organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-azido-1H-imidazole-4,5-di­carbo­nitrile

CROSSMARK_Color_square_no_text.svg

aPO Box 1663 MS C920, Los Alamos National Laboratory, Los Alamos, NM 87544, USA, and bPO Box 1663 MS J514, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
*Correspondence e-mail: philipl@lanl.gov

Edited by G. Smith, Queensland University of Technology, Australia (Received 6 June 2015; accepted 13 July 2015; online 6 August 2015)

In the title compound, C5HN7, the nitrile and azido substituents are close to being coplanar with the central ring. Mol­ecules in the crystal are linked via an N—H⋯N hydrogen bond to a nitrile acceptor, forming a chain extending along the c-axis direction.

1. Related literature

For background to imidazole applications, see: Windaus & Vogt (1907[Windaus, A. & Vogt, W. (1907). Berichte, 40, 3691-3695.]); Katritzky et al. (2006[Katritzky, A. R., Singh, S., Kirichenko, K., Smiglak, M., Holbrey, J. D., Reichert, W. M., Spear, S. K. & Rogers, R. D. (2006). Chem. Eur. J. 12, 4630-4641.]); Epishina et al. (1967[Epishina, L. V., Slovetskii, V. I., Osipov, V. G., Lebedev, O. V., Khmel'nitskii, L. I., Sevost'yanova, V. V. & Novikova, T. S. (1967). Khim. Geterotsikl. Soedin. 4, 716-723.]); Srinivas et al. (2014[Srinivas, D., Ghule, V. D. & Muralidharan, K. (2014). RSC Adv. 4, 7041-7051.]). For preparations, see: Sheppard & Webster (1973[Sheppard, W. A. & Webster, O. W. (1973). J. Am. Chem. Soc. 95, 2695-2697.]); Lu & Just (2001[Lu, Y. & Just, G. (2001). Tetrahedron, 57, 1677-1687.]); Parrish et al. (2015[Parrish, D. A., Kramer, S., Windler, G. K., Chavez, D. E. & Leonard, P. W. (2015). Acta Cryst. E71, o491.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C5HN7

  • Mr = 159.13

  • Monoclinic, P 21 /n

  • a = 7.3217 (6) Å

  • b = 12.8128 (11) Å

  • c = 7.5202 (6) Å

  • β = 102.215 (2)°

  • V = 689.51 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.36 × 0.24 × 0.10 mm

2.2. Data collection

  • Bruker D8 Quest with CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.960, Tmax = 0.989

  • 13020 measured reflections

  • 2943 independent reflections

  • 2535 reflections with I > 2σ(I)

  • Rint = 0.024

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.117

  • S = 1.56

  • 2943 reflections

  • 112 parameters

  • All H-atom parameters refined

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N4i 0.89 (2) 2.00 (2) 2.8572 (9) 160.9 (14)
Symmetry code: (i) x, y, z-1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: CHEMDRAW Ultra (Cambridge Soft, 2014[Cambridge Soft (2014). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.]).

Supporting information


Comment top

Imidazoles have a storied history in the pharmaceutical (Windaus et al., 1907), ionic liquid (Katritzky et al., 2006), and energetic materials communities (Epishina et al. 1967). Recently, the title compound, C5HN7, appeared in a study of imidazoles as potential gas generators (Srinivas et al., 2014). Given this background, we synthesized the title compound to examine the crystal structure, reported herein.

The entire molecule is essentially planar, with the maximum deviation indicated by the torsion angle in the ring atoms of 0.65 (7)° (C2—C1—N1—C3) and among the substituent groups, 176.76 (6)° (C3—N5—N6—N7) (Fig. 1). An intermolecular N1—H···N4 hydrogen bond involving a cyano N-atom acceptor (Table 1) generates a one-dimensional chain structure, extending along c (Fig. 2).

Related literature top

For background to imidazole applications, see: Windaus & Vogt (1907); Katritzky et al. (2006); Epishina et al. (1967); Srinivas et al. (2014). For preparations, see: Sheppard & Webster (1973); Lu & Just (2001); Parrish et al. (2015).

Experimental top

To a stirred room temperature solution of sodium azide (4.40 g, 67.7 mmol) in water (100 ml) was added 2-diazo-4,5-dicyanoimidazole (4.05 g, 28.1 mmol) in portions (Sheppard & Webster, 1973; Lu & Just, 2001; Parrish et al., 2015). Vigorous effervescence of liberated nitrogen gas occurred with each addition. The reaction was allowed to stir for a further 90 min after gas evolution ceased and was then extracted with ethyl acetate (4 x 20 ml). The organic layer was dried over magnesium sulfate and the solvent was removed by rotary evaporation to afford a light yellow solid. Crystals of the title compound suitable for X-ray diffraction were obtained by crystallization from ethyl acetate.

