data reports

CRYSTALLOGRAPHIC

OPEN access

Crystal structure of 3-methyl-1-phenyl-6propylamino-1*H*-pyrazolo[3,4-b]pyridine-5-carbonitrile

Jerry P. Jasinski,^a Mehmet Akkurt,^b Shaaban K. Mohamed,^{c,d}* Hajjaj H. M. Abdu-Allah^e and Mustafa R. Albayati^f

^aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, ^bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ^cChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, ^dChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, ^eDepartment of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, 71526 Assiut, Egypt, and ^fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq. *Correspondence e-mail: shaabankamel@yahoo.com

Received 10 September 2015; accepted 11 September 2015

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

In the title compound, $C_{17}H_{17}N_5$, the dihedral angle between the 1*H*-pyrazolo[3,4-*b*]pyridine ring system (r.m.s. deviation = 0.001 Å) and the attached phenyl group is $2.56 (6)^{\circ}$. The propylamino side chain has a contorted conformation [C_{ar}- $N-C-C = -77.97 (16)^{\circ}$ and $N-C-C-C = -57.37 (17)^{\circ}$]. An intramolecular $C-H \cdots N$ interaction closes an S(6) ring. In the crystal, inversion dimers linked by pairs of N-H···N hydrogen bonds generate $R_2^2(12)$ loops. Aromatic $\pi - \pi$ stacking interactions [centroid–centroid distance = 3.5726(8) Å] are also observed.

Keywords: crystal structure; pyrazolo[3,4-b]pyridine; amination; nucleophilic substitution.

CCDC reference: 1423566

1. Related literature

For the chemistry of pyrazolo[3,4-b]pyridines, see: Häufel & Breitmaier (1974); El-emary (2007); Dodiya et al. (2013). For a similar structure, see: Wang & Zhu (2006).

V = 1515.05 (12) Å³

 $0.44 \times 0.22 \times 0.18 \ \text{mm}$

10807 measured reflections

5031 independent reflections 3834 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 0.08 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int} = 0.025$

Z = 4

2. Experimental

2.1. Crystal data

 $C_{17}H_{17}N_5$ $M_r = 291.36$ Monoclinic, $P2_1/c$ a = 5.1450 (2) Åb = 15.1359 (7) Å c = 19.5828 (9) Å $\beta = 96.547 \ (4)^{\circ}$

2.2. Data collection

Agilent Xcalibur Eos Gemini
diffractometer
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
$T_{\min} = 0.795, T_{\max} = 1.000$

2.3. Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.055$	H atoms treated by a mixture of
$wR(F^2) = 0.143$	independent and constrained
S = 1.03	refinement
5031 reflections	$\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$
205 parameters	$\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
0.93 0.87 (2)	2.33 2.20 (2)	2.9823 (18) 3.0326 (17)	127 160.1 (18)
	<i>D</i> -H 0.93 0.87 (2)	$\begin{array}{c ccc} D-H & H\cdots A \\ \hline 0.93 & 2.33 \\ 0.87 (2) & 2.20 (2) \end{array}$	$D-H$ $H\cdots A$ $D\cdots A$ 0.93 2.33 2.9823 (18) 0.87 (2) 2.20 (2) 3.0326 (17)

Symmetry code: (i) -x - 1, -y + 1, -z + 1.

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Acknowledgements

JPJ acknowledges the NSF-MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer. HHMA is also gratful to Professor Talaat I. El-emary, Assiut University, for his advice on the synthetic method.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7504).

References

Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.

- Dodiya, D. K., Trivedi, A. R., Kataria, V. B. & Shah, V. H. (2013). Curr. Org. Chem. 16, 400–417.
- El-emary, T. I. (2007). J. Chin. Chem. Soc. 54, 507-518.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Häufel, J. & Breitmaier, E. (1974). Angew. Chem. Int. Ed. Engl. 13, 604-606.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Spek, A. L. (2009). Acta Cryst. D65, 148–155.
- Wang, J. & Zhu, S.-L. (2006). Acta Cryst. E62, 047–048.

supporting information

Acta Cryst. (2015). E71, o766-o767 [doi:10.1107/S2056989015017004]

Crystal structure of 3-methyl-1-phenyl-6-propylamino-1*H*-pyrazolo[3,4*b*]pyridine-5-carbonitrile

Jerry P. Jasinski, Mehmet Akkurt, Shaaban K. Mohamed, Hajjaj H. M. Abdu-Allah and Mustafa R. Albayati

S1. Comment

Pyrazolo[3,4-*b*]pyridines (Häufel & Breitmaier, 1974; El-Emary *et al.*, 2007; Dodiya *et al.*, 2013) are attractive targets in organic synthesis and are being extensively investigated because of their wide range of biological activities. We are interested in the synthesis of 6-amino derivatives of 3-methyl-1-phenyl-6-chloro-1*H*-pyrazolo[3,4-*b*]pyridine-5-carbo-nitrile for potential biological interest.

