organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-phenyl­ethanaminium 3-carb­­oxy­prop-2-enoate

CROSSMARK_Color_square_no_text.svg

aDepartment of Applied Physics, Sri Venkateswara College of Engineering, Chennai 602 117, India, bDepartment of Physics, Aksheyaa College of Engineering, Kancheepuram 603 314, India, cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, and dDepartment of Physics, Presidency College, Chennai 600 005, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com, mohan66@hotmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 27 July 2015; accepted 29 July 2015; online 6 August 2015)

The title mol­ecular salt, C8H12N+·C4H3O4, crystallized with two independent cations and anions in the asymmetric unit. The ethanaminium side chains of the cations exhibit anti conformations [C—C—C—N torsion angles = 176.5 (3) and −179.4 (3)°]. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds connect adjacent anions and cations, and , O—H⋯O hydrogen bonds connect adjacent anions, generating sheets parallel to (001).

1. Related literature

For the crystal structures of related compounds, see: Ambalatharasu et al. (2014[Ambalatharasu, S., Sankar, A., Peramaiyan, G., Chakkaravarthi, G. & Kanagadurai, R. (2014). Acta Cryst. E70, o491.]); Lejon et al. (2006[Lejon, T., Ingebrigtsen, T. & Hansen, L. K. (2006). Acta Cryst. E62, o701-o702.]); Smith et al. (2003[Smith, G., Wermuth, U. D. & White, J. M. (2003). Acta Cryst. E59, o1977-o1979.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C8H12N+·C4H3O4

  • Mr = 237.25

  • Triclinic, [P \overline 1]

  • a = 9.2940 (5) Å

  • b = 10.8010 (7) Å

  • c = 12.7470 (8) Å

  • α = 81.773 (4)°

  • β = 88.907 (5)°

  • γ = 87.396 (4)°

  • V = 1265.02 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.26 × 0.24 × 0.20 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.976, Tmax = 0.982

  • 29606 measured reflections

  • 5579 independent reflections

  • 3453 reflections with I > 2σ(I)

  • Rint = 0.039

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.199

  • S = 1.04

  • 5579 reflections

  • 309 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O4 0.89 1.92 2.805 (3) 177
N1—H1A⋯O8i 0.89 2.00 2.863 (3) 163
N1—H1B⋯O1ii 0.89 2.38 2.992 (2) 126
N1—H1B⋯O5iii 0.89 2.20 2.961 (3) 143
N2—H2A⋯O1iv 0.89 1.92 2.814 (3) 177
N2—H2C⋯O6iv 0.89 1.99 2.863 (3) 167
N2—H2B⋯O7v 0.89 2.23 2.974 (3) 141
N2—H2B⋯O4vi 0.89 2.38 2.992 (2) 126
O2—H2D⋯O5vii 0.82 1.65 2.470 (2) 176
O7—H7⋯O3viii 0.82 1.68 2.494 (2) 174
C7—H7A⋯O8i 0.97 2.58 3.349 (4) 136
Symmetry codes: (i) x, y+1, z; (ii) x-1, y, z; (iii) -x+1, -y, -z-1; (iv) -x+1, -y, -z; (v) x-1, y+1, z+1; (vi) -x, -y, -z; (vii) -x+2, -y, -z-1; (viii) -x+1, -y-1, -z-1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

The molecular structure of the title molecular salt is illustrated in Fig. 1. The geometric parameters are comparable with those reported for similar structures (Ambalatharasu et al., 2014; Lejon et al., 2006; Smith et al., 2003). The asymmetric unit consists of two independent 2-phenyl­ethanaminium cations and 3-carb­oxy­prop-2-enoate anions. The cations are protonated at amine-N atoms, and in the cations the side chains exhibit anti-conformations [C1—C7—C8—N1 = 176.5 (3) ° and C9—C15—C16—N2 = 179.4 (3) °]. The dihedral angle between the aromatic rings, (C1—C6) and (C9—C14), is 34.0 (3)Å.

In the crystal, the molecular structure is stabilized by a medium-strength intra­molecular cation-anion N—H···O hydrogen bond (Table 1 and Fig. 2). Adjacent anions and cations are linked by further N—H···O and O—H···O hydrogen bonds into infinite two-dimensional networks parallel to the ab plane (Table 1 and Fig. 2). There are also weak C—H···O hydrogen bonds within the sheets (Table 1).

Synthesis and crystallization top

The title slat was synthesized by mixing 2-phenyl­ethyl­amine (1.26 g) and fumaric acid (1.16 g) in methanol-water (1:1) and the single crystals suitable for X-ray diffraction were grown by slow evaporation.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. All the H atoms were positioned geometrically and refined using a riding model: O—H = 0.82 Å, N—H = 0.89 Å, C—H = 0.93 - 0.97 Å with Uiso(H) = 1.5Ueq(O,N) for OH and NH3 H atoms and 1.2Ueq(C) for other H atoms. The bond distances C1—C6, C3—C4 and C5—C6 were restrained to 1.390 (1) Å.

Related literature top

For the crystal structures of related compounds, see: Ambalatharasu et al. (2014); Lejon et al. (2006); Smith et al. (2003).

Structure description top

The molecular structure of the title molecular salt is illustrated in Fig. 1. The geometric parameters are comparable with those reported for similar structures (Ambalatharasu et al., 2014; Lejon et al., 2006; Smith et al., 2003). The asymmetric unit consists of two independent 2-phenyl­ethanaminium cations and 3-carb­oxy­prop-2-enoate anions. The cations are protonated at amine-N atoms, and in the cations the side chains exhibit anti-conformations [C1—C7—C8—N1 = 176.5 (3) ° and C9—C15—C16—N2 = 179.4 (3) °]. The dihedral angle between the aromatic rings, (C1—C6) and (C9—C14), is 34.0 (3)Å.

In the crystal, the molecular structure is stabilized by a medium-strength intra­molecular cation-anion N—H···O hydrogen bond (Table 1 and Fig. 2). Adjacent anions and cations are linked by further N—H···O and O—H···O hydrogen bonds into infinite two-dimensional networks parallel to the ab plane (Table 1 and Fig. 2). There are also weak C—H···O hydrogen bonds within the sheets (Table 1).

For the crystal structures of related compounds, see: Ambalatharasu et al. (2014); Lejon et al. (2006); Smith et al. (2003).

Synthesis and crystallization top

The title slat was synthesized by mixing 2-phenyl­ethyl­amine (1.26 g) and fumaric acid (1.16 g) in methanol-water (1:1) and the single crystals suitable for X-ray diffraction were grown by slow evaporation.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. All the H atoms were positioned geometrically and refined using a riding model: O—H = 0.82 Å, N—H = 0.89 Å, C—H = 0.93 - 0.97 Å with Uiso(H) = 1.5Ueq(O,N) for OH and NH3 H atoms and 1.2Ueq(C) for other H atoms. The bond distances C1—C6, C3—C4 and C5—C6 were restrained to 1.390 (1) Å.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title salt, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title salt viewed along the b axis. The hydrogen bonds are shown as dashed lines (see Table 1) and C-bound H atoms have been omitted for clarity.
2-Phenylethanaminium 3-carboxyprop-2-enoate top
Crystal data top
C8H12N+·C4H3O4Z = 4
Mr = 237.25F(000) = 504
Triclinic, P1Dx = 1.246 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2940 (5) ÅCell parameters from 7705 reflections
b = 10.8010 (7) Åθ = 2.2–27.1°
c = 12.7470 (8) ŵ = 0.09 mm1
α = 81.773 (4)°T = 295 K
β = 88.907 (5)°Block, colourless
γ = 87.396 (4)°0.26 × 0.24 × 0.20 mm
V = 1265.02 (13) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5579 independent reflections
Radiation source: fine-focus sealed tube3453 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω and φ scanθmax = 27.2°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.976, Tmax = 0.982k = 1313
29606 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.199H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0955P)2 + 0.6291P]
where P = (Fo2 + 2Fc2)/3
5579 reflections(Δ/σ)max < 0.001
309 parametersΔρmax = 0.39 e Å3
3 restraintsΔρmin = 0.28 e Å3
Crystal data top
C8H12N+·C4H3O4γ = 87.396 (4)°
Mr = 237.25V = 1265.02 (13) Å3
Triclinic, P1Z = 4
a = 9.2940 (5) ÅMo Kα radiation
b = 10.8010 (7) ŵ = 0.09 mm1
c = 12.7470 (8) ÅT = 295 K
α = 81.773 (4)°0.26 × 0.24 × 0.20 mm
β = 88.907 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5579 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3453 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.982Rint = 0.039
29606 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0573 restraints
wR(F2) = 0.199H-atom parameters constrained
S = 1.04Δρmax = 0.39 e Å3
5579 reflectionsΔρmin = 0.28 e Å3
309 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3953 (4)0.2508 (4)0.0808 (3)0.0901 (13)
C20.3882 (6)0.1650 (6)0.0060 (4)0.1224 (18)
H20.39880.08100.00240.147*
C30.3664 (7)0.1939 (8)0.1061 (4)0.159 (3)
H30.36910.13070.16390.191*
C40.3403 (8)0.3176 (9)0.1216 (5)0.175 (4)
H40.31650.33890.18810.210*
C50.3508 (11)0.4049 (10)0.0362 (5)0.214 (4)
H50.34140.48880.04530.257*
C60.3750 (9)0.3752 (5)0.0654 (4)0.175 (3)
H60.37770.43860.12300.210*
C70.4238 (4)0.2131 (5)0.1903 (3)0.0956 (14)
H7A0.49010.27040.22900.115*
H7B0.46950.12990.18240.115*
C80.2922 (3)0.2139 (3)0.2520 (2)0.0587 (8)
H8A0.24340.29570.25580.070*
H8B0.22850.15290.21520.070*
C90.0810 (4)0.2157 (3)0.0186 (3)0.0697 (9)
C100.0453 (7)0.3273 (4)0.0371 (4)0.1176 (18)
H100.00280.38660.00300.141*
C110.0731 (8)0.3531 (5)0.1475 (4)0.142 (2)
H110.04770.42900.18590.171*
C120.1362 (7)0.2677 (6)0.1965 (4)0.124 (2)
H120.16110.28720.26740.149*
C130.1632 (6)0.1557 (6)0.1439 (4)0.1197 (19)
H130.19860.09460.17980.144*
C140.1388 (5)0.1290 (4)0.0354 (3)0.0941 (13)
H140.16190.05140.00090.113*
C150.0560 (4)0.1892 (4)0.1377 (3)0.0710 (9)
H15A0.02800.10140.15710.085*
H15B0.02240.23830.15560.085*
C160.1874 (3)0.2197 (3)0.1996 (2)0.0553 (7)
H16A0.21590.30730.17930.066*
H16B0.26540.17000.18190.066*
C170.9242 (2)0.0767 (2)0.40812 (17)0.0297 (5)
C180.8125 (2)0.0199 (2)0.39499 (18)0.0323 (5)
H180.84310.10390.38450.039*
C190.6736 (2)0.0079 (2)0.39746 (18)0.0314 (5)
H190.64310.09190.40740.038*
C200.5617 (2)0.0890 (2)0.38511 (17)0.0312 (5)
C210.8888 (2)0.3850 (2)0.43107 (19)0.0347 (5)
C220.7711 (2)0.4760 (2)0.42610 (19)0.0365 (5)
H220.72330.49820.36190.044*
C230.7326 (2)0.5258 (2)0.5096 (2)0.0352 (5)
H230.78010.50220.57370.042*
C240.6170 (2)0.61804 (19)0.50667 (19)0.0336 (5)
N10.3190 (2)0.1850 (2)0.36129 (16)0.0433 (5)
H1A0.38170.23750.39430.065*
H1B0.23660.19330.39660.065*
H1C0.35470.10670.35850.065*
N20.1646 (2)0.1957 (2)0.31577 (16)0.0439 (5)
H2A0.12540.11890.33340.066*
H2B0.24880.20210.34950.066*
H2C0.10580.25150.33410.066*
O11.04844 (16)0.04879 (15)0.37585 (14)0.0410 (4)
O20.88262 (16)0.18467 (14)0.45441 (13)0.0388 (4)
H2D0.94980.23180.45840.058*
O30.60245 (17)0.19778 (15)0.40468 (15)0.0428 (4)
O40.43731 (16)0.05906 (15)0.35813 (15)0.0436 (4)
O50.92154 (17)0.33377 (15)0.52644 (14)0.0421 (4)
O60.9469 (2)0.36439 (18)0.34987 (15)0.0531 (5)
O70.59639 (17)0.65424 (16)0.59847 (14)0.0446 (4)
H70.53220.70450.59280.067*
O80.54969 (18)0.65294 (16)0.42533 (14)0.0459 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.093 (3)0.133 (4)0.049 (2)0.040 (3)0.0008 (18)0.020 (2)
C20.131 (4)0.163 (5)0.068 (3)0.013 (4)0.012 (3)0.005 (3)
C30.155 (6)0.270 (10)0.044 (3)0.002 (6)0.010 (3)0.007 (4)
C40.144 (5)0.322 (13)0.080 (4)0.031 (7)0.014 (4)0.098 (6)
C50.302 (11)0.240 (10)0.131 (6)0.054 (8)0.012 (7)0.116 (7)
C60.287 (10)0.155 (6)0.094 (4)0.065 (6)0.012 (5)0.041 (4)
C70.070 (2)0.161 (4)0.061 (2)0.027 (3)0.0009 (18)0.029 (2)
C80.0557 (17)0.076 (2)0.0464 (17)0.0103 (15)0.0040 (13)0.0135 (14)
C90.082 (2)0.080 (2)0.0449 (18)0.0080 (19)0.0043 (16)0.0078 (17)
C100.197 (6)0.087 (3)0.068 (3)0.021 (3)0.015 (3)0.005 (2)
C110.242 (7)0.099 (4)0.073 (3)0.021 (4)0.035 (4)0.017 (3)
C120.183 (6)0.136 (5)0.047 (2)0.078 (4)0.006 (3)0.014 (3)
C130.154 (5)0.143 (5)0.070 (3)0.037 (4)0.025 (3)0.049 (3)
C140.125 (4)0.098 (3)0.062 (2)0.003 (3)0.005 (2)0.021 (2)
C150.064 (2)0.096 (3)0.0515 (19)0.0026 (18)0.0002 (15)0.0069 (18)
C160.0506 (16)0.074 (2)0.0401 (15)0.0053 (14)0.0039 (12)0.0041 (14)
C170.0272 (11)0.0323 (11)0.0316 (12)0.0103 (9)0.0020 (9)0.0085 (9)
C180.0310 (11)0.0294 (11)0.0374 (13)0.0104 (9)0.0003 (9)0.0054 (9)
C190.0292 (11)0.0284 (11)0.0375 (12)0.0084 (9)0.0008 (9)0.0050 (9)
C200.0271 (11)0.0356 (12)0.0320 (12)0.0116 (9)0.0032 (9)0.0046 (9)
C210.0315 (11)0.0289 (11)0.0441 (14)0.0078 (9)0.0032 (10)0.0042 (10)
C220.0335 (12)0.0340 (12)0.0419 (13)0.0116 (9)0.0010 (10)0.0016 (10)
C230.0286 (11)0.0304 (11)0.0472 (14)0.0102 (9)0.0034 (10)0.0049 (10)
C240.0279 (11)0.0275 (11)0.0467 (14)0.0069 (9)0.0003 (10)0.0075 (10)
N10.0332 (10)0.0536 (13)0.0438 (12)0.0058 (9)0.0007 (9)0.0078 (10)
N20.0374 (11)0.0566 (13)0.0385 (12)0.0057 (10)0.0005 (9)0.0087 (10)
O10.0283 (8)0.0406 (9)0.0546 (11)0.0102 (7)0.0051 (7)0.0052 (8)
O20.0294 (8)0.0324 (8)0.0538 (11)0.0136 (6)0.0033 (7)0.0006 (7)
O30.0306 (8)0.0359 (9)0.0656 (12)0.0113 (7)0.0020 (8)0.0169 (8)
O40.0277 (8)0.0411 (9)0.0630 (12)0.0097 (7)0.0057 (7)0.0088 (8)
O50.0384 (9)0.0423 (9)0.0452 (10)0.0192 (7)0.0041 (7)0.0014 (8)
O60.0586 (11)0.0563 (11)0.0474 (11)0.0278 (9)0.0094 (9)0.0081 (9)
O70.0358 (9)0.0456 (10)0.0569 (11)0.0192 (7)0.0046 (8)0.0177 (8)
O80.0420 (10)0.0457 (10)0.0510 (11)0.0205 (8)0.0058 (8)0.0055 (8)
Geometric parameters (Å, º) top
C1—C21.341 (6)C15—H15A0.9700
C1—C61.3894 (10)C15—H15B0.9700
C1—C71.524 (5)C16—N21.484 (3)
C2—C31.366 (8)C16—H16A0.9700
C2—H20.9300C16—H16B0.9700
C3—C41.3888 (10)C17—O11.243 (3)
C3—H30.9300C17—O21.276 (3)
C4—C51.339 (11)C17—C181.496 (3)
C4—H40.9300C18—C191.312 (3)
C5—C61.3902 (10)C18—H180.9300
C5—H50.9300C19—C201.499 (3)
C6—H60.9300C19—H190.9300
C7—C81.465 (5)C20—O41.242 (3)
C7—H7A0.9700C20—O31.276 (3)
C7—H7B0.9700C21—O61.229 (3)
C8—N11.485 (4)C21—O51.298 (3)
C8—H8A0.9700C21—C221.498 (3)
C8—H8B0.9700C22—C231.322 (3)
C9—C101.360 (6)C22—H220.9300
C9—C141.373 (5)C23—C241.495 (3)
C9—C151.524 (4)C23—H230.9300
C10—C111.421 (7)C24—O81.222 (3)
C10—H100.9300C24—O71.306 (3)
C11—C121.347 (8)N1—H1A0.8900
C11—H110.9300N1—H1B0.8900
C12—C131.329 (8)N1—H1C0.8900
C12—H120.9300N2—H2A0.8900
C13—C141.393 (6)N2—H2B0.8900
C13—H130.9300N2—H2C0.8900
C14—H140.9300O2—H2D0.8200
C15—C161.491 (4)O7—H70.8200
C2—C1—C6116.4 (5)C16—C15—H15A109.2
C2—C1—C7121.5 (5)C9—C15—H15A109.2
C6—C1—C7122.1 (4)C16—C15—H15B109.2
C1—C2—C3123.8 (6)C9—C15—H15B109.2
C1—C2—H2118.1H15A—C15—H15B107.9
C3—C2—H2118.1N2—C16—C15112.6 (2)
C2—C3—C4120.0 (6)N2—C16—H16A109.1
C2—C3—H3120.0C15—C16—H16A109.1
C4—C3—H3120.0N2—C16—H16B109.1
C5—C4—C3116.9 (6)C15—C16—H16B109.1
C5—C4—H4121.6H16A—C16—H16B107.8
C3—C4—H4121.6O1—C17—O2124.44 (18)
C4—C5—C6122.7 (8)O1—C17—C18119.9 (2)
C4—C5—H5118.6O2—C17—C18115.61 (18)
C6—C5—H5118.6C19—C18—C17123.3 (2)
C1—C6—C5119.9 (6)C19—C18—H18118.4
C1—C6—H6120.0C17—C18—H18118.4
C5—C6—H6120.0C18—C19—C20123.3 (2)
C8—C7—C1112.8 (3)C18—C19—H19118.4
C8—C7—H7A109.0C20—C19—H19118.4
C1—C7—H7A109.0O4—C20—O3124.52 (19)
C8—C7—H7B109.0O4—C20—C19119.1 (2)
C1—C7—H7B109.0O3—C20—C19116.41 (19)
H7A—C7—H7B107.8O6—C21—O5125.11 (19)
C7—C8—N1113.5 (3)O6—C21—C22120.8 (2)
C7—C8—H8A108.9O5—C21—C22114.1 (2)
N1—C8—H8A108.9C23—C22—C21122.5 (2)
C7—C8—H8B108.9C23—C22—H22118.8
N1—C8—H8B108.9C21—C22—H22118.8
H8A—C8—H8B107.7C22—C23—C24123.6 (2)
C10—C9—C14118.2 (4)C22—C23—H23118.2
C10—C9—C15120.1 (4)C24—C23—H23118.2
C14—C9—C15121.7 (3)O8—C24—O7125.07 (19)
C9—C10—C11119.9 (5)O8—C24—C23121.8 (2)
C9—C10—H10120.0O7—C24—C23113.2 (2)
C11—C10—H10120.0C8—N1—H1A109.5
C12—C11—C10120.0 (5)C8—N1—H1B109.5
C12—C11—H11120.0H1A—N1—H1B109.5
C10—C11—H11120.0C8—N1—H1C109.5
C13—C12—C11120.3 (5)H1A—N1—H1C109.5
C13—C12—H12119.9H1B—N1—H1C109.5
C11—C12—H12119.9C16—N2—H2A109.5
C12—C13—C14120.5 (5)C16—N2—H2B109.5
C12—C13—H13119.8H2A—N2—H2B109.5
C14—C13—H13119.8C16—N2—H2C109.5
C9—C14—C13120.9 (5)H2A—N2—H2C109.5
C9—C14—H14119.6H2B—N2—H2C109.5
C13—C14—H14119.6C17—O2—H2D109.5
C16—C15—C9111.8 (3)C24—O7—H7109.5
C6—C1—C2—C31.7 (8)C10—C9—C14—C131.4 (7)
C7—C1—C2—C3178.4 (5)C15—C9—C14—C13178.9 (4)
C1—C2—C3—C44.4 (10)C12—C13—C14—C92.7 (8)
C2—C3—C4—C55.9 (12)C10—C9—C15—C1694.4 (5)
C3—C4—C5—C65.1 (14)C14—C9—C15—C1685.9 (4)
C2—C1—C6—C50.7 (10)C9—C15—C16—N2179.4 (3)
C7—C1—C6—C5179.3 (6)O1—C17—C18—C19159.4 (2)
C4—C5—C6—C12.6 (14)O2—C17—C18—C1921.4 (3)
C2—C1—C7—C8100.0 (5)C17—C18—C19—C20179.5 (2)
C6—C1—C7—C879.9 (6)C18—C19—C20—O4159.5 (2)
C1—C7—C8—N1176.5 (3)C18—C19—C20—O321.2 (3)
C14—C9—C10—C112.3 (8)O6—C21—C22—C23161.6 (2)
C15—C9—C10—C11178.0 (5)O5—C21—C22—C2318.0 (3)
C9—C10—C11—C120.8 (9)C21—C22—C23—C24179.2 (2)
C10—C11—C12—C134.9 (10)C22—C23—C24—O80.3 (4)
C11—C12—C13—C145.9 (9)C22—C23—C24—O7179.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O40.891.922.805 (3)177
N1—H1A···O8i0.892.002.863 (3)163
N1—H1B···O1ii0.892.382.992 (2)126
N1—H1B···O5iii0.892.202.961 (3)143
N2—H2A···O1iv0.891.922.814 (3)177
N2—H2C···O6iv0.891.992.863 (3)167
N2—H2B···O7v0.892.232.974 (3)141
N2—H2B···O4vi0.892.382.992 (2)126
O2—H2D···O5vii0.821.652.470 (2)176
O7—H7···O3viii0.821.682.494 (2)174
C7—H7A···O8i0.972.583.349 (4)136
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z; (iii) x+1, y, z1; (iv) x+1, y, z; (v) x1, y+1, z+1; (vi) x, y, z; (vii) x+2, y, z1; (viii) x+1, y1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O40.891.922.805 (3)177
N1—H1A···O8i0.892.002.863 (3)163
N1—H1B···O1ii0.892.382.992 (2)126
N1—H1B···O5iii0.892.202.961 (3)143
N2—H2A···O1iv0.891.922.814 (3)177
N2—H2C···O6iv0.891.992.863 (3)167
N2—H2B···O7v0.892.232.974 (3)141
N2—H2B···O4vi0.892.382.992 (2)126
O2—H2D···O5vii0.821.652.470 (2)176
O7—H7···O3viii0.821.682.494 (2)174
C7—H7A···O8i0.972.583.349 (4)136
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z; (iii) x+1, y, z1; (iv) x+1, y, z; (v) x1, y+1, z+1; (vi) x, y, z; (vii) x+2, y, z1; (viii) x+1, y1, z1.
 

Acknowledgements

The authors wish to acknowledge the SAIF, IIT Madras, for the data collection.

References

First citationAmbalatharasu, S., Sankar, A., Peramaiyan, G., Chakkaravarthi, G. & Kanagadurai, R. (2014). Acta Cryst. E70, o491.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLejon, T., Ingebrigtsen, T. & Hansen, L. K. (2006). Acta Cryst. E62, o701–o702.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2003). Acta Cryst. E59, o1977–o1979.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds