research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of an unknown solvate of {2,2′-[ethane-1,2-diylbis(nitrilo­methanylyl­­idene)]diphenolato-κ4O,N,N′,O′}(N-ferrocenylisonicotinamide-κN1)cobalt(II): a CoII–salen complex that forms hydrogen-bonded dimers

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Westmont College, 955 La Paz Road, Santa Barbara, CA 93108, USA, and bUCSB College of Letters and Science, X-Ray Analytical Facility, 4610 Physical Sciences North, UC Santa Barbara, Santa Barbara CA 93106, USA
*Correspondence e-mail: scontakes@westmont.edu

Edited by M. Zeller, Youngstown State University, USA (Received 3 July 2015; accepted 5 August 2015; online 26 August 2015)

The title compound, [CoFe(C5H5)(C16H14N2O2)(C11H9N2O)], was prepared as an air-stable red–brown solid by mixing equimolar amounts of {2,2′-[ethane-1,2-diylbis(nitrilo­methanylyl­idene)]diphenolato}cobalt(II) and N-ferrocenylisonicotinamide in dry di­chloro­methane under nitro­gen and was characterized by ESI–MS, IR, and single-crystal X-ray diffraction. The structure at 100 K has triclinic (P-1) symmetry and indicates that the complex crystallizes as a mixture of λ and δ conformers. It exhibits the expected square pyramidal geometry about Co, and forms hydrogen-bonded dimers through amide N—H groups and phenolate O atoms on an adjacent mol­ecule. The involvement of only half of the salen ring structure in hydrogen-bonding inter­actions results in slight folding of the salen ring away from the pyridine coordination site in the δ conformer with an inter-salicyl­idene fold angle of 9.9 (7)°. In contrast, the λ conformer is nearly planar. The dimers pack into an open structure containing channels filled with highly disordered solvent mol­ecules. These solvent molecules' contributions to the intensity data were removed with the SQUEEZE procedure [Spek (2015). Acta Cryst. C71, 9–18] available in PLATON.

1. Chemical context

Ferrocenes have been studied extensively on account of their stable sandwich structure, ability to undergo reversible one-electron oxidation, and, more recently, their potential utility in asymmetric catalysis applications (Stepnicka, 2008[Stepnicka, P. (2008). In Ferrocenes: Ligands, Materials and Biomolecules. Chichester, West Sussex: John Wiley and Sons Ltd.]; Dai & Hou, 2010[Dai, L.-X. & Hou, X.-L. (2010). In Chiral Ferrocenes in Asymmetric Catalysis. Weinheim: Wiley-VCH.]). N-Ferrocenyl­amides in particular have been investigated for their ability to form hydrogen bonds through the amide N—H group and carbonyl O atom. They have been employed to construct hydrogen-bonding scaffolds (Okamura et al., 1998[Okamura, T.-A., Sakauye, K., Ueyama, N. & Nakamura, A. (1998). Inorg. Chem. 37, 6731-6736.]; Barisić et al., 2006[Barisić, L., Cakić, M., Mahmoud, K. A., Liu, Y.-N., Kraatz, H.-B., Pritzkow, H., Kirin, S. I., Metzler-Nolte, N. & Rapić, V. (2006). Chem. Eur. J. 12, 4965-4980.]), perturb the redox properties of attached metal atoms (Okamura et al., 2007[Okamura, T.-A., Iwamura, T., Yamamoto, H. & Ueyama, N. (2007). J. Organomet. Chem. 692, 248-256.]), and form one-dimensional hydrogen-bonded chains that can support fast electron transfer (Okamura et al., 2005[Okamura, T.-A., Sakauye, K., Doi, M., Yamamoto, H., Ueyama, N. & Nakamura, A. (2005). Bull. Chem. Soc. Jpn, 78, 1270-1278.]). We recently demonstrated that the hydrogen-bond network in one of these systems, N-ferrocenylisonicotinamide, is able to support a mixed-valent state in the solid (Patterson et al., 2015[Patterson, E., Brautigam, B., Farnsworth, W., McDonald, E., Wu, G. & Contakes, S. (2015). Inorg. Chem. Commun. 51, 36-39.]). Inter­estingly, the hydrogen bonds in N-ferrocenylisonicotinamide occur exclusively between the amide N—H group and the amide carbonyl O atom; the pyridyl N atom of the isonicotinoyl group is not involved. This suggested that it might be possible to use the pyridine N atom to coordinate metal atoms while leaving the isonicotinamide amide group free to form hydrogen-bonded chains or otherwise engage in hydrogen-bonding inter­actions. To this end, a complex between N-ferrocenylisonicotinamide and {2,2′-[ethane-1,2-diylbis(nitrilo­methanylyl­idene)]diphenolato}cobalt(II) was prepared and its structure determined.

[Scheme 1]

A cobalt complex of N,N′-bis­(salicyl­idene)ethyl­enedi­amine (salen) was selected for this study since CoII(salen), and its derivatives are known to function as oxygen carriers (Tsumaki, 1938[Tsumaki, T. (1938). Bull. Chem. Soc. Jpn, 13, 252-260.]; Calvin et al., 1946[Calvin, M., Bailes, R. H. & Wilmarth, W. K. (1946). J. Am. Chem. Soc. 68, 2254-2256.]; Chen et al., 1989[Chen, D., Martell, A. E. & Sun, Y. (1989). Inorg. Chem. 28, 2647-2652.]), both as solids and in solution. Complexes with pyridine-based ligands are of particular inter­est since the ability of CoII(salen) to absorb oxygen in di­chloro­methane or chloro­form solutions is dependent on the presence of pyridine or other co-ligands to complete the d6 CoIII(salen)-superoxide complex's octa­hedral coordination sphere. The system also permits structural comparisons with reported crystal structures of oxygen-active (Schaefer and Marsh, 1969[Schaefer, W. P. & Marsh, R. E. (1969). Acta Cryst. B25, 1675-1682.]) and inactive (Holt et al., 1971[Holt, S. L., DeIasi, R. & Post, B. (1971). Inorg. Chem. 10, 1498-1500.]) forms of CoII(salen) and with the products of its reaction with oxygen, κ1-superoxido-complexes (Floriani & Calderazzo, 1969[Floriani, C. & Calderazzo, F. (1969). J. Chem. Soc. A, pp. 946-953.]; Schaefer et al., 1980[Schaefer, W. P., Huie, B. T., Kurilla, M. G. & Ealick, S. E. (1980). Inorg. Chem. 19, 340-344.]) and peroxido-bridged dimers (Floriani & Calderazzo, 1969[Floriani, C. & Calderazzo, F. (1969). J. Chem. Soc. A, pp. 946-953.]; Fritch et al., 1973[Fritch, J. R., Christoph, G. G. & Schaefer, W. P. (1973). Inorg. Chem. 12, 2170-2175.]). Chiral and achiral salens and their derivatives are also of inter­est due to their ability to function as versatile catalysts for a variety of oxidation, ring opening, hydrolysis, and polymerization applications (Zhang et al., 1990[Zhang, W., Loebach, J. L., Wilson, S. R. & Jacobsen, E. N. (1990). J. Am. Chem. Soc. 112, 2801-2803.]; Yoon & Jacobsen, 2003[Yoon, T. P. & Jacobsen, E. N. (2003). Science, 299, 1691-1693.]; Cozzi, 2004[Cozzi, P. G. (2004). Chem. Soc. Rev. 33, 410-421.]; Darensbourg, 2007[Darensbourg, D. J. (2007). Chem. Rev. 107, 2388-2410.]; Gupta & Sutar, 2008[Gupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252, 1420-1450.]; Ou & Wu, 2014[Ou, S. & Wu, C.-D. (2014). Inorg. Chem. Front. 1, 721-734.]). Cobalt–salen complexes in particular are used to catalyze the ring opening and hydrolysis of epoxides (Tokunaga et al., 1997[Tokunaga, M., Larrow, J. F., Kakiuchi, F. & Jacobsen, E. N. (1997). Science, 277, 936-938.]; Schaus et al., 2002[Schaus, S. E., Brandes, B. D., Larrow, J. F., Tokunaga, M., Hansen, K. B., Gould, A. E., Furrow, M. E. & Jacobsen, E. N. (2002). J. Am. Chem. Soc. 124, 1307-1315.]; Ford et al., 2013[Ford, D. D., Nielsen, L. P. C., Zuend, S. J., Musgrave, C. B. & Jacobsen, E. N. (2013). J. Am. Chem. Soc. 135, 15595-15608.]; Crossley et al., 2014[Crossley, S. W. M., Barabé, F. & Shenvi, R. A. (2014). J. Am. Chem. Soc. 136, 16788-16791.]; White et al., 2014[White, D. E., Tadross, P. M., Lu, Z. & Jacobsen, E. N. (2014). Tetrahedron, 70, 4165-4180.]) and the oxidation of phenols (Van Dort & Geursen, 1967[Dort, H. M. van & Geursen, H. J. (1967). Recl. Trav. Chim. Pays Bas, 86, 520-526.]).

2. Structural commentary

The title compound crystallizes as a 58.3 (12)/41.7 (12)% mixture of its λ and δ chelate ring conformers. In both cases the coordination environment of the CoII ion is roughly square pyramidal (Fig. 1[link]), although the CoII ion is displaced 0.15 Å away from the N2O2 plane of the salen and towards the axial N atom. A similar 0.20 Å displacement is observed in the structure of [CoII(salen)(py)] (Calligaris et al., 1970[Calligaris, M., Minichelli, D., Nardin, G. & Randaccio, L. (1970). J. Chem. Soc. A, pp. 2411-2415.]). The average CoII–Neq and CoII—O bond lengths in the present complex are 1.88 and 1.90 Å, both significantly shorter than the Co—Nax bond length of 2.159 (4) Å. The equatorial bond lengths are in good agreement with those observed for other pyridine complexes of Co(salen), although the axial Co—N bond length is more similar to the 2.10 (2) Å distance observed for [CoII(salen)(py)] than the shorter 1.896 Å distance observed for the more highly oxidized [CoIII(salen)(py)2]+ (Shi et al., 1995[Shi, X.-H., You, X.-Z., Li, C., Song, B.-L., Li, T.-H. & Huang, X.-Y. (1995). Acta Cryst. C51, 206-207.]).

[Figure 1]
Figure 1
The asymmetric unit of the title compound, showing the atom-naming scheme. Only the δ conformer is depicted for clarity. The displacement ellipsoids are shown at the 50% probability level.

The axial py group in the present complex exhibits considerable librational mobility associated with its ability to rotate about the Co—N and C-amide bonds. In fact, the average twist angle between the pyridine and amide planes is 28.2 (2)°, suggesting that the two are not tightly coupled electronically; in contrast, the amide and Cp are tightly coupled with a N—C(Cp) distance of 1.395 (5) Å and an inter­plane twist angle of 4.83 (3)°. Similar behavior is observed in the structure of N-ferrocenylisonicotinamide itself (Patterson et al., 2015[Patterson, E., Brautigam, B., Farnsworth, W., McDonald, E., Wu, G. & Contakes, S. (2015). Inorg. Chem. Commun. 51, 36-39.]).

3. Supra­molecular Features

Mol­ecules of the title compound form dimers in the solid state (Fig. 2[link]). These are linked by hydrogen bonds between the amide N—H group and one of the phenolate O atoms on adjacent mol­ecules. Inter­action between these atoms is facilitated by twisting of the N-ferrocenylisonicotinamide amide group so that the amide plane (and presumably the amide N—H group) is oriented towards one of the two phenolate O atoms on the adjacent complex. The N⋯O distance for this inter­action is 2.799 (4) Å, within the typical range for medium strength hydrogen bonds (Steiner, 2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]) and shorter than the 2.969 (4) Å distance between the amide N and the other phenolate O atom. The Co—O distance to the hydrogen-bonded O atom, 1.908 (3) Å, is slightly longer than the 1.885 (3) Å distance between CoII and the other phenolate O atom. The amide N—H⋯O hydrogen-bond angle is 151.3°, smaller than the 164.0 (2)° angle observed in the structure of the N-ferrocenylisonicotinamide ligand (Patterson et al., 2015[Patterson, E., Brautigam, B., Farnsworth, W., McDonald, E., Wu, G. & Contakes, S. (2015). Inorg. Chem. Commun. 51, 36-39.]) and within the range of those observed for aliphatic N-ferrocenyl­amides engaged in N—H⋯O=C hydrogen bonding (Okamura et al., 2005[Okamura, T.-A., Sakauye, K., Doi, M., Yamamoto, H., Ueyama, N. & Nakamura, A. (2005). Bull. Chem. Soc. Jpn, 78, 1270-1278.]).

[Figure 2]
Figure 2
Hydrogen-bonded dimers of the title compound, showing the hydrogen bonds (dashed lines) formed between amide N—H groups and phenolate O atoms. Only the λ conformers are depicted for clarity. The displacement ellipsoids are shown at the 50% probability level.

The involvement of only half of the salen ring structure in hydrogen-bonding inter­actions means that the λ and δ conformers are diastereomeric. In the δ conformer, the salen ring is slightly folded away from the py coordination site (Fig. 3[link]), with an inter­salicyl­idene fold angle of 9.9 (7)°. In contrast, the λ conformer is nearly planar with an inter­salicyl­idene fold angle of 2.3 (5)°. The discrepancy between the λ and δ fold angles is consistent with the known flexibility of salen complexes. The related complex [CoII(salen)(py)], for instance, exhibits bending of the salen ring system away from the axial pyridine (py) ring with a fold angle of 28.8° (Calligaris et al., 1970[Calligaris, M., Minichelli, D., Nardin, G. & Randaccio, L. (1970). J. Chem. Soc. A, pp. 2411-2415.]).

[Figure 3]
Figure 3
Comparison of the salen ring structure in the λ and δ conformers of the title compound, showing the greater bowing of salen in the latter. The salen ring system of the δ conformer is colored by element, while that of the λ conformer is shown in purple.

The dimers pack into a layered structure along the [100] direction and perpendicular to the Co—py bond. In the crystal, the open coordination site of each Co(salen)py subunit is blocked by the imine C—H group of an adjoining dimer, an observation consistent with the solid state complex's stability towards oxygen (in contrast dilute solutions of the complex react rapidly with oxygen). The structure contains large channels oriented along the [100] direction (Fig. 4[link]). These channels are filled with highly-disordered solvent which we were unable to model. The PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) SQUEEZE (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) report indicated a solvent-accessible volume of 448.2 Å3 per cell, corresponding to 26.1% of the unit-cell volume, that is occupied by 144.9 electrons. However, SQUEEZE slightly underestimates the actual void volume since it assumes simultaneous occupancy of both conformers of the title compound. The void volumes calculated for the λ and δ conformers using a 1.2 Å probe radius are 432 and 505 Å3 per cell, corresponding to an occupancy-weighted average void volume of 462 Å3 per cell. These void volumes and electron counts are both much larger than would be expected from the 0.3 CH2Cl2 and 1.5 Et2O solvent mol­ecules per unit cell indicated by elemental analysis of the vacuum dried crystals. We suspect that 1.7 mol­ecules of di­chloro­methane solvent per unit cell are lost when the crystals are dried prior to elemental analysis. If the undried crystals contained 2 CH2Cl2 and 1.5 Et2O solvent mol­ecules per unit cell, a void volume and electron count of 470 Å3 per cell and 147 electrons per cell are expected, consistent with the expected void volume and SQUEEZE electron count results.

[Figure 4]
Figure 4
Packing structure view along the (100) axis of the crystal, showing the channels formed by packing of dimers of the title compound. Only the δ conformers are depicted for clarity.

4. Database survey

For structural studies of N-ferrocenylisonicotinamide, see: Patterson et al. (2015[Patterson, E., Brautigam, B., Farnsworth, W., McDonald, E., Wu, G. & Contakes, S. (2015). Inorg. Chem. Commun. 51, 36-39.]). For structural studies on hydrogen-bonded assemblies of N-ferrocenyl­amides and the use of N-ferrocenyl­amides, see: Okamura et al. (1998[Okamura, T.-A., Sakauye, K., Ueyama, N. & Nakamura, A. (1998). Inorg. Chem. 37, 6731-6736.], 2005[Okamura, T.-A., Sakauye, K., Doi, M., Yamamoto, H., Ueyama, N. & Nakamura, A. (2005). Bull. Chem. Soc. Jpn, 78, 1270-1278.]); Patterson et al. (2015[Patterson, E., Brautigam, B., Farnsworth, W., McDonald, E., Wu, G. & Contakes, S. (2015). Inorg. Chem. Commun. 51, 36-39.]). For complexes involving N-ferrocenyl­amide derivatives of thiol­ate ligands, see: Okamura et al. (2007[Okamura, T.-A., Iwamura, T., Yamamoto, H. & Ueyama, N. (2007). J. Organomet. Chem. 692, 248-256.]). For structural studies on {2,2′-[ethane-1,2-diylbis(nitrilo­methanylyl­idene)]diphenolato}cobalt(II) and its pyridine derivatives, see: Brückner et al. (1969[Brückner, S., Calligaris, M., Nardin, G. & Randaccio, L. (1969). Acta Cryst. B25, 1671-1674.]); Calligaris et al. (1970[Calligaris, M., Minichelli, D., Nardin, G. & Randaccio, L. (1970). J. Chem. Soc. A, pp. 2411-2415.], 1972[Calligaris, M., Nardin, G. & Randaccio, L. (1972). Inorg. Nucl. Chem. Lett. 8, 477-480.]); Shi et al. (1995[Shi, X.-H., You, X.-Z., Li, C., Song, B.-L., Li, T.-H. & Huang, X.-Y. (1995). Acta Cryst. C51, 206-207.]). For a summary of the basic features of the stereochemistry of metal salen systems, see: Yamada (1999[Yamada, S. (1999). Coord. Chem. Rev. 190-192, 537-555.]).

5. Synthesis and crystallization

All syntheses and purification steps were conducted under a nitro­gen atmosphere using degassed solvents. N-ferrocenylisonicotinamide was prepared as described previously (Patterson et al., 2015[Patterson, E., Brautigam, B., Farnsworth, W., McDonald, E., Wu, G. & Contakes, S. (2015). Inorg. Chem. Commun. 51, 36-39.]). Aceto­nitrile, THF, and di­chloro­methane were purchased from VWR and purified using an HG Waters solvent purification system prior to use. All other reagents and solvents were obtained from VWR or Sigma–Aldrich in reagent grade or higher purity and used as received.

NMR spectra were obtained using either a Bruker Avance III 400MHz NMR spectrometer or a Bruker Avance 300MHz NMR spectrometer with gradient probe. All spectra were referenced relative to solvent peaks. Mass spectra were obtained on samples in HPLC grade MeOH using a Thermo-electron LCQ-Deca XP Mass Spectrometer. UV–Vis Spectra were obtained on anaerobic samples in quartz cuvettes using a Thermo Nicolet Evolution 300 UV–Vis spectrometer using the appropriate solvent as a blank. IR spectra were obtained using a Thermo Electron Nexus 470 FTIR.

For the preparation of the title compound, N-ferrocenyliso­nicotinamide (48.39 mg, 0.1580 mmol) and {2,2′-[ethane-1,2-diylbis(nitrilo­methanylyl­idene)]diphenolato}cobalt(II) (52.10 mg, 0.1602 mmol) were mixed with dry di­chloro­methane (5 ml) under nitro­gen. The resulting mixture was heated to 323 K for approximately 2 h, during which time the reactants dissolved to give a red solution. The reaction mixture was allowed to cool and then the solvent was removed using an oil-pump vacuum to give a waxy solid, which was washed with six 10 ml aliquots of dry diethyl ether, redissolved in 3 ml fresh di­chloro­methane, reprecipitated by the addition of diethyl ether (25 ml), and dried under vacuum for 18 h to give the product as a red–brown solid that is soluble in di­chloro­methane, aceto­nitrile, methanol, THF, acetone, DMF, and DMSO, but insoluble in water, ether, and hexa­nes. Yield: 60 mg (75.83%). 1H NMR (300 MHz, CDCl3): δ 2.427 (br s, 2H), 3.907 (br s), 4.013 (br s) (Note: the two preceding singlets were not fully resolved and integrated to a total of 6H), 4.714 (br s, 1H), 6.27 (br s, 1H), 6.966 (br s, 2H), 8.30 (br s, 2H), 14.422 (br s, 2H). ESI–MS (MeOH, positive ion): m/z 630.7, 325.1 and 307. Selected IR (KBr, cm−1): 3249, 3215 (NH), 1670 (amide C=O stretch). UV–Vis, concentrated in CH2Cl2: [λmax (, M−1 cm−1)]: 336 (15109), 406 (17461), 482 (3674). Calculated for C32H28CoFeN4O3·0.75C4H10O·0.15 CH2Cl2: C 60.34, H 5.16, N 8.01%; found: C 60.39, H 5.21, N 8.06%.

Crystals were grown as opaque pale-red–brown plates by vapor diffusion of ethyl ether into a concentrated di­chloro­methane solution at 233 K under a nitro­gen atmosphere.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. H atoms were placed in idealized positions and refined as riding with bond lengths of 0.95 (CH), 0.98 (CH2), and 0.88 Å (amide NH). Uiso(H) values were fixed at 1.2Ueq(C). Several restraints were used to model the disorder associated with cocrystallization of the λ and δ chelate ring conformers. All phenolate C—O bond lengths were set to be equal using the SADI command and the phenolate C—O and its adjacent C atoms were constrained to be coplanar using the FLAT command. The displacement parameters of atoms C1A and C16A were set equal to those of C1B and C16B using the EADP command. The displacement parameter of all other disordered atoms (C2–C15) were constrained using the SIMU command.

Table 1
Experimental details

Crystal data
Chemical formula [CoFe(C5H5)(C16H14N2O2)(C11H9N2O)]
Mr 631.36
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 10.684 (2), 11.989 (3), 13.858 (3)
α, β, γ (°) 80.220 (5), 85.234 (5), 80.047 (5)
V3) 1720.2 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.94
Crystal size (mm) 0.2 × 0.2 × 0.1
 
Data collection
Diffractometer Bruker SMART APEXII area detector
Absorption correction Multi-scan (SADABS; Sheldrick, 2012[Sheldrick, G. M. (2012). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.639, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 10667, 7295, 3968
Rint 0.047
(sin θ/λ)max−1) 0.644
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.136, 0.93
No. of reflections 7295
No. of parameters 521
No. of restraints 638
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.62, −0.58
Computer programs: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), OLEX2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

After attempts to model the highly disordered solvent proved unsuccessful, the SQUEEZE technique (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) operated under PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) was used to filter out the contributions of the disordered solvent molecules, none of which was near the open coordination site on the CoII atom, capable of forming hydrogen bonds with the N—H hydrogen or other O and N atoms in the structure, or otherwise within bonding distance to the mol­ecular structure.

Hydrogen-bond parameters were calculated assuming an ideal N—H bond angle and an N—H bond length of 1.009 Å, the value determined by neutron diffraction (Allen et al., 2006[Allen, F. H., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (2006). International Tables for Crystallography, Vol. C, edited by E. Prince, pp. 790-811. Chester: International Union of Crystallography.]). The void volumes expected for unit cells containing only the λ or δ chelate ring conformers were calculated in Mercury3.3 (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) using the default probe radius of 1.2Å. The expected void volume occupancies for ether and di­chloro­methane mol­ecules were taken as 173 and 106 Å3, respectively, the average mol­ecular volume of each compound in the pure liquid at 293 K.

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: APEX2 (Bruker, 2005); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

{2,2'-[Ethane-1,2-diylbis(nitrilomethanylylidene)]diphenolato-κ4O,N,N',O'}(N-ferrocenylisonicotinamide-κN1)cobalt(II) top
Crystal data top
[CoFe(C5H5)(C16H14N2O2)(C11H9N2O)]V = 1720.2 (7) Å3
Mr = 631.36Z = 2
Triclinic, P1F(000) = 650
a = 10.684 (2) ÅDx = 1.219 Mg m3
b = 11.989 (3) ÅMo Kα radiation, λ = 0.71069 Å
c = 13.858 (3) ŵ = 0.94 mm1
α = 80.220 (5)°T = 100 K
β = 85.234 (5)°Plates, dull dark red
γ = 80.047 (5)°0.2 × 0.2 × 0.1 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
7295 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs3968 reflections with I > 2σ(I)
Mirror optics monochromatorRint = 0.047
Detector resolution: 7.9 pixels mm-1θmax = 27.2°, θmin = 1.5°
ω and φ scansh = 1311
Absorption correction: multi-scan
(SADABS2012; Sheldrick, 2012)
k = 1512
Tmin = 0.639, Tmax = 0.745l = 1717
10667 measured reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0599P)2]
where P = (Fo2 + 2Fc2)/3
7295 reflections(Δ/σ)max < 0.001
521 parametersΔρmax = 0.62 e Å3
638 restraintsΔρmin = 0.58 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.08639 (5)0.29271 (5)0.45247 (4)0.03107 (18)
Fe10.24831 (5)0.44739 (5)0.91168 (4)0.02567 (17)
O10.0897 (2)0.2936 (2)0.4787 (2)0.0326 (7)
O20.0587 (2)0.2644 (2)0.3252 (2)0.0312 (7)
N40.1996 (3)0.2891 (3)0.7102 (2)0.0255 (8)
H40.11820.26540.70090.033*
N30.1421 (4)0.1144 (3)0.5130 (3)0.0346 (9)
O30.3940 (3)0.2369 (3)0.6831 (3)0.0619 (12)
C1A0.1586 (16)0.3192 (14)0.5562 (10)0.0333 (12)0.583 (12)
C2A0.2883 (16)0.3127 (16)0.5624 (13)0.036 (2)0.583 (12)
H2A0.32300.29140.50850.047*0.583 (12)
C3A0.3684 (14)0.3352 (11)0.6418 (11)0.044 (2)0.583 (12)
H3A0.45600.32940.64210.057*0.583 (12)
C4A0.3204 (12)0.3668 (11)0.7221 (10)0.048 (3)0.583 (12)
H4A0.37500.38470.77700.062*0.583 (12)
C5A0.1939 (12)0.3714 (11)0.7203 (10)0.046 (3)0.583 (12)
H5A0.16070.38880.77650.060*0.583 (12)
C6A0.1090 (13)0.3515 (17)0.6382 (12)0.039 (2)0.583 (12)
C7A0.0225 (12)0.3585 (14)0.6398 (13)0.044 (3)0.583 (12)
H7A0.04950.37840.69730.053*0.583 (12)
N1A0.1100 (12)0.340 (2)0.5693 (16)0.043 (3)0.583 (12)
C8A0.2460 (9)0.3394 (10)0.5832 (7)0.044 (2)0.583 (12)
H8AA0.28720.26130.61080.053*0.583 (12)
H8AB0.25460.39240.62900.053*0.583 (12)
C9A0.3079 (9)0.3779 (10)0.4829 (7)0.043 (2)0.583 (12)
H9AA0.28910.46240.46500.052*0.583 (12)
H9AB0.40140.35400.48270.052*0.583 (12)
N2A0.2519 (17)0.321 (2)0.4131 (10)0.038 (2)0.583 (12)
C10A0.3152 (18)0.3082 (18)0.3311 (9)0.040 (2)0.583 (12)
H10A0.39730.32980.32200.048*0.583 (12)
C11A0.2709 (18)0.264 (3)0.2535 (13)0.0325 (19)0.583 (12)
C12A0.3569 (16)0.2361 (13)0.1739 (11)0.038 (3)0.583 (12)
H12A0.44390.24230.17690.046*0.583 (12)
C13A0.3206 (15)0.2009 (11)0.0939 (10)0.039 (3)0.583 (12)
H13A0.38010.18500.04120.050*0.583 (12)
C14A0.1927 (16)0.1888 (12)0.0914 (11)0.040 (3)0.583 (12)
H14A0.16480.16650.03520.052*0.583 (12)
C15A0.1061 (16)0.2088 (15)0.1694 (13)0.033 (3)0.583 (12)
H15A0.02070.19770.16640.043*0.583 (12)
C16A0.1422 (16)0.245 (2)0.2527 (13)0.0322 (16)0.583 (12)
C1B0.160 (2)0.329 (2)0.5527 (13)0.0333 (12)0.417 (12)
C2B0.293 (2)0.334 (2)0.5589 (18)0.037 (3)0.417 (12)
H2B0.33230.31160.50790.048*0.417 (12)
C3B0.3678 (19)0.3715 (16)0.6359 (16)0.043 (3)0.417 (12)
H3B0.45700.37220.63810.056*0.417 (12)
C4B0.3151 (17)0.4085 (15)0.7113 (14)0.046 (3)0.417 (12)
H4B0.36760.43280.76510.060*0.417 (12)
C5B0.1880 (17)0.4094 (15)0.7069 (14)0.044 (3)0.417 (12)
H5B0.15160.43690.75680.058*0.417 (12)
C6B0.1098 (18)0.370 (3)0.6290 (17)0.041 (3)0.417 (12)
C7B0.0179 (17)0.3844 (19)0.6309 (18)0.042 (3)0.417 (12)
H7B0.04060.41860.68260.050*0.417 (12)
N1B0.1056 (16)0.354 (3)0.567 (2)0.043 (3)0.417 (12)
C8B0.2280 (12)0.3908 (14)0.5762 (11)0.042 (2)0.417 (12)
H8BA0.25200.37340.64530.050*0.417 (12)
H8BB0.22340.47410.55310.050*0.417 (12)
C9B0.3209 (11)0.3236 (14)0.5133 (11)0.042 (2)0.417 (12)
H9BA0.39460.36370.49270.050*0.417 (12)
H9BB0.35230.24700.55040.050*0.417 (12)
N2B0.256 (2)0.311 (3)0.4260 (13)0.039 (3)0.417 (12)
C10B0.323 (3)0.298 (3)0.3468 (13)0.036 (3)0.417 (12)
H10B0.40960.30800.34430.044*0.417 (12)
C11B0.277 (3)0.271 (4)0.2613 (19)0.033 (2)0.417 (12)
C12B0.362 (2)0.2614 (19)0.1778 (14)0.033 (3)0.417 (12)
H12B0.44650.27460.18050.040*0.417 (12)
C13B0.326 (2)0.2343 (16)0.0944 (14)0.035 (3)0.417 (12)
H13B0.38620.22560.04070.046*0.417 (12)
C14B0.200 (2)0.2192 (17)0.0869 (16)0.033 (3)0.417 (12)
H14B0.17510.20040.02830.043*0.417 (12)
C15B0.112 (2)0.232 (2)0.1659 (17)0.030 (3)0.417 (12)
H15B0.02620.22320.15990.040*0.417 (12)
C16B0.148 (2)0.257 (4)0.2543 (18)0.0322 (16)0.417 (12)
C170.0672 (5)0.0607 (4)0.5791 (4)0.0554 (16)
H170.01650.09910.59180.072*
C180.1031 (4)0.0478 (4)0.6307 (4)0.0505 (15)
H180.04480.08280.67650.066*
C190.2235 (4)0.1038 (4)0.6149 (3)0.0305 (10)
C200.2989 (5)0.0493 (5)0.5444 (4)0.074 (2)
H200.38260.08610.52940.096*
C210.2560 (6)0.0567 (5)0.4953 (4)0.078 (2)
H210.31090.09100.44590.093*
C220.2794 (4)0.2170 (4)0.6734 (3)0.0311 (11)
C230.2335 (4)0.3992 (4)0.7623 (3)0.0258 (10)
C240.3578 (4)0.4609 (4)0.7841 (3)0.0276 (10)
H240.43600.43310.76700.036*
C250.3430 (4)0.5707 (4)0.8356 (3)0.0302 (10)
H250.41010.62980.85830.039*
C260.2107 (4)0.5779 (4)0.8478 (3)0.0293 (10)
H260.17390.64200.87990.038*
C270.1441 (4)0.4710 (4)0.8029 (3)0.0281 (10)
H270.05420.45110.80060.036*
C280.3275 (4)0.4656 (4)1.0441 (3)0.0337 (11)
H280.40000.51911.06590.044*
C290.1990 (4)0.4846 (4)1.0571 (3)0.0347 (11)
H290.17030.55291.08910.045*
C300.1218 (4)0.3836 (4)1.0140 (3)0.0363 (11)
H300.03170.37201.01240.047*
C310.2011 (4)0.3030 (4)0.9739 (3)0.0371 (11)
H310.17380.22800.94010.048*
C320.3285 (4)0.3527 (4)0.9927 (3)0.0371 (11)
H320.40150.31690.97420.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0191 (3)0.0351 (4)0.0402 (4)0.0031 (3)0.0074 (3)0.0078 (3)
Fe10.0189 (3)0.0331 (4)0.0253 (3)0.0017 (3)0.0004 (3)0.0086 (3)
O10.0198 (15)0.0488 (19)0.0320 (16)0.0056 (13)0.0019 (13)0.0138 (15)
O20.0155 (15)0.0455 (19)0.0311 (16)0.0072 (13)0.0018 (12)0.0009 (14)
N40.0130 (17)0.035 (2)0.0276 (19)0.0022 (15)0.0042 (14)0.0027 (16)
N30.034 (2)0.034 (2)0.035 (2)0.0041 (18)0.0082 (18)0.0044 (18)
O30.0157 (18)0.052 (2)0.108 (3)0.0075 (15)0.0101 (19)0.021 (2)
C1A0.027 (2)0.043 (3)0.030 (2)0.004 (2)0.0060 (18)0.014 (2)
C2A0.028 (3)0.048 (6)0.035 (4)0.001 (4)0.004 (3)0.020 (4)
C3A0.031 (3)0.058 (6)0.044 (4)0.001 (4)0.003 (3)0.021 (5)
C4A0.039 (4)0.061 (6)0.042 (4)0.008 (5)0.001 (3)0.021 (5)
C5A0.039 (4)0.057 (6)0.042 (4)0.010 (4)0.009 (3)0.026 (4)
C6A0.030 (3)0.050 (5)0.038 (4)0.007 (3)0.009 (3)0.021 (4)
C7A0.039 (4)0.052 (6)0.047 (4)0.008 (4)0.019 (3)0.028 (4)
N1A0.028 (3)0.048 (6)0.057 (4)0.003 (3)0.016 (3)0.024 (4)
C8A0.028 (4)0.048 (5)0.064 (4)0.003 (4)0.020 (3)0.028 (4)
C9A0.026 (3)0.035 (5)0.072 (4)0.001 (3)0.019 (3)0.015 (4)
N2A0.022 (3)0.032 (4)0.061 (4)0.001 (3)0.012 (3)0.012 (4)
C10A0.019 (4)0.036 (4)0.059 (4)0.001 (3)0.005 (4)0.007 (4)
C11A0.019 (3)0.033 (4)0.040 (4)0.003 (3)0.002 (3)0.009 (3)
C12A0.020 (3)0.040 (6)0.046 (4)0.001 (4)0.004 (3)0.011 (4)
C13A0.024 (3)0.042 (6)0.041 (3)0.001 (5)0.007 (3)0.010 (4)
C14A0.031 (4)0.045 (6)0.037 (4)0.002 (5)0.003 (3)0.005 (4)
C15A0.021 (3)0.039 (6)0.033 (3)0.002 (4)0.001 (3)0.006 (4)
C16A0.019 (2)0.037 (4)0.035 (2)0.002 (2)0.0026 (18)0.007 (2)
C1B0.027 (2)0.043 (3)0.030 (2)0.004 (2)0.0060 (18)0.014 (2)
C2B0.027 (4)0.051 (6)0.035 (4)0.000 (4)0.006 (4)0.018 (5)
C3B0.034 (4)0.054 (7)0.041 (4)0.009 (5)0.001 (4)0.021 (5)
C4B0.041 (4)0.055 (7)0.042 (4)0.011 (5)0.003 (4)0.027 (5)
C5B0.041 (4)0.053 (6)0.040 (5)0.013 (5)0.014 (4)0.025 (5)
C6B0.033 (4)0.051 (5)0.040 (4)0.010 (4)0.011 (3)0.021 (4)
C7B0.038 (4)0.044 (6)0.047 (4)0.005 (4)0.017 (4)0.025 (5)
N1B0.028 (4)0.047 (6)0.056 (4)0.002 (4)0.019 (4)0.017 (4)
C8B0.029 (4)0.042 (5)0.060 (4)0.005 (4)0.019 (4)0.015 (5)
C9B0.025 (4)0.043 (5)0.062 (5)0.005 (4)0.018 (4)0.012 (4)
N2B0.022 (4)0.036 (5)0.058 (5)0.001 (4)0.012 (4)0.006 (5)
C10B0.017 (4)0.035 (5)0.054 (5)0.001 (4)0.008 (4)0.001 (5)
C11B0.017 (4)0.034 (4)0.042 (4)0.004 (3)0.002 (4)0.008 (4)
C12B0.017 (4)0.034 (6)0.044 (4)0.006 (4)0.000 (4)0.007 (4)
C13B0.023 (4)0.037 (6)0.041 (4)0.007 (5)0.005 (4)0.007 (5)
C14B0.028 (4)0.034 (6)0.035 (4)0.009 (5)0.002 (4)0.004 (5)
C15B0.019 (4)0.036 (6)0.032 (4)0.007 (4)0.001 (4)0.005 (4)
C16B0.019 (2)0.037 (4)0.035 (2)0.002 (2)0.0026 (18)0.007 (2)
C170.024 (3)0.046 (3)0.089 (4)0.000 (2)0.015 (3)0.010 (3)
C180.021 (3)0.045 (3)0.078 (4)0.005 (2)0.003 (2)0.012 (3)
C190.028 (2)0.033 (3)0.032 (2)0.007 (2)0.0021 (19)0.006 (2)
C200.053 (4)0.046 (4)0.097 (5)0.014 (3)0.044 (3)0.017 (3)
C210.071 (4)0.050 (4)0.080 (4)0.020 (3)0.045 (3)0.026 (3)
C220.021 (2)0.033 (3)0.037 (3)0.0040 (19)0.0037 (19)0.001 (2)
C230.019 (2)0.032 (3)0.025 (2)0.0010 (18)0.0054 (17)0.0078 (19)
C240.016 (2)0.033 (3)0.034 (2)0.0064 (18)0.0063 (18)0.008 (2)
C250.023 (2)0.036 (3)0.031 (2)0.0001 (19)0.0014 (19)0.008 (2)
C260.032 (3)0.027 (2)0.029 (2)0.0067 (19)0.0036 (19)0.006 (2)
C270.023 (2)0.039 (3)0.025 (2)0.0036 (19)0.0009 (18)0.013 (2)
C280.028 (3)0.047 (3)0.027 (2)0.003 (2)0.0073 (19)0.010 (2)
C290.032 (3)0.048 (3)0.022 (2)0.003 (2)0.0039 (19)0.006 (2)
C300.027 (3)0.048 (3)0.033 (3)0.007 (2)0.003 (2)0.019 (2)
C310.045 (3)0.032 (3)0.034 (3)0.004 (2)0.012 (2)0.013 (2)
C320.037 (3)0.048 (3)0.032 (3)0.009 (2)0.007 (2)0.018 (2)
Geometric parameters (Å, º) top
Co1—O11.885 (3)C1B—C6B1.421 (12)
Co1—O21.908 (3)C2B—H2B0.9500
Co1—N32.159 (4)C2B—C3B1.369 (13)
Co1—N1A1.854 (18)C3B—H3B0.9500
Co1—N2A1.877 (17)C3B—C4B1.396 (13)
Co1—N1B1.89 (3)C4B—H4B0.9500
Co1—N2B1.87 (2)C4B—C5B1.356 (13)
Fe1—C232.064 (4)C5B—H5B0.9500
Fe1—C242.052 (4)C5B—C6B1.406 (13)
Fe1—C252.039 (4)C6B—C7B1.408 (12)
Fe1—C262.035 (4)C7B—H7B0.9500
Fe1—C272.031 (4)C7B—N1B1.289 (13)
Fe1—C282.046 (4)N1B—C8B1.473 (14)
Fe1—C292.034 (4)C8B—H8BA0.9900
Fe1—C302.029 (4)C8B—H8BB0.9900
Fe1—C312.032 (4)C8B—C9B1.487 (13)
Fe1—C322.052 (4)C9B—H9BA0.9900
O1—C1A1.300 (9)C9B—H9BB0.9900
O1—C1B1.306 (12)C9B—N2B1.482 (14)
O2—C16A1.311 (9)N2B—C10B1.275 (13)
O2—C16B1.312 (12)C10B—H10B0.9500
N4—H40.8800C10B—C11B1.429 (13)
N4—C221.330 (5)C11B—C12B1.419 (13)
N4—C231.396 (5)C11B—C16B1.429 (12)
N3—C171.323 (6)C12B—H12B0.9500
N3—C211.317 (6)C12B—C13B1.354 (13)
O3—C221.220 (5)C13B—H13B0.9500
C1A—C2A1.396 (10)C13B—C14B1.401 (13)
C1A—C6A1.429 (10)C14B—H14B0.9500
C2A—H2A0.9500C14B—C15B1.395 (12)
C2A—C3A1.372 (10)C15B—H15B0.9500
C3A—H3A0.9500C15B—C16B1.407 (13)
C3A—C4A1.397 (11)C17—H170.9500
C4A—H4A0.9500C17—C181.381 (6)
C4A—C5A1.360 (10)C18—H180.9500
C5A—H5A0.9500C18—C191.363 (6)
C5A—C6A1.421 (10)C19—C201.366 (6)
C6A—C7A1.423 (10)C19—C221.510 (6)
C7A—H7A0.9500C20—H200.9500
C7A—N1A1.314 (10)C20—C211.358 (7)
N1A—C8A1.480 (11)C21—H210.9500
C8A—H8AA0.9900C23—C241.432 (5)
C8A—H8AB0.9900C23—C271.415 (6)
C8A—C9A1.523 (11)C24—H240.9500
C9A—H9AA0.9900C24—C251.414 (5)
C9A—H9AB0.9900C25—H250.9500
C9A—N2A1.490 (12)C25—C261.425 (6)
N2A—C10A1.292 (10)C26—H260.9500
C10A—H10A0.9500C26—C271.422 (5)
C10A—C11A1.424 (11)C27—H270.9500
C11A—C12A1.422 (10)C28—H280.9500
C11A—C16A1.432 (10)C28—C291.422 (6)
C12A—H12A0.9500C28—C321.420 (6)
C12A—C13A1.358 (11)C29—H290.9500
C13A—H13A0.9500C29—C301.412 (6)
C13A—C14A1.402 (10)C30—H300.9500
C14A—H14A0.9500C30—C311.408 (6)
C14A—C15A1.389 (10)C31—H310.9500
C15A—H15A0.9500C31—C321.414 (6)
C15A—C16A1.404 (10)C32—H320.9500
C1B—C2B1.403 (12)
O1—Co1—O285.79 (12)C1B—C2B—H2B118.9
O1—Co1—N395.43 (13)C3B—C2B—C1B122.1 (14)
O1—Co1—N1B93.8 (4)C3B—C2B—H2B118.9
O2—Co1—N395.16 (13)C2B—C3B—H3B119.5
N1A—Co1—O194.4 (3)C2B—C3B—C4B121.1 (14)
N1A—Co1—O2172.6 (9)C4B—C3B—H3B119.5
N1A—Co1—N392.2 (9)C3B—C4B—H4B120.4
N1A—Co1—N2A86.5 (4)C5B—C4B—C3B119.2 (12)
N2A—Co1—O1168.7 (8)C5B—C4B—H4B120.4
N2A—Co1—O291.8 (3)C4B—C5B—H5B119.9
N2A—Co1—N395.8 (8)C4B—C5B—C6B120.3 (13)
N1B—Co1—O2167.8 (13)C6B—C5B—H5B119.9
N1B—Co1—N397.0 (13)C5B—C6B—C1B121.7 (11)
N2B—Co1—O1173.1 (11)C5B—C6B—C7B113.4 (13)
N2B—Co1—O296.2 (4)C7B—C6B—C1B124.8 (13)
N2B—Co1—N391.0 (11)C6B—C7B—H7B118.2
N2B—Co1—N1B82.9 (6)N1B—C7B—C6B123.7 (16)
C24—Fe1—C2340.72 (15)N1B—C7B—H7B118.2
C24—Fe1—C32108.71 (18)C7B—N1B—Co1127.4 (14)
C25—Fe1—C2368.13 (16)C7B—N1B—C8B114.0 (17)
C25—Fe1—C2440.46 (15)C8B—N1B—Co1117.7 (11)
C25—Fe1—C28108.90 (17)N1B—C8B—H8BA110.8
C25—Fe1—C32126.39 (18)N1B—C8B—H8BB110.8
C26—Fe1—C2368.49 (16)N1B—C8B—C9B104.6 (12)
C26—Fe1—C2468.76 (16)H8BA—C8B—H8BB108.9
C26—Fe1—C2540.96 (16)C9B—C8B—H8BA110.8
C26—Fe1—C28125.45 (17)C9B—C8B—H8BB110.8
C26—Fe1—C32163.07 (17)C8B—C9B—H9BA110.0
C27—Fe1—C2340.42 (16)C8B—C9B—H9BB110.0
C27—Fe1—C2468.50 (16)H9BA—C9B—H9BB108.4
C27—Fe1—C2568.50 (17)N2B—C9B—C8B108.5 (12)
C27—Fe1—C2640.93 (16)N2B—C9B—H9BA110.0
C27—Fe1—C28162.01 (17)N2B—C9B—H9BB110.0
C27—Fe1—C29124.10 (18)C9B—N2B—Co1113.7 (12)
C27—Fe1—C31119.63 (17)C10B—N2B—Co1126.7 (14)
C27—Fe1—C32155.19 (17)C10B—N2B—C9B118.9 (16)
C28—Fe1—C23156.71 (17)N2B—C10B—H10B117.6
C28—Fe1—C24121.89 (17)N2B—C10B—C11B124.8 (16)
C28—Fe1—C3240.55 (17)C11B—C10B—H10B117.6
C29—Fe1—C23160.94 (16)C12B—C11B—C10B118.3 (14)
C29—Fe1—C24156.65 (16)C12B—C11B—C16B118.3 (12)
C29—Fe1—C25121.28 (17)C16B—C11B—C10B123.3 (14)
C29—Fe1—C26106.84 (18)C11B—C12B—H12B119.0
C29—Fe1—C2840.80 (16)C13B—C12B—C11B122.0 (13)
C29—Fe1—C3268.46 (19)C13B—C12B—H12B119.0
C30—Fe1—C23124.19 (17)C12B—C13B—H13B119.9
C30—Fe1—C24161.74 (17)C12B—C13B—C14B120.2 (13)
C30—Fe1—C25155.71 (18)C14B—C13B—H13B119.9
C30—Fe1—C26119.56 (19)C13B—C14B—H14B120.1
C30—Fe1—C27106.31 (18)C15B—C14B—C13B119.8 (13)
C30—Fe1—C2868.32 (17)C15B—C14B—H14B120.1
C30—Fe1—C2940.66 (16)C14B—C15B—H15B119.5
C30—Fe1—C3140.59 (18)C14B—C15B—C16B121.0 (13)
C30—Fe1—C3268.22 (19)C16B—C15B—H15B119.5
C31—Fe1—C23107.38 (17)O2—C16B—C11B124.8 (19)
C31—Fe1—C24125.44 (18)O2—C16B—C15B116.6 (18)
C31—Fe1—C25162.81 (18)C15B—C16B—C11B118.6 (12)
C31—Fe1—C26154.61 (18)N3—C17—H17117.9
C31—Fe1—C2868.24 (18)N3—C17—C18124.1 (5)
C31—Fe1—C2968.44 (18)C18—C17—H17117.9
C31—Fe1—C3240.50 (17)C17—C18—H18120.5
C32—Fe1—C23121.27 (18)C19—C18—C17119.0 (4)
C1A—O1—Co1128.0 (9)C19—C18—H18120.5
C1B—O1—Co1127.7 (12)C18—C19—C20116.5 (4)
C16A—O2—Co1128.8 (9)C18—C19—C22124.5 (4)
C16B—O2—Co1124.0 (12)C20—C19—C22119.0 (4)
C22—N4—H4117.1C19—C20—H20119.5
C22—N4—C23125.8 (3)C21—C20—C19121.1 (5)
C23—N4—H4117.1C21—C20—H20119.5
C17—N3—Co1120.8 (3)N3—C21—C20123.2 (5)
C21—N3—Co1122.8 (3)N3—C21—H21118.4
C21—N3—C17116.0 (4)C20—C21—H21118.4
O1—C1A—C2A119.2 (13)N4—C22—C19117.3 (4)
O1—C1A—C6A123.9 (13)O3—C22—N4124.3 (4)
C2A—C1A—C6A116.9 (9)O3—C22—C19118.4 (4)
C1A—C2A—H2A118.1N4—C23—Fe1128.1 (3)
C3A—C2A—C1A123.7 (10)N4—C23—C24128.9 (4)
C3A—C2A—H2A118.1N4—C23—C27123.4 (4)
C2A—C3A—H3A120.2C24—C23—Fe169.2 (2)
C2A—C3A—C4A119.6 (10)C27—C23—Fe168.5 (2)
C4A—C3A—H3A120.2C27—C23—C24107.6 (4)
C3A—C4A—H4A120.7Fe1—C24—H24126.0
C5A—C4A—C3A118.7 (9)C23—C24—Fe170.1 (2)
C5A—C4A—H4A120.7C23—C24—H24126.2
C4A—C5A—H5A118.4C25—C24—Fe169.3 (2)
C4A—C5A—C6A123.1 (10)C25—C24—C23107.7 (4)
C6A—C5A—H5A118.4C25—C24—H24126.2
C5A—C6A—C1A117.9 (8)Fe1—C25—H25126.3
C5A—C6A—C7A120.8 (10)C24—C25—Fe170.3 (2)
C7A—C6A—C1A121.3 (10)C24—C25—H25125.6
C6A—C7A—H7A116.9C24—C25—C26108.7 (3)
N1A—C7A—C6A126.2 (12)C26—C25—Fe169.4 (2)
N1A—C7A—H7A116.9C26—C25—H25125.6
C7A—N1A—Co1126.2 (10)Fe1—C26—H26126.1
C7A—N1A—C8A121.2 (13)C25—C26—Fe169.7 (2)
C8A—N1A—Co1112.1 (8)C25—C26—H26126.4
N1A—C8A—H8AA110.3C27—C26—Fe169.4 (2)
N1A—C8A—H8AB110.3C27—C26—C25107.1 (4)
N1A—C8A—C9A107.2 (10)C27—C26—H26126.4
H8AA—C8A—H8AB108.5Fe1—C27—H27125.3
C9A—C8A—H8AA110.3C23—C27—Fe171.1 (2)
C9A—C8A—H8AB110.3C23—C27—C26108.8 (4)
C8A—C9A—H9AA110.6C23—C27—H27125.6
C8A—C9A—H9AB110.6C26—C27—Fe169.7 (2)
H9AA—C9A—H9AB108.8C26—C27—H27125.6
N2A—C9A—C8A105.5 (9)Fe1—C28—H28126.4
N2A—C9A—H9AA110.6C29—C28—Fe169.1 (2)
N2A—C9A—H9AB110.6C29—C28—H28126.0
C9A—N2A—Co1113.5 (8)C32—C28—Fe169.9 (2)
C10A—N2A—Co1128.4 (10)C32—C28—H28126.0
C10A—N2A—C9A117.7 (12)C32—C28—C29107.9 (4)
N2A—C10A—H10A117.6Fe1—C29—H29125.9
N2A—C10A—C11A124.8 (12)C28—C29—Fe170.1 (2)
C11A—C10A—H10A117.6C28—C29—H29126.2
C10A—C11A—C16A122.4 (10)C30—C29—Fe169.5 (2)
C12A—C11A—C10A119.4 (10)C30—C29—C28107.7 (4)
C12A—C11A—C16A118.2 (9)C30—C29—H29126.2
C11A—C12A—H12A118.4Fe1—C30—H30126.1
C13A—C12A—C11A123.1 (10)C29—C30—Fe169.9 (2)
C13A—C12A—H12A118.4C29—C30—H30125.8
C12A—C13A—H13A121.0C31—C30—Fe169.8 (2)
C12A—C13A—C14A118.1 (10)C31—C30—C29108.4 (4)
C14A—C13A—H13A121.0C31—C30—H30125.8
C13A—C14A—H14A119.4Fe1—C31—H31125.7
C15A—C14A—C13A121.2 (10)C30—C31—Fe169.6 (3)
C15A—C14A—H14A119.4C30—C31—H31125.8
C14A—C15A—H15A119.3C30—C31—C32108.4 (4)
C14A—C15A—C16A121.4 (10)C32—C31—Fe170.5 (3)
C16A—C15A—H15A119.3C32—C31—H31125.8
O2—C16A—C11A121.8 (13)Fe1—C32—H32126.9
O2—C16A—C15A120.3 (13)C28—C32—Fe169.5 (2)
C15A—C16A—C11A117.8 (9)C28—C32—H32126.2
O1—C1B—C2B121.9 (17)C31—C32—Fe169.0 (3)
O1—C1B—C6B122.5 (18)C31—C32—C28107.6 (4)
C2B—C1B—C6B115.5 (12)C31—C32—H32126.2
Co1—O1—C1A—C2A178.9 (8)N2A—C10A—C11A—C16A10 (4)
Co1—O1—C1A—C6A0.5 (16)C10A—C11A—C12A—C13A175 (2)
Co1—O1—C1B—C2B174.0 (12)C10A—C11A—C16A—O22 (4)
Co1—O1—C1B—C6B2 (2)C10A—C11A—C16A—C15A176 (3)
Co1—O2—C16A—C11A12 (3)C11A—C12A—C13A—C14A2 (2)
Co1—O2—C16A—C15A170.3 (12)C12A—C11A—C16A—O2177 (2)
Co1—O2—C16B—C11B1 (5)C12A—C11A—C16A—C15A5 (4)
Co1—O2—C16B—C15B177.9 (16)C12A—C13A—C14A—C15A1.8 (16)
Co1—N3—C17—C18170.8 (4)C13A—C14A—C15A—C16A2 (2)
Co1—N3—C21—C20169.5 (5)C14A—C15A—C16A—O2179.4 (18)
Co1—N1A—C8A—C9A37.0 (19)C14A—C15A—C16A—C11A2 (3)
Co1—N2A—C10A—C11A3 (3)C16A—C11A—C12A—C13A5 (4)
Co1—N1B—C8B—C9B24 (3)C1B—C2B—C3B—C4B2 (3)
Co1—N2B—C10B—C11B2 (5)C1B—C6B—C7B—N1B5 (3)
Fe1—C23—C24—C2559.3 (3)C2B—C1B—C6B—C5B2 (2)
Fe1—C23—C27—C2659.7 (3)C2B—C1B—C6B—C7B172 (2)
Fe1—C24—C25—C2658.9 (3)C2B—C3B—C4B—C5B1 (2)
Fe1—C25—C26—C2759.5 (3)C3B—C4B—C5B—C6B2 (2)
Fe1—C26—C27—C2360.5 (3)C4B—C5B—C6B—C1B0 (3)
Fe1—C28—C29—C3059.5 (3)C4B—C5B—C6B—C7B175.4 (16)
Fe1—C28—C32—C3158.6 (3)C5B—C6B—C7B—N1B180 (2)
Fe1—C29—C30—C3159.4 (3)C6B—C1B—C2B—C3B3 (2)
Fe1—C30—C31—C3260.1 (3)C6B—C7B—N1B—Co14 (4)
Fe1—C31—C32—C2858.9 (3)C6B—C7B—N1B—C8B173 (2)
O1—Co1—N1A—C7A3 (2)C7B—N1B—C8B—C9B166 (2)
O1—Co1—N1A—C8A174.1 (15)N1B—Co1—O1—C1B0.7 (16)
O1—Co1—N2A—C9A87.6 (18)N1B—Co1—N2B—C9B18 (2)
O1—Co1—N2A—C10A85 (3)N1B—Co1—N2B—C10B172 (3)
O1—Co1—N1B—C7B2 (3)N1B—C8B—C9B—N2B36 (3)
O1—Co1—N1B—C8B170 (2)C8B—C9B—N2B—Co136 (3)
O1—C1A—C2A—C3A178.4 (15)C8B—C9B—N2B—C10B153 (2)
O1—C1A—C6A—C5A176.7 (15)C9B—N2B—C10B—C11B172 (4)
O1—C1A—C6A—C7A0.4 (19)N2B—Co1—N1B—C7B172 (3)
O1—C1B—C2B—C3B180 (2)N2B—Co1—N1B—C8B4 (3)
O1—C1B—C6B—C5B179 (2)N2B—C10B—C11B—C12B179 (3)
O1—C1B—C6B—C7B4 (3)N2B—C10B—C11B—C16B2 (6)
O2—Co1—O1—C1A173.3 (10)C10B—C11B—C12B—C13B179 (3)
O2—Co1—O1—C1B167.0 (13)C10B—C11B—C16B—O22 (6)
O2—Co1—N2A—C9A165.3 (14)C10B—C11B—C16B—C15B179 (4)
O2—Co1—N2A—C10A7.2 (19)C11B—C12B—C13B—C14B3 (3)
O2—Co1—N1B—C7B86 (4)C12B—C11B—C16B—O2179 (3)
O2—Co1—N1B—C8B83 (3)C12B—C11B—C16B—C15B2 (5)
O2—Co1—N2B—C9B174 (2)C12B—C13B—C14B—C15B0 (2)
O2—Co1—N2B—C10B4 (3)C13B—C14B—C15B—C16B2 (3)
N4—C23—C24—Fe1122.8 (4)C14B—C15B—C16B—O2178 (2)
N4—C23—C24—C25177.9 (4)C14B—C15B—C16B—C11B1 (4)
N4—C23—C27—Fe1122.3 (4)C16B—C11B—C12B—C13B3 (5)
N4—C23—C27—C26178.0 (4)C17—N3—C21—C203.2 (10)
N3—Co1—O1—C1A91.9 (10)C17—C18—C19—C203.0 (8)
N3—Co1—O1—C1B98.2 (13)C17—C18—C19—C22173.5 (5)
N3—Co1—N1A—C7A93 (2)C18—C19—C20—C212.0 (9)
N3—Co1—N1A—C8A78.5 (16)C18—C19—C22—N430.4 (7)
N3—Co1—N2A—C9A99.3 (14)C18—C19—C22—O3150.3 (5)
N3—Co1—N2A—C10A88.1 (19)C19—C20—C21—N31.3 (11)
N3—Co1—N1B—C7B98 (3)C20—C19—C22—N4153.2 (5)
N3—Co1—N1B—C8B94 (3)C20—C19—C22—O326.1 (7)
N3—Co1—N2B—C9B79 (2)C21—N3—C17—C182.0 (8)
N3—Co1—N2B—C10B91 (3)C22—N4—C23—Fe190.0 (5)
N3—C17—C18—C191.1 (9)C22—N4—C23—C243.0 (7)
C1A—C2A—C3A—C4A0.0 (18)C22—N4—C23—C27177.7 (4)
C1A—C6A—C7A—N1A2 (2)C22—C19—C20—C21174.7 (6)
C2A—C1A—C6A—C5A1.6 (17)C23—N4—C22—O32.3 (7)
C2A—C1A—C6A—C7A178.8 (13)C23—N4—C22—C19177.0 (4)
C2A—C3A—C4A—C5A1.7 (16)C23—C24—C25—Fe159.8 (3)
C3A—C4A—C5A—C6A3.4 (16)C23—C24—C25—C260.9 (5)
C4A—C5A—C6A—C1A3.4 (18)C24—C23—C27—Fe158.3 (3)
C4A—C5A—C6A—C7A179.4 (12)C24—C23—C27—C261.4 (5)
C5A—C6A—C7A—N1A178.8 (16)C24—C25—C26—Fe159.5 (3)
C6A—C1A—C2A—C3A0.1 (17)C24—C25—C26—C270.1 (5)
C6A—C7A—N1A—Co13 (3)C25—C26—C27—Fe159.7 (3)
C6A—C7A—N1A—C8A174.3 (16)C25—C26—C27—C230.8 (5)
C7A—N1A—C8A—C9A151.1 (19)C27—C23—C24—Fe157.9 (3)
N1A—Co1—O1—C1A0.7 (12)C27—C23—C24—C251.4 (5)
N1A—Co1—N2A—C9A7.5 (15)C28—C29—C30—Fe159.9 (3)
N1A—Co1—N2A—C10A180 (2)C28—C29—C30—C310.5 (5)
N1A—C8A—C9A—N2A40.5 (17)C29—C28—C32—Fe158.9 (3)
C8A—C9A—N2A—Co128.8 (17)C29—C28—C32—C310.3 (5)
C8A—C9A—N2A—C10A157.9 (16)C29—C30—C31—Fe159.5 (3)
C9A—N2A—C10A—C11A175 (2)C29—C30—C31—C320.6 (5)
N2A—Co1—O1—C1A95.1 (19)C30—C31—C32—Fe159.5 (3)
N2A—Co1—N1A—C7A171 (2)C30—C31—C32—C280.6 (5)
N2A—Co1—N1A—C8A17.2 (16)C32—C28—C29—Fe159.4 (3)
N2A—C10A—C11A—C12A170 (2)C32—C28—C29—C300.1 (5)
 

Acknowledgements

BB, WF, EM, CH, and SC would like to acknowledge the Donors of the American Chemical Society Petroleum Research Fund (PRF No. 47420-GB3) for partial support of this research. SC would also like to thank the Westmont College Allan Nishimura research fund for summer stipend support.

References

First citationAllen, F. H., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (2006). International Tables for Crystallography, Vol. C, edited by E. Prince, pp. 790–811. Chester: International Union of Crystallography.  Google Scholar
First citationBarisić, L., Cakić, M., Mahmoud, K. A., Liu, Y.-N., Kraatz, H.-B., Pritzkow, H., Kirin, S. I., Metzler-Nolte, N. & Rapić, V. (2006). Chem. Eur. J. 12, 4965–4980.  PubMed Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrückner, S., Calligaris, M., Nardin, G. & Randaccio, L. (1969). Acta Cryst. B25, 1671–1674.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalligaris, M., Minichelli, D., Nardin, G. & Randaccio, L. (1970). J. Chem. Soc. A, pp. 2411–2415.  CSD CrossRef Google Scholar
First citationCalligaris, M., Nardin, G. & Randaccio, L. (1972). Inorg. Nucl. Chem. Lett. 8, 477–480.  CSD CrossRef CAS Google Scholar
First citationCalvin, M., Bailes, R. H. & Wilmarth, W. K. (1946). J. Am. Chem. Soc. 68, 2254–2256.  CrossRef CAS Google Scholar
First citationChen, D., Martell, A. E. & Sun, Y. (1989). Inorg. Chem. 28, 2647–2652.  CrossRef CAS Web of Science Google Scholar
First citationCozzi, P. G. (2004). Chem. Soc. Rev. 33, 410–421.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCrossley, S. W. M., Barabé, F. & Shenvi, R. A. (2014). J. Am. Chem. Soc. 136, 16788–16791.  CrossRef CAS PubMed Google Scholar
First citationDai, L.-X. & Hou, X.-L. (2010). In Chiral Ferrocenes in Asymmetric Catalysis. Weinheim: Wiley-VCH.  Google Scholar
First citationDarensbourg, D. J. (2007). Chem. Rev. 107, 2388–2410.  CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDort, H. M. van & Geursen, H. J. (1967). Recl. Trav. Chim. Pays Bas, 86, 520–526.  Google Scholar
First citationFloriani, C. & Calderazzo, F. (1969). J. Chem. Soc. A, pp. 946–953.  CrossRef Google Scholar
First citationFord, D. D., Nielsen, L. P. C., Zuend, S. J., Musgrave, C. B. & Jacobsen, E. N. (2013). J. Am. Chem. Soc. 135, 15595–15608.  CrossRef CAS PubMed Google Scholar
First citationFritch, J. R., Christoph, G. G. & Schaefer, W. P. (1973). Inorg. Chem. 12, 2170–2175.  CSD CrossRef CAS Google Scholar
First citationGupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252, 1420–1450.  Web of Science CrossRef CAS Google Scholar
First citationHolt, S. L., DeIasi, R. & Post, B. (1971). Inorg. Chem. 10, 1498–1500.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOkamura, T.-A., Iwamura, T., Yamamoto, H. & Ueyama, N. (2007). J. Organomet. Chem. 692, 248–256.  CSD CrossRef CAS Google Scholar
First citationOkamura, T.-A., Sakauye, K., Doi, M., Yamamoto, H., Ueyama, N. & Nakamura, A. (2005). Bull. Chem. Soc. Jpn, 78, 1270–1278.  CSD CrossRef CAS Google Scholar
First citationOkamura, T.-A., Sakauye, K., Ueyama, N. & Nakamura, A. (1998). Inorg. Chem. 37, 6731–6736.  CSD CrossRef PubMed CAS Google Scholar
First citationOu, S. & Wu, C.-D. (2014). Inorg. Chem. Front. 1, 721–734.  Web of Science CrossRef CAS Google Scholar
First citationPatterson, E., Brautigam, B., Farnsworth, W., McDonald, E., Wu, G. & Contakes, S. (2015). Inorg. Chem. Commun. 51, 36–39.  CSD CrossRef CAS Google Scholar
First citationSchaefer, W. P., Huie, B. T., Kurilla, M. G. & Ealick, S. E. (1980). Inorg. Chem. 19, 340–344.  CSD CrossRef CAS Google Scholar
First citationSchaefer, W. P. & Marsh, R. E. (1969). Acta Cryst. B25, 1675–1682.  CSD CrossRef IUCr Journals Google Scholar
First citationSchaus, S. E., Brandes, B. D., Larrow, J. F., Tokunaga, M., Hansen, K. B., Gould, A. E., Furrow, M. E. & Jacobsen, E. N. (2002). J. Am. Chem. Soc. 124, 1307–1315.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2012). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, X.-H., You, X.-Z., Li, C., Song, B.-L., Li, T.-H. & Huang, X.-Y. (1995). Acta Cryst. C51, 206–207.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar
First citationStepnicka, P. (2008). In Ferrocenes: Ligands, Materials and Biomolecules. Chichester, West Sussex: John Wiley and Sons Ltd.  Google Scholar
First citationTokunaga, M., Larrow, J. F., Kakiuchi, F. & Jacobsen, E. N. (1997). Science, 277, 936–938.  CrossRef CAS PubMed Web of Science Google Scholar
First citationTsumaki, T. (1938). Bull. Chem. Soc. Jpn, 13, 252–260.  CrossRef CAS Google Scholar
First citationWhite, D. E., Tadross, P. M., Lu, Z. & Jacobsen, E. N. (2014). Tetrahedron, 70, 4165–4180.  CrossRef CAS PubMed Google Scholar
First citationYamada, S. (1999). Coord. Chem. Rev. 190–192, 537–555.  CrossRef CAS Google Scholar
First citationYoon, T. P. & Jacobsen, E. N. (2003). Science, 299, 1691–1693.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, W., Loebach, J. L., Wilson, S. R. & Jacobsen, E. N. (1990). J. Am. Chem. Soc. 112, 2801–2803.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds