metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of poly[[hexa­qua-1κ4O,2κ2O-bis­­(μ3-pyridine-2,4-di­car­box­ylato-1κO2:2κ2N,O2′;1′κO4)cobalt(II)­strontium(II)] dihydrate]

CROSSMARK_Color_square_no_text.svg

aCollege of Chemical Engineering, Huanggang Normal University, Huanggang 438000, People's Republic of China
*Correspondence e-mail: cingym@163.com

Edited by W. Imhof, University Koblenz-Landau, Germany (Received 31 July 2015; accepted 10 August 2015; online 15 August 2015)

In the title polymeric complex, {[CoSr(C7H3NO4)2(H2O)6]·2H2O}n, the CoII ion, which is situated on a crystallographic centre of inversion, is six-coordinated by two O atoms and two N atoms from two pyridine-2,4-di­carboxyl­ate (pydc2−) ligands and two terminal water mol­ecules in a slightly distorted octa­hedral geometry, to form a trans-[Co(pydc)2(H2O)2]2− unit. The SrII ion, situated on a C2 axis, is coordinated by four O atoms from four pydc2− ligands and four water mol­ecules. The coordination geometry of the SrII atom can be best described as a distorted dodeca­hedron. Each SrII ion bridges four [Co(pydc)2(H2O)2]2− units by four COO groups of four pydc2− ligands to form a three-dimensional network structure. Two additional solvent water mol­ecules are observed in the crystal structure and are connected to the three-dimensional coordination polymer by O—H⋯O hydrogen bonds. Further intra- and intermolecular O—H⋯O hydrogen bonds consolidate the overall structure.

1. Related literature

For similar heterometallic complexes, see: Chen et al. (2014[Chen, Y., Gao, Q., Zhang, H., Gao, D., Li, Y., Liu, W. & Li, W. (2014). Polyhedron, 71, 91-98.], 2015[Chen, Y., Gao, Q., Chen, W., Gao, D., Li, Y., Liu, W. & Li, W. (2015). Chem. Asian J. 10, 411-421.]); Gil de Muro et al. (1999[Gil de Muro, I., Insausti, M., Lezama, L., Pizarro, J. L., Arriortua, M. I. & Rojo, T. (1999). Eur. J. Inorg. Chem. pp. 935-943.]); Li et al. (1989[Li, J., Lin, W., Zheng, Y. & Wu, X. (1989). Huaxue Wuli Xuebao, 2, 379-383.]); Mege-Revil & Price (2013[Mege-Revil, A. & Price, D. J. (2013). Polyhedron, 52, 650-657.]); Zasurskaya et al. (2000[Zasurskaya, L. A., Rybakov, V. B., Poznyak, A. L. & Polynova, T. N. (2000). Russ. J. Coord. Chem. 26, 492-499.], 2001[Zasurskaya, L. A., Polyakova, I. N., Poznyak, A. L., Polynova, T. N. & Sergienko, V. S. (2001). Kristallografiya, 46, 427-432.], 2006[Zasurskaya, L. A., Polyakova, I. N., Rybakov, V. B., Polynova, T. N., Poznyak, A. L. & Sergienko, V. S. (2006). Crystallogr. Rep. 51, 448-458.]); Zhang (1993[Zhang, Y. (1993). Spectrosc. Lett. 26, 1673-1679.]); Zhang et al. (1992[Zhang, Y., Li, J. & Fan, J. (1992). Cryst. Res. Technol. 27, 229-234.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [CoSr(C7H3NO4)2(H2O)6]·2H2O

  • Mr = 620.89

  • Monoclinic, C 2/c

  • a = 18.628 (4) Å

  • b = 6.8742 (14) Å

  • c = 19.101 (4) Å

  • β = 118.77 (3)°

  • V = 2144.0 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.35 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.15 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.554, Tmax = 0.634

  • 14907 measured reflections

  • 1892 independent reflections

  • 1776 reflections with I > 2σ(I)

  • Rint = 0.023

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.055

  • S = 1.04

  • 1892 reflections

  • 180 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O4i 0.78 (3) 2.00 (3) 2.7672 (19) 168 (2)
O5—H5B⋯O3ii 0.79 (3) 1.96 (3) 2.734 (2) 165 (3)
O6—H6B⋯O8iii 0.77 (3) 2.07 (4) 2.833 (3) 173 (3)
O7—H7A⋯O5iv 0.77 (3) 2.57 (3) 3.233 (3) 145 (3)
O7—H7B⋯O2v 0.85 (4) 2.39 (3) 3.170 (2) 153 (3)
O8—H8A⋯O6vi 0.75 (5) 2.50 (5) 3.238 (3) 167 (5)
O8—H8B⋯O3 0.82 (6) 2.04 (6) 2.831 (3) 164 (6)
O6—H6A⋯O1 0.77 (3) 2.03 (3) 2.781 (2) 164 (3)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iv) [-x, y-1, -z+{\script{1\over 2}}]; (v) x, y-1, z; (vi) [-x, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Introduction top

As an N,O-containing ligand, pyridine-2,4-di­carb­oxy­lic acid (pydc) possesses different binding sites with specific affinities to discriminate different metal ions. It coordinates to alkaline earth metals by using the oxygen atoms to form 'complex-ligands', and the 'complex-ligands' then bind with other metal ions to generate heterometallic coordination polymers. In our previous work, two heterometallic complexes containing CoII and SrII ions were reported (Chen et al., 2015; Chen et al., 2014). As a continuation of our previous work, in this paper a new Co—Sr-pydc complex is reported.

Experimental top

Synthesis and crystallization top

A mixture of pyridine-2,4-di­carb­oxy­lic acid (0.0337 g, 0.2 mmol), Sr(OH)2·8 H2O (0.0262 g, 0.1 mmol), Co(OAc)2·4H2O (0.0244 g,0.1 mmol), and H2O (2 ml) was sealed in a pyrex-bottle (8 ml) and heated to 90°C for 2 days. The tube was then cooled to room temperature, generating yellow rod crystals. Yield: 0.0225 g (37%, based on Co). Elemental analysis calc. for C14H22CoN2O16Sr: C, 27.08; H, 3.57; N, 4.51%. Found: C,27.32; H, 3.57; N, 4.53%.

Refinement top

H atoms bonded to C atoms of the pyridine ring were positioned geometrically and refined as riding atoms, with C—H = 0.97 Å, and with Uiso(H) = 1.2 Ueq(C). The water H atoms were located from a difference Fourier map and refined with restraints of O—H = 0.86 (1) Å and Uiso(H) = 1.5 Ueq(O).

Results and discussion top

In the title polymeric complex, [C14H18CoN2O14Sr]n·2n H2O, the CoII ion, which is situated on a crystallographic centre of inversion, is six-coordinated by two oxygen atoms and two nitro­gen atoms from two pyridine-2,4-di­carboxyl­ate (pydc2-) ligands and two terminal water molecules in a slightly distorted o­cta­hedral geometry, to form a trans-[Co(pydc)2(H2O)2]2- unit. The SrII ion being situated on the C2-axis is coordinated by four oxygen atoms from four pydc2- ligands and four water molecules. The coordination geometry of the SrII atom can be best described as a distorted dodecahedron. Each SrII ion bridges four [Co(pydc)2(H2O)2]2- units by four COO- groups of four pydc2- ligands to form a three-dimensional network structure. The structure is also built up by hydrogen bond inter­actions between coordinated water molecules and carb­oxy­lic groups of pydc2- ligands. Sovent water molecules are connected to the 3-D network by three inter­molecular hydrogen bond inter­actions O6—H6B···O8, O8—H8A···O6 and O3—H8B···O3.

Related literature top

For similar heterometallic complexes, see: Chen et al. (2015); Chen et al. (2014); Gil de Muro et al. (1999); Li et al. (1989); Mege-Revil & Price (2013); Zasurskaya et al. (2000, 2001, 2006); Zhang (1993); Zhang et al. (1992).

Structure description top

As an N,O-containing ligand, pyridine-2,4-di­carb­oxy­lic acid (pydc) possesses different binding sites with specific affinities to discriminate different metal ions. It coordinates to alkaline earth metals by using the oxygen atoms to form 'complex-ligands', and the 'complex-ligands' then bind with other metal ions to generate heterometallic coordination polymers. In our previous work, two heterometallic complexes containing CoII and SrII ions were reported (Chen et al., 2015; Chen et al., 2014). As a continuation of our previous work, in this paper a new Co—Sr-pydc complex is reported.

In the title polymeric complex, [C14H18CoN2O14Sr]n·2n H2O, the CoII ion, which is situated on a crystallographic centre of inversion, is six-coordinated by two oxygen atoms and two nitro­gen atoms from two pyridine-2,4-di­carboxyl­ate (pydc2-) ligands and two terminal water molecules in a slightly distorted o­cta­hedral geometry, to form a trans-[Co(pydc)2(H2O)2]2- unit. The SrII ion being situated on the C2-axis is coordinated by four oxygen atoms from four pydc2- ligands and four water molecules. The coordination geometry of the SrII atom can be best described as a distorted dodecahedron. Each SrII ion bridges four [Co(pydc)2(H2O)2]2- units by four COO- groups of four pydc2- ligands to form a three-dimensional network structure. The structure is also built up by hydrogen bond inter­actions between coordinated water molecules and carb­oxy­lic groups of pydc2- ligands. Sovent water molecules are connected to the 3-D network by three inter­molecular hydrogen bond inter­actions O6—H6B···O8, O8—H8A···O6 and O3—H8B···O3.

For similar heterometallic complexes, see: Chen et al. (2015); Chen et al. (2014); Gil de Muro et al. (1999); Li et al. (1989); Mege-Revil & Price (2013); Zasurskaya et al. (2000, 2001, 2006); Zhang (1993); Zhang et al. (1992).

Synthesis and crystallization top

A mixture of pyridine-2,4-di­carb­oxy­lic acid (0.0337 g, 0.2 mmol), Sr(OH)2·8 H2O (0.0262 g, 0.1 mmol), Co(OAc)2·4H2O (0.0244 g,0.1 mmol), and H2O (2 ml) was sealed in a pyrex-bottle (8 ml) and heated to 90°C for 2 days. The tube was then cooled to room temperature, generating yellow rod crystals. Yield: 0.0225 g (37%, based on Co). Elemental analysis calc. for C14H22CoN2O16Sr: C, 27.08; H, 3.57; N, 4.51%. Found: C,27.32; H, 3.57; N, 4.53%.

Refinement details top

H atoms bonded to C atoms of the pyridine ring were positioned geometrically and refined as riding atoms, with C—H = 0.97 Å, and with Uiso(H) = 1.2 Ueq(C). The water H atoms were located from a difference Fourier map and refined with restraints of O—H = 0.86 (1) Å and Uiso(H) = 1.5 Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: A: -x,-y + 1,-z + 1; B: -x + 1/2,-y + 1/2,-z + 1; C: x - 1/2,y + 1/2,z; G: -x,y,-z + 1/2; H: x - 1/2,1/2 - y,z - 1/2.
[Figure 2] Fig. 2. The packing diagram for the title compound, viewed down the b-axis, with hydrogen bonds drawn as dashed lines.
Poly[[hexaqua-1κ4O,2κ2O-bis(µ3-pyridine-2,4-dicarboxylato-1κ4O2:2κ2N,O2';1'κO4)cobalt(II)strontium(II)] dihydrate] top
Crystal data top
[CoSr(C7H3NO4)2(H2O)6]·2H2OF(000) = 1252
Mr = 620.89Dx = 1.924 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1892 reflections
a = 18.628 (4) Åθ = 2.4–25.0°
b = 6.8742 (14) ŵ = 3.35 mm1
c = 19.101 (4) ÅT = 293 K
β = 118.77 (3)°Block, yellow
V = 2144.0 (8) Å30.20 × 0.18 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1892 independent reflections
Radiation source: fine-focus sealed tube1776 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2222
Tmin = 0.554, Tmax = 0.634k = 78
14907 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.032P)2 + 2.0752P]
where P = (Fo2 + 2Fc2)/3
1892 reflections(Δ/σ)max < 0.001
180 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
[CoSr(C7H3NO4)2(H2O)6]·2H2OV = 2144.0 (8) Å3
Mr = 620.89Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.628 (4) ŵ = 3.35 mm1
b = 6.8742 (14) ÅT = 293 K
c = 19.101 (4) Å0.20 × 0.18 × 0.15 mm
β = 118.77 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
1892 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1776 reflections with I > 2σ(I)
Tmin = 0.554, Tmax = 0.634Rint = 0.023
14907 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.055H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.25 e Å3
1892 reflectionsΔρmin = 0.46 e Å3
180 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. During the refinement, the command 'omit -3 50' was used to omit the reflections above 50 degree.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr10.00000.01264 (3)0.25000.02146 (10)
Co10.00000.50000.50000.01990 (11)
O10.00844 (7)0.38635 (19)0.39640 (7)0.0266 (3)
O20.06342 (8)0.3272 (2)0.33384 (7)0.0315 (3)
O40.42018 (7)0.5817 (2)0.60160 (7)0.0305 (3)
O30.36287 (8)0.4710 (2)0.47716 (9)0.0317 (3)
O50.03083 (9)0.7721 (2)0.44277 (9)0.0331 (3)
H5A0.0016 (16)0.826 (4)0.4351 (14)0.050*
H5B0.0549 (15)0.844 (4)0.4563 (14)0.050*
O60.11541 (10)0.1289 (3)0.28103 (10)0.0449 (4)
H6A0.0932 (18)0.204 (5)0.3145 (18)0.067*
H6B0.143 (2)0.067 (5)0.2920 (19)0.067*
O70.07800 (11)0.3050 (3)0.24138 (10)0.0465 (4)
H7A0.0880 (19)0.302 (5)0.2065 (18)0.070*
H7B0.0788 (19)0.423 (5)0.2552 (18)0.070*
N10.12275 (9)0.5227 (2)0.52456 (9)0.0200 (3)
C10.13299 (11)0.4627 (2)0.46297 (10)0.0186 (3)
C20.20789 (11)0.4628 (2)0.46526 (10)0.0203 (4)
H20.21250.42170.42120.024*
C30.27660 (11)0.5250 (2)0.53410 (11)0.0199 (4)
C40.26621 (10)0.5851 (3)0.59769 (10)0.0243 (4)
H40.31080.62720.64480.029*
C50.18875 (10)0.5820 (3)0.59040 (10)0.0250 (4)
H50.18240.62340.63350.030*
C60.05723 (10)0.3868 (2)0.39153 (10)0.0210 (4)
C70.35996 (11)0.5254 (2)0.53790 (11)0.0222 (4)
O80.27133 (18)0.4156 (6)0.30992 (15)0.1108 (11)
H8A0.239 (3)0.339 (8)0.295 (3)0.166*
H8B0.289 (3)0.430 (8)0.358 (3)0.166*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.02048 (15)0.02650 (15)0.01701 (14)0.0000.00871 (11)0.000
Co10.01467 (19)0.0272 (2)0.01995 (19)0.00072 (11)0.01003 (15)0.00234 (12)
O10.0171 (6)0.0390 (7)0.0237 (6)0.0033 (5)0.0099 (5)0.0083 (5)
O20.0295 (7)0.0452 (8)0.0233 (6)0.0070 (6)0.0154 (6)0.0120 (6)
O40.0171 (6)0.0449 (8)0.0262 (7)0.0022 (6)0.0079 (5)0.0046 (6)
O30.0247 (7)0.0431 (8)0.0344 (8)0.0008 (6)0.0199 (6)0.0043 (6)
O50.0305 (7)0.0300 (8)0.0512 (9)0.0033 (6)0.0295 (7)0.0058 (6)
O60.0445 (9)0.0566 (11)0.0438 (9)0.0198 (7)0.0294 (8)0.0190 (8)
O70.0529 (10)0.0425 (9)0.0410 (9)0.0015 (8)0.0201 (8)0.0091 (7)
N10.0175 (8)0.0242 (8)0.0202 (8)0.0004 (5)0.0106 (6)0.0009 (5)
C10.0190 (8)0.0183 (8)0.0198 (9)0.0007 (7)0.0103 (7)0.0015 (7)
C20.0218 (9)0.0213 (8)0.0217 (9)0.0014 (7)0.0135 (7)0.0002 (7)
C30.0181 (9)0.0183 (8)0.0247 (9)0.0024 (6)0.0115 (8)0.0048 (6)
C40.0191 (8)0.0303 (10)0.0208 (8)0.0007 (7)0.0075 (7)0.0007 (7)
C50.0216 (9)0.0353 (10)0.0198 (8)0.0000 (8)0.0114 (7)0.0052 (7)
C60.0213 (8)0.0206 (9)0.0208 (8)0.0007 (7)0.0099 (7)0.0004 (6)
C70.0184 (9)0.0214 (9)0.0278 (10)0.0032 (7)0.0119 (8)0.0072 (7)
O80.0901 (19)0.191 (3)0.0507 (13)0.065 (2)0.0334 (14)0.0089 (17)
Geometric parameters (Å, º) top
Co1—O1i2.0619 (12)O7—H7B0.85 (4)
Co1—O12.0619 (12)N1—C51.331 (2)
Co1—O52.1025 (15)N1—C11.344 (2)
Co1—O5i2.1025 (15)C1—C21.375 (3)
Co1—N12.1072 (16)C1—C61.507 (2)
Co1—N1i2.1072 (16)C2—C31.389 (3)
O1—C61.271 (2)C2—H20.9300
O2—C61.232 (2)C3—C41.382 (3)
O4—C71.255 (2)C3—C71.519 (2)
O3—C71.245 (2)C4—C51.382 (2)
O5—H5A0.78 (3)C4—H40.9300
O5—H5B0.79 (3)C5—H50.9300
O6—H6A0.77 (3)O8—H8A0.75 (5)
O6—H6B0.77 (3)O8—H8B0.82 (6)
O7—H7A0.77 (3)
O1i—Co1—O1180.0C1—N1—Co1112.24 (12)
O1i—Co1—O592.14 (6)N1—C1—C2122.78 (16)
O1—Co1—O587.86 (6)N1—C1—C6115.66 (15)
O1i—Co1—O5i87.86 (6)C2—C1—C6121.51 (15)
O1—Co1—O5i92.14 (6)C1—C2—C3119.27 (16)
O5—Co1—O5i180.0C1—C2—H2120.4
O1i—Co1—N1100.66 (6)C3—C2—H2120.4
O1—Co1—N179.34 (6)C4—C3—C2117.96 (16)
O5—Co1—N192.61 (6)C4—C3—C7121.99 (16)
O5i—Co1—N187.39 (6)C2—C3—C7120.05 (16)
O1i—Co1—N1i79.34 (6)C5—C4—C3119.22 (16)
O1—Co1—N1i100.66 (6)C5—C4—H4120.4
O5—Co1—N1i87.39 (6)C3—C4—H4120.4
O5i—Co1—N1i92.61 (6)N1—C5—C4123.02 (16)
N1—Co1—N1i180.0N1—C5—H5118.5
C6—O1—Co1115.97 (11)C4—C5—H5118.5
Co1—O5—H5A118.5 (19)O2—C6—O1124.93 (16)
Co1—O5—H5B116.3 (18)O2—C6—C1118.35 (15)
H5A—O5—H5B112 (3)O1—C6—C1116.71 (14)
H6A—O6—H6B108 (3)O3—C7—O4125.23 (17)
H7A—O7—H7B109 (3)O3—C7—C3117.19 (17)
C5—N1—C1117.74 (15)O4—C7—C3117.58 (16)
C5—N1—Co1130.01 (12)H8A—O8—H8B109 (5)
O5—Co1—O1—C690.49 (13)C7—C3—C4—C5179.75 (16)
N1—Co1—O1—C62.57 (12)C1—N1—C5—C40.3 (3)
O5—Co1—N1—C596.46 (16)Co1—N1—C5—C4178.77 (13)
O1—Co1—N1—C12.35 (11)C3—C4—C5—N10.3 (3)
O5—Co1—N1—C184.97 (12)Co1—O1—C6—O2179.05 (14)
C5—N1—C1—C20.8 (3)Co1—O1—C6—C12.30 (19)
Co1—N1—C1—C2179.57 (13)N1—C1—C6—O2178.92 (16)
C5—N1—C1—C6176.84 (15)C2—C1—C6—O21.3 (3)
Co1—N1—C1—C61.93 (18)N1—C1—C6—O10.2 (2)
N1—C1—C2—C30.8 (3)C2—C1—C6—O1177.49 (16)
C6—C1—C2—C3176.73 (15)C4—C3—C7—O3179.09 (16)
C1—C2—C3—C40.2 (2)C2—C3—C7—O31.0 (2)
C1—C2—C3—C7179.75 (15)C4—C3—C7—O40.4 (2)
C2—C3—C4—C50.3 (3)C2—C3—C7—O4179.53 (16)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O4ii0.78 (3)2.00 (3)2.7672 (19)168 (2)
O5—H5B···O3iii0.79 (3)1.96 (3)2.734 (2)165 (3)
O6—H6B···O8iv0.77 (3)2.07 (4)2.833 (3)173 (3)
O7—H7A···O5v0.77 (3)2.57 (3)3.233 (3)145 (3)
O7—H7B···O2vi0.85 (4)2.39 (3)3.170 (2)153 (3)
O8—H8A···O6vii0.75 (5)2.50 (5)3.238 (3)167 (5)
O8—H8B···O30.82 (6)2.04 (6)2.831 (3)164 (6)
O6—H6A···O10.77 (3)2.03 (3)2.781 (2)164 (3)
Symmetry codes: (ii) x+1/2, y+3/2, z+1; (iii) x1/2, y+1/2, z; (iv) x1/2, y1/2, z; (v) x, y1, z+1/2; (vi) x, y1, z; (vii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O4i0.78 (3)2.00 (3)2.7672 (19)168 (2)
O5—H5B···O3ii0.79 (3)1.96 (3)2.734 (2)165 (3)
O6—H6B···O8iii0.77 (3)2.07 (4)2.833 (3)173 (3)
O7—H7A···O5iv0.77 (3)2.57 (3)3.233 (3)145 (3)
O7—H7B···O2v0.85 (4)2.39 (3)3.170 (2)153 (3)
O8—H8A···O6vi0.75 (5)2.50 (5)3.238 (3)167 (5)
O8—H8B···O30.82 (6)2.04 (6)2.831 (3)164 (6)
O6—H6A···O10.77 (3)2.03 (3)2.781 (2)164 (3)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x1/2, y+1/2, z; (iii) x1/2, y1/2, z; (iv) x, y1, z+1/2; (v) x, y1, z; (vi) x, y, z+1/2.
 

Acknowledgements

This research was supported by Doctoral Fund Project of Huanggang Normal University (grant No. 2015001803).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y., Gao, Q., Chen, W., Gao, D., Li, Y., Liu, W. & Li, W. (2015). Chem. Asian J. 10, 411–421.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationChen, Y., Gao, Q., Zhang, H., Gao, D., Li, Y., Liu, W. & Li, W. (2014). Polyhedron, 71, 91–98.  Web of Science CSD CrossRef CAS Google Scholar
First citationGil de Muro, I., Insausti, M., Lezama, L., Pizarro, J. L., Arriortua, M. I. & Rojo, T. (1999). Eur. J. Inorg. Chem. pp. 935–943.  CrossRef Google Scholar
First citationLi, J., Lin, W., Zheng, Y. & Wu, X. (1989). Huaxue Wuli Xuebao, 2, 379–383.  CAS Google Scholar
First citationMege-Revil, A. & Price, D. J. (2013). Polyhedron, 52, 650–657.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZasurskaya, L. A., Polyakova, I. N., Poznyak, A. L., Polynova, T. N. & Sergienko, V. S. (2001). Kristallografiya, 46, 427–432.  CAS Google Scholar
First citationZasurskaya, L. A., Polyakova, I. N., Rybakov, V. B., Polynova, T. N., Poznyak, A. L. & Sergienko, V. S. (2006). Crystallogr. Rep. 51, 448–458.  Web of Science CrossRef CAS Google Scholar
First citationZasurskaya, L. A., Rybakov, V. B., Poznyak, A. L. & Polynova, T. N. (2000). Russ. J. Coord. Chem. 26, 492–499.  CAS Google Scholar
First citationZhang, Y. (1993). Spectrosc. Lett. 26, 1673–1679.  CAS Google Scholar
First citationZhang, Y., Li, J. & Fan, J. (1992). Cryst. Res. Technol. 27, 229–234.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds