a twisted conformation about one of the C_N-C bonds: the exocyclic C-N bond adopts an equatorial orientation. The dihedral angles between the central ring (all atoms) and the pendant five- and six-membered rings are 10.3(2) and $87.76(14)^{\circ}$, respectively. In the crystal, $C-H \cdots O$ interactions link the molecules into [011] chains. A weak $C-H \cdots Cl$ interaction links the chains into (100) sheets. A mechanism for the cyclization reaction is proposed.

Keywords: crystal structure; synthesis; aziridine rearrangement; C—H···O and C-H···O interactions.

CCDC reference: 1419261

1. Related literature

For background to the biological properties of imidazolidin-4one rings, see: Chambel et al. (2006); Vale et al. (2008a,b,c); Gomes et al. (2004); Araujo et al. (2005); Qin et al. (2009). For imidazolidin-4-one rings in Diels-Alder reactions, see: Lin et al. (2013). For the synthesis and mechanistic studies, see: Gomes et al. (2006); Zhang et al. (2008).

 $\gamma = 104.08 \ (6)^{\circ}$ $\dot{V} = 1024.1 (11) \text{ Å}^3$

Mo $K\alpha$ radiation

 $0.4 \times 0.3 \times 0.2 \text{ mm}$

2 standard reflections every 120

intensity decay: 4%

 $\mu = 0.21 \text{ mm}^-$ T = 298 K

 $R_{\rm int} = 0.024$

reflections

Z = 2

2. Experimental

2.1. Crystal data

C20H27ClN2O3 $M_r = 378.89$ Triclinic, P1 a = 9.083(7) Å b = 11.201 (6) Å c = 11.846 (6) Å $\alpha = 117.75 (4)^{\circ}$ $\beta = 90.49 \ (5)^{\circ}$

2.2. Data collection

2.3. Refinement

Enraf-Nonius CAD-4 diffractometer 6270 measured reflections 4439 independent reflections 2533

reflections	with	<i>I</i> >	$2\sigma(I)$

$R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.180$ S = 0.99 4439 reflections 205 pergemeters	H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.31 \text{ e } \text{\AA}^{-3}$
295 parameters	$\Delta \rho_{\rm min} = -0.19 \text{ e A}^{-5}$

lable 1		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C10-H2\cdots O1^{i}$	1.00(2)	2.50 (3) 2.59 (4)	3.454 (4)	160(2) 143(3)
$C16-H16B\cdots Cl1^{iii}$	0.99 (4) 0.97	2.39 (4) 2.80	3.662 (6)	143 (3) 148

codes: (i) -z + 1; (ii) -x + 1, -y + 2, - $-y + 1, \cdot$ x, y, z + 1.

Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Acknowledgements

Financial support from the Ministry of Higher Education, Scientific Research and Technology of Tunisia is gratefully acknowledged. The authors are grateful to Professor Mohamed Faouzi Zid from the Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, for the data collection.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7486).

References

Araújo, M. J., Bom, J., Capela, R., Casimiro, C., Chambel, P., Gomes, P., Iley, J., Lopes, F., Morais, J., Moreira, R., de Oliveira, E., do Rosário, V. & Vale, N. (2005). J. Med. Chem. 48, 888–892.

- Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Chambel, P., Capela, R., Lopes, F., Iley, J., Morais, J., Gouveia, L., Gomes, J. R. B., Gomes, P. & Moreira, R. (2006). *Tetrahedron*, **62**, 9883–9891.
- Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Gomes, R., Araújo, M. J., Rodrigues, M., Vale, N., Azevedo, Z., Iley, J.,
- Chambel, P., Morais, J. & Moreira, R. (2004). *Tetrahedron*, **60**, 5551–5562.Gomes, P. J. S., Nunes, C. M., Pais, A. A. C. C., Pinho e Melo, T. M. V. D. & Arnaut, L. G. (2006). *Tetrahedron Lett.* **47**, 5475–5479.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Lin, Z., Chen, Z., Yang, G. & Lu, C. (2013). Catal. Commun. 35, 1-5.
- Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.
- Qin, L. Y., Cole, A. G., Metzger, A., O'Brien, L., Sun, X., Wu, J., Xu, Y., Xu, K., Zhang, Y. & Henderson, I. (2009). *Tetrahedron Lett.* 50, 419–422.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Vale, N., Collins, M. S., Gut, J., Ferraz, R., Rosenthal, P. J., Cushion, M. T., Moreira, R. & Gomes, P. (2008a). Bioorg. Med. Chem. Lett. 18, 485–488.
- Vale, N., Matos, J., Moreira, R. & Gomes, P. (2008b). Tetrahedron, 64, 11144– 11149.
- Vale, N., Moreira, R. & Gomes, P. (2008c). Int. J. Mass Spectrom. 270, 81–93. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Zhang, K., Chopade, P. R. & Louie, J. (2008). Tetrahedron Lett. 49, 4306-4309.

supporting information

Acta Cryst. (2015). E71, o682–o683 [https://doi.org/10.1107/S2056989015015364]

Crystal structure of ethyl 2-(4-chlorophenyl)-3-cyclopentyl-4-oxo-1-propylimidazolidine-5-carboxylate

Mohamed Ali Tabarki, Youssef Ben Smida, Abderrahmen Guesmi and Rafâa Besbes

S1. comment

The imidazolidin-4-one rings are of major interest and constitute a very important class of heterocyclic compounds because of their presence in several biologically active synthetic products (Chambel *et al.* 2006; Vale *et al.* 2008a) and their use as high antimalarial drugs (Vale *et al.* 2008b&c). These products exhibit also antibacterial activity (Gomes *et al.* 2004; Araujo *et al.* 2005) and inhibit binding of VCAM-1 to VLA-4 (Qin *et al.* 2009). On the other hand, imidazolidnione was used as organocatalyst for Diels-Alder reactions (Lin *et al.* 2013).

In the present work we have developed an efficient strategy for the synthesis of 1-cyclopenty-2-parachlorophenyl-3propyl-5-ethoxycarbonylimidazolidin-4-one (I) (Fig.1) via ring expansion of aziridine-2-carboxylate upon reaction with propylisocyanate. It should be mentioned that in a similar protocol, Gomes *et al.* (2006) report that aziridines rearrange under the effect of heating or radiation and transform into azomethines. The latter reacts subsequently on various electrophiles systems.

A result similar to one described by Zhang *et al.*(2008), but the authors did not explain the formation of the compounds obtained. To explain the formation of the imidazolidin-4-one we based on work that was performed by Gomes *et al.* (2006) and in which the authors suggest that aziridines rearrange under the effect of heating or irradiation and become an azomethine. The latter reacts subsequently on various electrophile systems. In our case, the attack of the isocyanate by the carbanion of azomethine, formed upon the refluxing in toluene aziridine, adequately explains obtaining imidazolidin-4-one after cyclization of the intermediate formed.

S2. Experimental

S2.1. Synthesis and crystallization

To a solution of ethyl 3-(4-chlorophenyl)-1-cyclopentylaziridine-2-carboxylate (2.20 mmol) in toluene (10 ml) under nitrogen atmosphere, were added n-Propylisocyanate (2.64 mmol). The mixture was refluxed during 20 hours. After completeness of the reaction, the mixture was concentrated under reduced pressure and the residue was purified by silica gel column chromatography using a mixture of n-hexane / EtOAc (5:5) as eluent to afford colourless prisms of the studied compound.

S2.2. Refinement

Hydrogen atoms were treated by a mixture of independent and constrained refinement. In fact hydrogen atoms from H1 to H15 were located in the difference Fourier Map. The others H atoms were located geometrically and refined using a riding model.

Perspective view of the title compound showing 50% displacement ellipsoids.

Figure 3

Unit cell projection of C₂₀H₂₇ClN₂O₃ showing two molecules per cell.

Ethyl 2-(4-chlorophenyl)-3-cyclopentyl-4-oxo-1-propylimidazolidine-5-carboxylate

Crystal data

C₂₀H₂₇ClN₂O₃ $M_r = 378.89$ Triclinic, *P*1 Hall symbol: -P1 a = 9.083 (7) Å b = 11.201 (6) Å c = 11.846 (6) Å a = 117.75 (4)° $\beta = 90.49$ (5)° $\gamma = 104.08$ (6)° V = 1024.1 (11) Å³

Data collection

Enraf–Nonius CAD-4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $\omega/2\theta$ scans 6270 measured reflections 4439 independent reflections 2533 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.180$ S = 0.994439 reflections 295 parameters 0 restraints Z = 2 F(000) = 404 $D_x = 1.229 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 10-15^{\circ}$ $\mu = 0.21 \text{ mm}^{-1}$ T = 298 KPrism, colorless $0.4 \times 0.3 \times 0.2 \text{ mm}$

 $R_{int} = 0.024$ $\theta_{max} = 27.0^{\circ}, \ \theta_{min} = 2.1^{\circ}$ $h = -11 \rightarrow 3$ $k = -14 \rightarrow 14$ $l = -15 \rightarrow 15$ 2 standard reflections every 120 reflections intensity decay: 4%

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.1064P)^{2} + 0.0609P] \qquad \Delta \rho_{max} = 0.31 \text{ e} \text{ Å}^{-3}$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \rho_{min} = -0.19 \text{ e} \text{ Å}^{-3}$ $(\Delta/\sigma)_{max} = 0.043$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates a	and isotropic or a	equivalent isotrop	ic displacement	parameters	$(Å^2)$)
---------------------------------	--------------------	--------------------	-----------------	------------	---------	---

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	1.01028 (10)	0.71959 (8)	0.06769 (7)	0.0791 (3)	
01	0.5260 (2)	0.67479 (19)	0.72389 (18)	0.0698 (6)	
O2	0.5879 (2)	0.87245 (18)	0.91481 (16)	0.0650 (5)	
03	0.4728 (3)	0.9785 (2)	0.69803 (19)	0.0759 (6)	
N1	0.7774 (2)	0.82492 (19)	0.64046 (17)	0.0461 (5)	
N2	0.5635 (2)	0.8158 (2)	0.53131 (18)	0.0502 (5)	
C1	0.8327 (3)	0.6004 (3)	0.1915 (2)	0.0570 (7)	
C2	0.7634 (3)	0.7335 (2)	0.4011 (2)	0.0441 (5)	
C3	0.4957 (4)	0.7979 (4)	0.9770 (3)	0.0732 (9)	
C4	0.9202 (4)	0.8525 (3)	0.3002 (2)	0.0606 (7)	
C5	0.6794 (3)	0.7399 (2)	0.5138 (2)	0.0442 (5)	
C6	0.9138 (3)	0.7244 (3)	0.1961 (2)	0.0538 (6)	
C7	0.6788 (3)	0.8889 (2)	0.7346 (2)	0.0503 (6)	
C8	0.5893 (3)	0.7974 (3)	0.7891 (2)	0.0502 (6)	
C9	0.5592 (3)	0.9044 (2)	0.6558 (2)	0.0527 (6)	
C10	0.7574 (3)	0.6052 (2)	0.2946 (2)	0.0507 (6)	
C11	0.4526 (4)	0.7868 (3)	0.4255 (3)	0.0635 (7)	
C12	0.8435 (3)	0.8565 (3)	0.4024 (2)	0.0559 (7)	
C13	1.0021 (4)	0.7211 (4)	0.5907 (3)	0.0706 (8)	
C14	0.8731 (3)	0.7538 (3)	0.6745 (2)	0.0555 (6)	
C15	0.9604 (4)	0.8461 (4)	0.8118 (3)	0.0717 (8)	
C16	1.1058 (4)	0.8014 (6)	0.8072 (4)	0.1159 (15)	
H16A	1.1940	0.8836	0.8458	0.139*	
H16B	1.1023	0.7511	0.8556	0.139*	
C17	1.1201 (4)	0.7121 (5)	0.6750 (4)	0.1030 (12)	
H17A	1.1022	0.6159	0.6581	0.124*	
H17B	1.2224	0.7432	0.6574	0.124*	
C18	0.5848 (5)	0.7287 (5)	1.0162 (4)	0.1136 (14)	
H18A	0.5229	0.6808	1.0561	0.170*	
H18B	0.6730	0.7974	1.0764	0.170*	
H18C	0.6176	0.6619	0.9419	0.170*	
C19	0.3480 (4)	0.6381 (3)	0.3616 (3)	0.0785 (9)	

supporting information

H19A	0.4093	0.5724	0.3275	0.094*	
H19B	0.2937	0.6217	0.4255	0.094*	
C20	0.2353 (5)	0.6120 (6)	0.2556 (4)	0.1300 (17)	
H20A	0.1705	0.5173	0.2180	0.195*	
H20B	0.2886	0.6256	0.1911	0.195*	
H20C	0.1737	0.6762	0.2892	0.195*	
H1	0.626 (2)	0.645 (2)	0.4965 (19)	0.032 (5)*	
H2	0.697 (3)	0.519 (2)	0.297 (2)	0.041 (6)*	
H3	0.734 (3)	0.979 (3)	0.802 (3)	0.067 (8)*	
H4	0.392 (4)	0.738 (4)	0.923 (3)	0.096 (11)*	
H5	0.826 (3)	0.513 (3)	0.115 (3)	0.073 (8)*	
H6	0.972 (3)	0.937 (3)	0.310 (3)	0.073 (9)*	
H7	0.806 (3)	0.668 (3)	0.667 (2)	0.051 (6)*	
H8	0.497 (4)	0.796 (3)	0.365 (3)	0.082 (10)*	
H9	0.952 (4)	0.624 (3)	0.516 (3)	0.091 (10)*	
H10	0.842 (3)	0.951 (3)	0.476 (3)	0.075 (8)*	
H11	0.908 (4)	0.827 (3)	0.868 (3)	0.090 (10)*	
H12	0.470 (4)	0.875 (4)	1.053 (4)	0.098 (11)*	
H13	0.375 (4)	0.834 (4)	0.460 (3)	0.107 (12)*	
H14	1.051 (4)	0.812 (4)	0.585 (3)	0.100 (11)*	
H15	0.982 (4)	0.953 (4)	0.834 (3)	0.091 (10)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.0968 (6)	0.0929 (6)	0.0563 (4)	0.0280 (5)	0.0331 (4)	0.0418 (4)
01	0.0915 (14)	0.0523 (11)	0.0569 (11)	0.0042 (10)	0.0224 (10)	0.0269 (9)
O2	0.0894 (14)	0.0616 (11)	0.0461 (9)	0.0212 (10)	0.0243 (9)	0.0274 (8)
O3	0.0993 (16)	0.0773 (13)	0.0715 (13)	0.0525 (12)	0.0327 (11)	0.0386 (11)
N1	0.0511 (11)	0.0486 (11)	0.0392 (9)	0.0109 (9)	0.0068 (8)	0.0231 (8)
N2	0.0523 (12)	0.0537 (11)	0.0478 (11)	0.0174 (9)	0.0079 (9)	0.0259 (9)
C1	0.0669 (17)	0.0512 (14)	0.0442 (13)	0.0164 (13)	0.0117 (12)	0.0160 (12)
C2	0.0476 (13)	0.0434 (12)	0.0386 (11)	0.0092 (10)	0.0040 (10)	0.0195 (10)
C3	0.098 (3)	0.077 (2)	0.0580 (17)	0.034 (2)	0.0333 (18)	0.0390 (16)
C4	0.082 (2)	0.0509 (15)	0.0496 (14)	0.0093 (14)	0.0154 (13)	0.0292 (13)
C5	0.0466 (13)	0.0408 (12)	0.0431 (12)	0.0079 (10)	0.0092 (10)	0.0206 (10)
C6	0.0582 (15)	0.0662 (16)	0.0408 (12)	0.0165 (12)	0.0115 (11)	0.0291 (12)
C7	0.0661 (16)	0.0399 (12)	0.0402 (12)	0.0088 (11)	0.0116 (11)	0.0185 (10)
C8	0.0585 (15)	0.0484 (14)	0.0449 (12)	0.0150 (12)	0.0134 (11)	0.0232 (11)
C9	0.0648 (16)	0.0467 (13)	0.0522 (14)	0.0180 (12)	0.0199 (12)	0.0268 (11)
C10	0.0552 (15)	0.0440 (13)	0.0485 (13)	0.0104 (11)	0.0102 (11)	0.0205 (11)
C11	0.0627 (18)	0.0772 (19)	0.0590 (17)	0.0239 (16)	0.0066 (14)	0.0375 (16)
C12	0.0757 (18)	0.0411 (13)	0.0445 (13)	0.0083 (12)	0.0145 (12)	0.0192 (11)
C13	0.074 (2)	0.081 (2)	0.0568 (17)	0.0360 (18)	0.0077 (15)	0.0262 (17)
C14	0.0581 (16)	0.0553 (15)	0.0593 (15)	0.0118 (13)	0.0038 (13)	0.0346 (13)
C15	0.073 (2)	0.100 (3)	0.0519 (16)	0.0268 (18)	0.0068 (14)	0.0434 (17)
C16	0.080 (3)	0.208 (5)	0.073 (2)	0.058 (3)	0.0089 (19)	0.070 (3)
C17	0.087 (3)	0.151 (3)	0.083 (2)	0.061 (3)	0.008 (2)	0.053 (2)

supporting information

C18	0.129 (3)	0.156 (4)	0.120 (3)	0.067 (3)	0.041 (3)	0.104 (3)
C19	0.072 (2)	0.084 (2)	0.0719 (19)	0.0244 (17)	0.0029 (16)	0.0309 (17)
C20	0.087 (3)	0.165 (4)	0.110 (3)	0.025 (3)	-0.030 (2)	0.050 (3)

Geometric parameters (Å, °)

Cl1—C6	1.747 (3)	C11—C19	1.515 (5)
01—C8	1.197 (3)	C11—H8	0.86 (3)
O2—C8	1.328 (3)	C11—H13	0.96 (4)
O2—C3	1.478 (3)	C12—H10	1.01 (3)
О3—С9	1.222 (3)	C13—C17	1.511 (5)
N1—C7	1.464 (3)	C13—C14	1.543 (4)
N1—C5	1.478 (3)	С13—Н9	1.01 (3)
N1-C14	1.478 (3)	C13—H14	1.03 (4)
N2—C9	1.348 (3)	C14—C15	1.535 (4)
N2-C11	1.460 (4)	С14—Н7	0.97 (2)
N2—C5	1.466 (3)	C15—C16	1.515 (5)
C1—C6	1.380 (4)	C15—H11	0.90 (3)
C1-C10	1.391 (3)	C15—H15	1.07 (3)
C1—H5	0.96 (3)	C16—C17	1.441 (5)
C2—C12	1.385 (3)	C16—H16A	0.9700
C2—C10	1.390 (3)	C16—H16B	0.9700
C2—C5	1.525 (3)	C17—H17A	0.9700
C3—C18	1.452 (5)	C17—H17B	0.9701
С3—Н4	1.01 (4)	C18—H18A	0.9600
С3—Н12	0.99 (4)	C18—H18B	0.9600
C4—C6	1.376 (4)	C18—H18C	0.9600
C4—C12	1.390 (4)	C19—C20	1.483 (5)
C4—H6	0.90 (3)	C19—H19A	0.9700
С5—Н1	0.97 (2)	C19—H19B	0.9700
С7—С9	1.518 (4)	C20—H20A	0.9600
С7—С8	1.533 (3)	C20—H20B	0.9599
С7—Н3	0.95 (3)	C20—H20C	0.9600
С10—Н2	1.00 (2)		
C8—O2—C3	116.5 (2)	C2—C12—C4	120.8 (2)
C7—N1—C5	106.60 (19)	C2—C12—H10	119.8 (16)
C7—N1—C14	116.08 (19)	C4—C12—H10	119.3 (16)
C5—N1—C14	115.95 (19)	C17—C13—C14	103.6 (3)
C9—N2—C11	123.2 (2)	С17—С13—Н9	109.5 (18)
C9—N2—C5	113.4 (2)	С14—С13—Н9	103.7 (19)
C11—N2—C5	123.1 (2)	C17—C13—H14	105 (2)
C6-C1-C10	119.3 (2)	C14—C13—H14	105.6 (19)
С6—С1—Н5	118.8 (17)	H9—C13—H14	127 (3)
C10-C1-H5	121.8 (17)	N1—C14—C15	112.0 (2)
C12—C2—C10	119.2 (2)	N1—C14—C13	113.7 (2)
C12—C2—C5	120.1 (2)	C15—C14—C13	103.3 (2)
C10—C2—C5	120.7 (2)	N1—C14—H7	107.9 (14)

C18—C3—O2	110.8 (3)	С15—С14—Н7	109.7 (14)
C18—C3—H4	117 (2)	С13—С14—Н7	110.2 (14)
O2—C3—H4	111 (2)	C16—C15—C14	104.7 (3)
C18—C3—H12	111 (2)	C16—C15—H11	107 (2)
O2—C3—H12	103 (2)	C14—C15—H11	111 (2)
H4—C3—H12	103 (3)	C16—C15—H15	113.1 (18)
C6—C4—C12	119.1 (2)	C14—C15—H15	107.8 (18)
С6—С4—Н6	125.9 (19)	H11—C15—H15	113 (3)
С12—С4—Н6	115.0 (19)	C17—C16—C15	109.3 (3)
N2—C5—N1	101.47 (18)	C17—C16—H16A	109.8
N2—C5—C2	110.85 (19)	C15—C16—H16A	109.8
N1—C5—C2	113.85 (19)	C17—C16—H16B	109.8
N2—C5—H1	107.4 (12)	C15—C16—H16B	109.8
N1—C5—H1	113.1 (12)	H16A—C16—H16B	108.3
C2—C5—H1	109.7 (12)	C16—C17—C13	107.5 (3)
C4—C6—C1	121.2 (2)	С16—С17—Н17А	110.2
C4—C6—C11	119.1 (2)	С13—С17—Н17А	110.2
C1—C6—C11	119.7 (2)	C16—C17—H17B	110.2
N1—C7—C9	103.22 (19)	С13—С17—Н17В	110.2
N1—C7—C8	115.3 (2)	H17A—C17—H17B	108.5
C9—C7—C8	105.8 (2)	C3—C18—H18A	109.5
N1—C7—H3	111.6 (16)	C3—C18—H18B	109.5
С9—С7—Н3	109.3 (16)	H18A—C18—H18B	109.5
С8—С7—Н3	111.0 (16)	C3—C18—H18C	109.5
O1—C8—O2	125.5 (2)	H18A—C18—H18C	109.5
O1—C8—C7	123.1 (2)	H18B—C18—H18C	109.5
O2—C8—C7	111.4 (2)	C20-C19-C11	111.8 (3)
O3—C9—N2	127.3 (3)	С20—С19—Н19А	109.3
O3—C9—C7	126.4 (2)	С11—С19—Н19А	109.3
N2—C9—C7	106.2 (2)	С20—С19—Н19В	109.3
C2-C10-C1	120.4 (2)	C11—C19—H19B	109.3
С2—С10—Н2	116.7 (12)	H19A—C19—H19B	107.9
С1—С10—Н2	122.9 (12)	С19—С20—Н20А	109.5
N2—C11—C19	112.9 (3)	С19—С20—Н20В	109.5
N2—C11—H8	112 (2)	H20A—C20—H20B	109.5
С19—С11—Н8	106 (2)	С19—С20—Н20С	109.5
N2-C11-H13	109 (2)	H20A—C20—H20C	109.5
С19—С11—Н13	97 (2)	H20B—C20—H20C	109.5
H8—C11—H13	119 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A	
C10—H2…O1 ⁱ	1.00 (2)	2.50 (3)	3.454 (4)	160 (2)	
C3—H12…O3 ⁱⁱ	0.99 (4)	2.59 (4)	3.439 (5)	143 (3)	
C16—H16B…Cl1 ⁱⁱⁱ	0.97	2.80	3.662 (6)	148	

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*+2, -*z*+2; (iii) *x*, *y*, *z*+1.