The molecular structure of the title compound is shown in Fig. 1. The 1*H*-pyrazolo[3,4-*b*]pyridine ring system (N1—N3/C1—C6) is essentially planar [r.m.s. deviation = 0.001 Å]. It forms a dihedral angle of 2.56 (6) ° with the attached phenyl ring (C12—C17). All bond lengths and bond angles in the title compound are comparable with those of a similar structure previously published (Wang & Zhu, 2006).

In the crystal, pairs of N—H…O hydrogen bonds connect the molecules to each other, forming centrosymmetric dimers with $R^2_2(12)$ motifs (Table 1, Fig. 2). π - π stacking interactions between the dimers [Cg1…Cg3(-1 + x, y, z) = 3.5726 (8) Å] between the centroids of the phenyl and pyrazole rings of the molecules] are also observed.

S2. Experimental

A mixture of 3-methyl-1-phenyl-6-chloro-1*H*-pyrazolo[3,4-*b*]pyridine-5-carbonitrile (0.268 g, 1 mmol) and propyl amine (1.2 ml, 12 mmol) was heated to 323 K overnight with constant stirring. The reaction mixture was cooled to room temperature and taken up in dichloromethane, washed with 5% aq. NaHCO₃, water and then with brine. The organic layer was dried over anhydrous MgSO₄ and the solvent was removed under reduced pressure. The crude product was recrystallized from aqueous ethanol to give the title compound as colourless prisms (0.2 g, 69% yield); $R_f = 0.25$ (hexane:ethyl acetate, 4:1).

S3. Refinement

The hydrogen atoms attached to carbon atoms were positioned geometrically and constrained to ride on their parent atoms, with carbon hydrogen bond distances of 0.93 - 0.97 Å. $U_{iso}(H)$ values were set to a multiple of $U_{eq}(C)$ with 1.5 for CH₃ and 1.2 for CH and CH₂, respectively. Reflection (-1 1 1) was affected by the beam stop and was omitted from the refinement. The H atom of the NH group were found from a difference Fourier map and refinned freely.

Figure 1

View of the title compound with displacement ellipsoids for non-H atoms drawn at the 50% probability level.

Figure 2

A part of N—H…O dimers viewed down b axis. H atoms not involved in H bonding are omitted for clarity.

3-Methyl-1-phenyl-6-propylamino-1*H*-pyrazolo[3,4-b]pyridine-5-carbonitrile

Crystal data $C_{17}H_{17}N_5$ $M_r = 291.36$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 5.1450 (2) Å b = 15.1359 (7) Å c = 19.5828 (9) Å $\beta = 96.547$ (4)° V = 1515.05 (12) Å³ Z = 4

F(000) = 616 $D_x = 1.277 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2809 reflections $\theta = 4.1-32.4^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 296 KPrism, colourless $0.44 \times 0.22 \times 0.18 \text{ mm}$ Data collection

Agilent Xcalibur Eos Gemini	10807 measured reflections
diffractometer	5031 independent reflections
Radiation source: Enhance (Mo) X-ray Source	3834 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.025$
Detector resolution: 16.0416 pixels mm ⁻¹	$\theta_{\text{max}} = 32.7^{\circ}, \ \theta_{\text{min}} = 3.4^{\circ}$
ωscans	$h = -7 \rightarrow 7$
Absorption correction: multi-scan	$k = -21 \rightarrow 19$
(CrysAlis PRO; Agilent, 2014)	$l = -29 \rightarrow 17$
$T_{\min} = 0.795, \ T_{\max} = 1.000$	
Refinement	
Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.055$	and constrained refinement
$wR(F^2) = 0.143$	$w = 1/[\sigma^2(F_o^2) + (0.0575P)^2 + 0.5443P]$
S = 1.03	where $P = (F_0^2 + 2F_c^2)/3$
5031 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
205 parameters	$\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.1143 (2)	0.39657 (8)	0.17034 (6)	0.0313 (3)	
N2	0.1880 (2)	0.35673 (7)	0.23372 (5)	0.0259 (3)	
N3	0.0577 (2)	0.36544 (7)	0.34854 (5)	0.0240 (3)	
N4	-0.1030 (2)	0.38566 (8)	0.45253 (6)	0.0290 (3)	
N5	-0.6220 (3)	0.54182 (8)	0.43046 (6)	0.0335 (3)	
C1	-0.0775 (3)	0.45129 (9)	0.17907 (7)	0.0307 (4)	
C2	0.0384 (2)	0.38812 (8)	0.28219 (6)	0.0235 (3)	
C3	-0.1361 (3)	0.44952 (8)	0.24825 (7)	0.0263 (3)	
C4	-0.3133 (3)	0.49088 (8)	0.28667 (7)	0.0275 (3)	
C5	-0.3023 (2)	0.46884 (8)	0.35533 (7)	0.0250 (3)	
C6	-0.1121 (2)	0.40572 (8)	0.38532 (6)	0.0238 (3)	
C7	0.0940 (3)	0.32792 (9)	0.48825 (7)	0.0305 (4)	
C8	0.0446 (3)	0.22989 (10)	0.47497 (8)	0.0337 (4)	
C9	-0.2167 (4)	0.19810 (12)	0.49344 (10)	0.0464 (5)	
C10	-0.4806 (3)	0.50939 (8)	0.39696 (7)	0.0264 (3)	
C11	-0.2089 (4)	0.50428 (11)	0.12099 (8)	0.0445 (5)	
C12	0.3868 (2)	0.29171 (8)	0.23836 (7)	0.0259 (3)	

C13	0.5115 (3)	0.27319 (9)	0.18042 (8)	0.0340 (4)
C14	0.7117 (3)	0.21152 (10)	0.18464 (9)	0.0386 (4)
C15	0.7886 (3)	0.16777 (9)	0.24520 (9)	0.0356 (4)
C16	0.6611 (3)	0.18531 (10)	0.30210 (8)	0.0334 (4)
C17	0.4609 (3)	0.24712 (9)	0.29935 (7)	0.0301 (4)
H4	-0.43410	0.53170	0.26680	0.0330*
H4N	-0.206 (4)	0.4127 (12)	0.4777 (10)	0.041 (5)*
H7A	0.10150	0.33880	0.53730	0.0370*
H7B	0.26340	0.34310	0.47430	0.0370*
H8A	0.05460	0.21790	0.42670	0.0400*
H8B	0.18220	0.19630	0.50130	0.0400*
H9A	-0.22310	0.20520	0.54190	0.0700*
H9B	-0.23880	0.13680	0.48150	0.0700*
H9C	-0.35420	0.23200	0.46870	0.0700*
H11A	-0.20430	0.56570	0.13330	0.0670*
H11B	-0.38750	0.48550	0.11120	0.0670*
H11C	-0.11980	0.49580	0.08100	0.0670*
H13	0.46060	0.30210	0.13910	0.0410*
H14	0.79530	0.19950	0.14600	0.0460*
H15	0.92450	0.12700	0.24780	0.0430*
H16	0.71030	0.15520	0.34290	0.0400*
H17	0.37710	0.25850	0.33810	0.0360*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0380 (6)	0.0317 (6)	0.0259 (5)	0.0000 (5)	0.0115 (5)	0.0002 (4)
N2	0.0282 (5)	0.0285 (5)	0.0227 (5)	-0.0009 (4)	0.0100 (4)	-0.0025 (4)
N3	0.0231 (5)	0.0257 (5)	0.0243 (5)	-0.0018 (4)	0.0080 (4)	-0.0049 (4)
N4	0.0303 (6)	0.0340 (6)	0.0244 (5)	0.0061 (5)	0.0104 (4)	-0.0027 (4)
N5	0.0361 (6)	0.0338 (6)	0.0319 (6)	0.0063 (5)	0.0102 (5)	-0.0022 (5)
C1	0.0382 (7)	0.0286 (6)	0.0268 (6)	-0.0021 (5)	0.0102 (5)	0.0009 (5)
C2	0.0238 (5)	0.0235 (5)	0.0245 (6)	-0.0039 (4)	0.0080 (4)	-0.0044 (4)
C3	0.0312 (6)	0.0229 (5)	0.0260 (6)	-0.0025 (5)	0.0089 (5)	-0.0014 (4)
C4	0.0302 (6)	0.0222 (5)	0.0310 (6)	0.0000 (5)	0.0078 (5)	-0.0006 (5)
C5	0.0249 (6)	0.0221 (5)	0.0293 (6)	-0.0007 (4)	0.0085 (5)	-0.0039 (4)
C6	0.0231 (5)	0.0237 (5)	0.0256 (6)	-0.0025 (4)	0.0072 (4)	-0.0047 (4)
C7	0.0281 (6)	0.0374 (7)	0.0259 (6)	0.0016 (5)	0.0030 (5)	-0.0027 (5)
C8	0.0314 (7)	0.0361 (7)	0.0338 (7)	0.0048 (6)	0.0051 (5)	0.0022 (6)
C9	0.0460 (9)	0.0489 (9)	0.0465 (9)	-0.0075 (8)	0.0150 (8)	0.0028 (7)
C10	0.0280 (6)	0.0238 (5)	0.0282 (6)	-0.0001 (5)	0.0064 (5)	-0.0017 (5)
C11	0.0614 (11)	0.0417 (8)	0.0317 (8)	0.0091 (8)	0.0110 (7)	0.0074 (6)
C12	0.0242 (6)	0.0250 (6)	0.0298 (6)	-0.0049 (5)	0.0093 (5)	-0.0081 (5)
C13	0.0412 (8)	0.0314 (7)	0.0326 (7)	0.0002 (6)	0.0179 (6)	-0.0048 (5)
C14	0.0431 (8)	0.0327 (7)	0.0443 (8)	0.0004 (6)	0.0240 (7)	-0.0092 (6)
C15	0.0299 (7)	0.0293 (6)	0.0492 (9)	0.0002 (5)	0.0110 (6)	-0.0110 (6)
C16	0.0293 (7)	0.0345 (7)	0.0363 (7)	0.0008 (5)	0.0033 (5)	-0.0070 (6)
C17	0.0263 (6)	0.0359 (7)	0.0292 (6)	-0.0001 (5)	0.0083 (5)	-0.0079 (5)

Geometric parameters (Å, °)

N1—N2	1.3930 (15)	C13—C14	1.386 (2)	
N1C1	1.3143 (18)	C14—C15	1.376 (2)	
N2—C2	1.3732 (15)	C15—C16	1.382 (2)	
N2-C12	1.4148 (15)	C16—C17	1.388 (2)	
N3—C2	1.3366 (15)	C4—H4	0.9300	
N3—C6	1.3406 (15)	C7—H7A	0.9700	
N4—C6	1.3463 (17)	С7—Н7В	0.9700	
N4—C7	1.4556 (18)	C8—H8A	0.9700	
N5-C10	1.144 (2)	C8—H8B	0.9700	
C1—C3	1.421 (2)	С9—Н9А	0.9600	
C1—C11	1.490 (2)	С9—Н9В	0.9600	
C2—C3	1.4055 (18)	С9—Н9С	0.9600	
C3—C4	1.395 (2)	C11—H11A	0.9600	
C4—C5	1.3802 (19)	C11—H11B	0.9600	
N4—H4N	0.87 (2)	C11—H11C	0.9600	
C5—C10	1.4330 (19)	C13—H13	0.9300	
C5—C6	1.4437 (16)	C14—H14	0.9300	
С7—С8	1.523 (2)	C15—H15	0.9300	
C8—C9	1.510 (3)	C16—H16	0.9300	
C12—C17	1.3869 (19)	C17—H17	0.9300	
C12—C13	1.394 (2)			
N2—N1—C1	106.80 (11)	C3—C4—H4	121.00	
N1—N2—C2	110.43 (10)	C5—C4—H4	121.00	
N1—N2—C12	118.66 (10)	N4—C7—H7A	109.00	
C2—N2—C12	130.87 (10)	N4—C7—H7B	109.00	
C2—N3—C6	115.13 (10)	C8—C7—H7A	109.00	
C6—N4—C7	123.36 (11)	С8—С7—Н7В	109.00	
N1—C1—C3	110.86 (12)	H7A—C7—H7B	108.00	
N1-C1-C11	121.48 (13)	C7—C8—H8A	109.00	
C3—C1—C11	127.65 (14)	C7—C8—H8B	109.00	
N2—C2—N3	126.71 (11)	C9—C8—H8A	109.00	
N2-C2-C3	106.27 (11)	C9—C8—H8B	109.00	
N3—C2—C3	127.03 (11)	H8A—C8—H8B	108.00	
C1—C3—C2	105.65 (12)	С8—С9—Н9А	109.00	
C1—C3—C4	136.75 (13)	С8—С9—Н9В	109.00	
C2—C3—C4	117.60 (12)	С8—С9—Н9С	110.00	
C3—C4—C5	117.40 (12)	H9A—C9—H9B	109.00	
C7—N4—H4N	116.6 (13)	Н9А—С9—Н9С	109.00	
C6—N4—H4N	119.6 (13)	H9B—C9—H9C	109.00	
C4—C5—C10	119.53 (11)	C1—C11—H11A	109.00	
C4—C5—C6	120.45 (11)	C1-C11-H11B	109.00	
C6—C5—C10	120.02 (12)	C1—C11—H11C	109.00	
N4C6C5	119.56 (11)	H11A—C11—H11B	109.00	
N3—C6—C5	122.37 (11)	H11A—C11—H11C	110.00	
N3-C6-N4	118.07 (11)	H11B—C11—H11C	109.00	

N4—C7—C8	114.17 (12)	C12—C13—H13	120.00
С7—С8—С9	113.92 (13)	C14—C13—H13	120.00
N5—C10—C5	179.66 (15)	C13—C14—H14	120.00
N2—C12—C13	118.95 (12)	C15—C14—H14	120.00
C13—C12—C17	119.75 (12)	C14—C15—H15	120.00
N2-C12-C17	121.30 (12)	C16—C15—H15	120.00
C12—C13—C14	119.66 (14)	C15—C16—H16	119.00
C13—C14—C15	120.95 (15)	C17—C16—H16	119.00
C14—C15—C16	119.09 (14)	C12—C17—H17	120.00
C15—C16—C17	121.11 (14)	C16—C17—H17	120.00
C12—C17—C16	119.43 (13)		
C1—N1—N2—C2	-0.22 (14)	N1—C1—C3—C2	0.00 (16)
C1—N1—N2—C12	177.73 (11)	N3—C2—C3—C1	179.11 (12)
N2—N1—C1—C3	0.13 (15)	N2-C2-C3-C1	-0.15 (14)
N2—N1—C1—C11	-178.72 (13)	N3—C2—C3—C4	-1.3 (2)
C2—N2—C12—C17	0.2 (2)	N2-C2-C3-C4	179.47 (12)
N1—N2—C12—C17	-177.28 (12)	C1—C3—C4—C5	179.97 (16)
C12—N2—C2—N3	3.4 (2)	C2—C3—C4—C5	0.51 (19)
N1—N2—C2—C3	0.23 (13)	C3—C4—C5—C6	0.41 (18)
N1—N2—C2—N3	-179.03 (11)	C3—C4—C5—C10	-179.87 (12)
C2—N2—C12—C13	-179.14 (12)	C10-C5-C6-N3	179.49 (11)
C12—N2—C2—C3	-177.40 (12)	C4—C5—C6—N3	-0.79 (18)
N1—N2—C12—C13	3.40 (17)	C4—C5—C6—N4	179.43 (12)
C2—N3—C6—C5	0.14 (17)	C10-C5-C6-N4	-0.29 (17)
C6—N3—C2—C3	0.91 (18)	N4—C7—C8—C9	-57.37 (17)
C2—N3—C6—N4	179.92 (11)	N2-C12-C13-C14	178.16 (12)
C6—N3—C2—N2	-180.00 (12)	C17—C12—C13—C14	-1.2 (2)
C7—N4—C6—C5	-175.32 (11)	N2-C12-C17-C16	-178.48 (12)
C7—N4—C6—N3	4.89 (18)	C13—C12—C17—C16	0.8 (2)
C6—N4—C7—C8	-77.97 (16)	C12—C13—C14—C15	0.4 (2)
C11—C1—C3—C2	178.77 (14)	C13—C14—C15—C16	0.8 (2)
C11—C1—C3—C4	-0.7 (3)	C14—C15—C16—C17	-1.1 (2)
N1—C1—C3—C4	-179.50 (16)	C15—C16—C17—C12	0.3 (2)

Hydrogen-bond geometry (Å, °)

	<i>D</i> 11	$\Pi^{m}A$	$D^{\dots}A$	D—H···A
C17—H17···N3	0.93	2.33	2.9823 (18)	127
$N4$ — $H4N$ ···· $N5^{i}$	0.87 (2)	2.20 (2)	3.0326 (17)	160.1 (18)

Symmetry code: (i) -x-1, -y+1, -z+1.