Refinement top

The hydrogen atom was located in a difference-Fourier and the positional parameters were fully refined, with Uiso(H) set invariant at 0.08.

Structure description top

Imidazoles have a storied history in the pharmaceutical (Windaus et al., 1907), ionic liquid (Katritzky et al., 2006), and energetic materials communities (Epishina et al. 1967). Recently, the title compound, C5HN7, appeared in a study of imidazoles as potential gas generators (Srinivas et al., 2014). Given this background, we synthesized the title compound to examine the crystal structure, reported herein.

The entire molecule is essentially planar, with the maximum deviation indicated by the torsion angle in the ring atoms of 0.65 (7)° (C2—C1—N1—C3) and among the substituent groups, 176.76 (6)° (C3—N5—N6—N7) (Fig. 1). An intermolecular N1—H···N4 hydrogen bond involving a cyano N-atom acceptor (Table 1) generates a one-dimensional chain structure, extending along c (Fig. 2).

For background to imidazole applications, see: Windaus & Vogt (1907); Katritzky et al. (2006); Epishina et al. (1967); Srinivas et al. (2014). For preparations, see: Sheppard & Webster (1973); Lu & Just (2001); Parrish et al. (2015).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: CHEMDRAW Ultra (Cambridge Soft, 2014).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labeling. Ellipsoids are drawn at the 50% probability level, and the hydrogen atom is drawn as a sphere of arbitrary size.
[Figure 2] Fig. 2. A crystal packing diagram of the title compound viewed along the b axis. The N—H···N hydrogen bond is shown as a dashed line.
2-Azido-1H-imidazole-4,5-dicarbonitrile top
Crystal data top
C5HN7F(000) = 320
Mr = 159.13Dx = 1.533 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2943 reflections
a = 7.3217 (6) Åθ = 3.2–35.1°
b = 12.8128 (11) ŵ = 0.11 mm1
c = 7.5202 (6) ÅT = 100 K
β = 102.215 (2)°Block, pale yellow
V = 689.51 (10) Å30.36 × 0.24 × 0.10 mm
Z = 4
Data collection top
Bruker D8 Quest with CMOS
diffractometer
2943 independent reflections
Radiation source: fine-focus sealed tube2535 reflections with I > 2σ(I)
Bruker Triumph curved graphite monochromatorRint = 0.024
ω scansθmax = 35.1°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.960, Tmax = 0.989k = 2019
13020 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117All H-atom parameters refined
S = 1.56 w = 1/[σ2(Fo2) + (0.0562P)2]
where P = (Fo2 + 2Fc2)/3
2943 reflections(Δ/σ)max = 0.001
112 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C5HN7V = 689.51 (10) Å3
Mr = 159.13Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.3217 (6) ŵ = 0.11 mm1
b = 12.8128 (11) ÅT = 100 K
c = 7.5202 (6) Å0.36 × 0.24 × 0.10 mm
β = 102.215 (2)°
Data collection top
Bruker D8 Quest with CMOS
diffractometer
2943 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2535 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.989Rint = 0.024
13020 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.117All H-atom parameters refined
S = 1.56Δρmax = 0.51 e Å3
2943 reflectionsΔρmin = 0.25 e Å3
112 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.95971 (8)0.23656 (4)0.20204 (8)0.01244 (12)
H10.946 (2)0.2147 (12)0.087 (3)0.080*
N30.79681 (9)0.00660 (5)0.33122 (9)0.01989 (14)
N40.97866 (9)0.20303 (5)0.83076 (8)0.01915 (14)
N51.08587 (9)0.39994 (5)0.14988 (8)0.01601 (13)
N61.15492 (9)0.48197 (5)0.22731 (9)0.01800 (14)
N71.21954 (11)0.55869 (5)0.27860 (11)0.02869 (17)
N21.05744 (8)0.33629 (4)0.44841 (8)0.01346 (13)
C10.92901 (9)0.17977 (5)0.34810 (8)0.01148 (13)
C20.98919 (9)0.24295 (5)0.49778 (8)0.01203 (13)
C31.03672 (9)0.32810 (5)0.27026 (9)0.01232 (13)
C40.85397 (9)0.07743 (5)0.33564 (9)0.01397 (13)
C50.98406 (9)0.22016 (5)0.68201 (9)0.01401 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0156 (3)0.0141 (3)0.0079 (2)0.00008 (18)0.00303 (19)0.00052 (17)
N30.0220 (3)0.0172 (3)0.0203 (3)0.0027 (2)0.0043 (2)0.0015 (2)
N40.0240 (3)0.0226 (3)0.0118 (3)0.0040 (2)0.0057 (2)0.0011 (2)
N50.0204 (3)0.0149 (3)0.0138 (3)0.00141 (19)0.0059 (2)0.00269 (19)
N60.0200 (3)0.0162 (3)0.0196 (3)0.0002 (2)0.0082 (2)0.0035 (2)
N70.0357 (4)0.0186 (3)0.0346 (4)0.0069 (3)0.0137 (3)0.0007 (3)
N20.0162 (3)0.0143 (3)0.0104 (2)0.00187 (18)0.00392 (19)0.00013 (18)
C10.0136 (3)0.0123 (3)0.0088 (3)0.0004 (2)0.0029 (2)0.00006 (19)
C20.0140 (3)0.0136 (3)0.0088 (3)0.0007 (2)0.0033 (2)0.00039 (19)
C30.0132 (3)0.0136 (3)0.0107 (3)0.0005 (2)0.0036 (2)0.0010 (2)
C40.0154 (3)0.0159 (3)0.0105 (3)0.0004 (2)0.0027 (2)0.0001 (2)
C50.0160 (3)0.0154 (3)0.0110 (3)0.0025 (2)0.0038 (2)0.0021 (2)
Geometric parameters (Å, º) top
N1—C31.3545 (8)N6—N71.1232 (9)
N1—C11.3752 (8)N2—C31.3202 (8)
N1—H10.893 (19)N2—C21.3770 (9)
N3—C41.1530 (8)C1—C21.3808 (9)
N4—C51.1489 (9)C1—C41.4171 (9)
N5—N61.2549 (8)C2—C51.4241 (9)
N5—C31.3907 (8)
C3—N1—C1106.32 (5)N2—C2—C1111.15 (6)
C3—N1—H1126.2 (11)N2—C2—C5121.75 (6)
C1—N1—H1127.1 (10)C1—C2—C5127.10 (6)
N6—N5—C3112.74 (6)N2—C3—N1113.73 (6)
N7—N6—N5172.47 (8)N2—C3—N5128.17 (6)
C3—N2—C2103.55 (5)N1—C3—N5118.09 (6)
N1—C1—C2105.25 (6)N3—C4—C1177.65 (7)
N1—C1—C4124.29 (6)N4—C5—C2179.07 (8)
C2—C1—C4130.45 (6)
C3—N1—C1—C20.65 (7)C2—N2—C3—N5178.86 (7)
C3—N1—C1—C4178.28 (6)N6—N5—C3—N1179.67 (6)
C1—N1—C3—N20.56 (8)N6—N5—C3—N21.31 (11)
C1—N1—C3—N5178.61 (6)N1—C1—C2—N20.56 (8)
C3—N2—C2—C10.24 (8)N1—C1—C2—C5178.90 (7)
C3—N2—C2—C5179.26 (6)C4—C1—C2—N2178.28 (7)
C2—N2—C3—N10.20 (8)C4—C1—C2—C52.26 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N4i0.89 (2)2.00 (2)2.8572 (9)160.9 (14)
Symmetry code: (i) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N4i0.89 (2)2.00 (2)2.8572 (9)160.9 (14)
Symmetry code: (i) x, y, z1.
 

Acknowledgements

This work was supported by the National Nuclear Security Administration Science Campaign 2 and performed at Los Alamos National Laboratory under DE-AC52-06 N A25396. LA-UR-15-23927

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCambridge Soft (2014). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationEpishina, L. V., Slovetskii, V. I., Osipov, V. G., Lebedev, O. V., Khmel'nitskii, L. I., Sevost'yanova, V. V. & Novikova, T. S. (1967). Khim. Geterotsikl. Soedin. 4, 716–723.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKatritzky, A. R., Singh, S., Kirichenko, K., Smiglak, M., Holbrey, J. D., Reichert, W. M., Spear, S. K. & Rogers, R. D. (2006). Chem. Eur. J. 12, 4630–4641.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLu, Y. & Just, G. (2001). Tetrahedron, 57, 1677–1687.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParrish, D. A., Kramer, S., Windler, G. K., Chavez, D. E. & Leonard, P. W. (2015). Acta Cryst. E71, o491.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheppard, W. A. & Webster, O. W. (1973). J. Am. Chem. Soc. 95, 2695–2697.  CrossRef CAS Web of Science Google Scholar
First citationSrinivas, D., Ghule, V. D. & Muralidharan, K. (2014). RSC Adv. 4, 7041–7051.  Web of Science CrossRef CAS Google Scholar
First citationWindaus, A. & Vogt, W. (1907). Berichte, 40, 3691–3695.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds