CRYSTALLOGRAPHIC COMMUNICATIONS

Redetermined structure of 4,4'-bi-pyridine-1,4-phenylenediacetic acid (1/ 1) co-crystal

Rima Paul and Sanchay Jyoti Bora*
Department of Chemistry, Pandu College, Guwahati-781 012, Assam, India.
*Correspondence e-mail: sanchay.bora@gmail.com

Received 14 September 2015; accepted 19 September 2015

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

The asymmetric unit of the title 1:1 co-crystal, $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \cdot \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4}$, consists of one half-molecule each of $4,4^{\prime}$-bipyridine and 1,4 -phenylenediacetic acid: the complete molecules are generated by crystallographic inversion centres. The dihedral angle between the $-\mathrm{CO}_{2} \mathrm{H}$ group and the benzene ring in the diacid is $73.02(7)^{\circ}$. In the crystal, the components are linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, generating [151] chains of alternating amine and carboxylic acid molecules. The chains are cross-linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions. This structure was previously incorrectly described as a $\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2}\right)^{2+} .\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{4}\right)^{2-}$ molecular salt [Jia et al. (2009). Acta Cryst. E65, o2490-o2490].

Keywords: crystal structure; co-crystal; supramolecular interaction; hydrogen bonding.

CCDC reference: 1423417

1. Related literature

For the previous erroneous report of this structure as a molecular salt, see: Jia et al. (2009). For hydrogen-bonded cocrystals, see: Stahly (2009); Kavuru et al. (2010). For pharmaceutical co-crystals, see: Childs et al. (2009); Walsh et al. (2003). For a similar structure, see: Chinnakali et al. (1999).

2. Experimental

2.1. Crystal data
$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \cdot \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4}$
$\gamma=97.643(7)^{\circ}$
$M_{r}=350.36$
$V=427.05(8) \AA^{3}$
Triclinic, $P \overline{1}$
$a=4.5577$ (5) \AA
$b=6.9806$ (8) \AA
$c=13.7995(15) \AA$
$Z=1$
Mo $K \alpha$ radiation
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
$\alpha=99.508(6)^{\circ}$
$0.20 \times 0.17 \times 0.13 \mathrm{~mm}$
$\beta=94.297$ (6) ${ }^{\circ}$

2405 independent reflections 1876 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.028$

2.3. Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.123$
$S=1.05$
2405 reflections
155 parameters
All H-atom parameters refined
$\Delta \rho_{\text {max }}=0.19 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {max }}=0.19 \mathrm{e}^{\AA} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.16 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 9 \cdots \mathrm{~N} 1^{\mathrm{i}}$	$1.02(2)$	$1.62(2)$	$2.6373(13)$	$176(2)$
$\mathrm{C} 7-\mathrm{H} 6 \cdots \mathrm{O} 2^{\mathrm{ii}}$	$0.954(16)$	$2.504(16)$	$3.4196(16)$	$160.8(11)$
$\mathrm{C}_{2}-\mathrm{H} 7 \cdots \mathrm{O}_{2}{ }^{\mathrm{iii}}$	$1.00(2)$	$2.45(2)$	$3.4205(18)$	$162.2(16)$

Symmetry codes: (i) $-x+2,-y+1,-z$; (ii) $x, y, z+1$; (iii) $-x+1,-y+2,-z$.
Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97.

Acknowledgements

Financial support from the Department of Science \& Technology, India (under FASTRACK Grant No. SB/FT/CS-047/ 2013) is gratefully acknowledged. The authors also thank the USIC, Gauhati University, Guwahati (India), for providing the X-ray diffraction data.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7506).

References

Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Childs, S. L. \& Zaworotko, M. J. (2009). Cryst. Growth Des. 9, 4208-4211.
Chinnakali, K., Fun, H.-K., Goswami, S., Mahapatra, A. K. \& Nigam, G. D. (1999). Acta Cryst. C55, 399-401.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Jia, M., Liu, X., Miao, J., Xiong, W. \& Chen, Z. (2009). Acta Cryst. E65, o2490.

data reports

Kavuru, P., Aboarayes, D., Arora, K. K., Clarke, H. D., Kennedy, A., Marshall, L., Ong, T. T., Perman, J., Pujari, T., Wojtas, Ł., Łukasz, \& Zaworotko, M. J. (2010). Cryst. Growth Des. 10, 3568-3584.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Stahly, G. P. (2009). Cryst. Growth Des. 9, 4212-4229.
Walsh, R. D. B., Bradner, M. W., Fleischman, S., Morales, L. A., Moulton, B., Rodríguez-Hornedo, N. \& Zaworotko, M. J. (2003). Chem. Commun. pp. 186-187.

supporting information

Redetermined structure of 4,4'-bipyridine-1,4-phenylenediacetic acid (1/1) cocrystal

Rima Paul and Sanchay Jyoti Bora

S1. Comment

Co-crystals represent a class of materials which contain two or more discrete molecular entities held together via noncovalent or supramolecular interactions in the crystal lattice (Stahly, 2009). Due to their robust and directional nature, hydrogen bonds are extensively used as a tool to shape the structure of co-crystals (Kavuru et al., 2010). In this context, hydrogen bonds of varying strengths may be employed, ranging from strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O} / \mathrm{N}$ to weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions. The resulting crystal structures can generate diverse physical and chemical properties such as solubility and stability that differ from the properties of the individual components. Crystal engineering plays an important role in the formation of co-crystals of desired properties so that they can find their applications in pharmaceutical industries (Childs et al., 2009 and Walsh et al., 2003). Herein, we report the supramolecular architecture of 1,4-phenylenediacetic acid and 4,4'-bipyridine co-crystal formed via $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bridges and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

The title compound can be prepared under hydrothermal condition using a mixture of 1,4-phenylenediacetic acid and 4,4'-bipyridine (1:1) in water. The acetic acid moiety involving $\mathrm{C} 1, \mathrm{C} 2, \mathrm{O} 1$ and O 2 in 1,4 -phenylenediacetic acid molecule makes dihedral angles of $73.04(4)^{\circ}$ and $2.06(1)^{\circ}$ with the phenyl and pyridyl ring planes respectively. These values are very close to those reported by Chinnakali et al. (1999). The dihedral angle between phenyl and planar pyridyl rings of $4,4^{\prime}$-bipyridine is found to be $73.21(4)^{\circ}$. In the crystal lattice, the molecules are linked with one another through $\mathrm{O} 1-\mathrm{H} 9 \cdots \mathrm{~N} 1$ hydrogen bonds with $\mathrm{O} \cdots \mathrm{N}$ distance of 2.637 (1) \AA that extends in one direction leading to a supramolecular chain like structure. These zig-zag 1D chains are further connected via $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ bridges ($\mathrm{C} 7-\mathrm{H} 6 \cdots \mathrm{O} 2$ and C 9 $-\mathrm{H} 7 \cdots \mathrm{O} 2$ with $\mathrm{C} \cdots \mathrm{O}$ distances of 2.50 (1) \AA and 2.45 (2) \AA respectively) giving rise to a 2 D layered structure in the solid state. In graph set notations (Bernstain et al., 1995), such 1D chains can be described as $C_{2}{ }^{2}(20)$ where the subscripts and superscripts are the number of hydrogen bond donors and acceptors respectively. There are certain hydrogen bonded rings of descriptors $R_{1}{ }^{2}(7), R_{4}{ }^{4}(16)$ and $R_{4}{ }^{4}(30)$ which have periodic repetitions throughout the crystal lattice. The adjacent layers are stacked in nearly parallel fashion by means of weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions $(\mathrm{C} \cdots \pi$ distance $=$ $3.838 \AA$) between the methylene $\mathrm{C}-\mathrm{H}$ and phenyl ring $-\pi$ systems. These weak intermolecular forces together with the strong hydrogen bonds form the overall 3D supramolecular architecture.
?

S2. Synthesis and crystallization

A mixture of 1,4-phenylenediacetic acid ($1 \mathrm{mmol}, 0.194 \mathrm{~g}$) and 4,4?-bipyridine ($1 \mathrm{mmol}, 0.156 \mathrm{~g}$) in water (10 ml) were placed in a 23 ml Teflon lined stainless steel reaction vessel. It was then heated to 393 K for 24 hours at a heating rate of $5 \mathrm{~K} \mathrm{~min}^{-1}$. On overnight standing, rectangular block shaped colourless crystals were obtained. The crystals were then filtered off, washed with water and dried in a vacuum desiccator over fused CaCl_{2}. Yield: 71%.

S3. Refinement

Structure determination work was done using the WinGX platform (Farrugia, 2012). All the hydrogen atoms were located in difference Fourier maps and refined with isotropic atomic displacement parameters. No restraints were applied for any other parameter during structure refinement.

Figure 1

The molecular structure of (I) showing 50\% probability displacement ellipsoids.

Figure 2

A view of the $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions observed in the crystal structure of the title compound.

4,4'-Bipyridine-1,4-phenylenediacetic acid (1/1)

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \cdot \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4}$
$M_{r}=350.36$
Triclinic, $P \overline{1}$
$a=4.5577$ (5) \AA
$b=6.9806$ (8) \AA
$c=13.7995(15) \AA$
$\alpha=99.508(6)^{\circ}$
$\beta=94.297(6)^{\circ}$
$\gamma=97.643(7)^{\circ}$

$$
\begin{aligned}
& V=427.05(8) \AA^{3} \\
& Z=1 \\
& F(000)=184 \\
& D_{\mathrm{x}}=1.362 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \mu=0.10 \mathrm{~mm}^{-1} \\
& T=296 \mathrm{~K} \\
& \text { Rectangular block, colourless } \\
& 0.20 \times 0.17 \times 0.13 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
phi and ω scans
8581 measured reflections
2405 independent reflections

1876 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.028$
$\theta_{\text {max }}=29.8^{\circ}, \theta_{\text {min }}=3.0^{\circ}$
$h=-6 \rightarrow 6$
$k=-9 \rightarrow 9$
$l=-19 \rightarrow 19$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.123$
$S=1.05$
2405 reflections
155 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

> Hydrogen site location: inferred from \quad neighbouring sites
> All H-atom parameters refined
> $w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0605 P)^{2}+0.0515 P\right]$
> \quad where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.001$
> $\Delta \rho_{\max }=0.19 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.16 \mathrm{e} \AA^{-3}$
> Extinction correction: $S H E L X L$, $\quad \mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc} \mathrm{K}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
> Extinction coefficient: $0.061(11)$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	$0.8197(2)$	$0.45294(13)$	$-0.18830(6)$	$0.0541(3)$
C1	$0.7209(2)$	$0.60720(15)$	$-0.21279(8)$	$0.0408(3)$
C2	$0.5619(3)$	$0.71533(19)$	$-0.13310(10)$	$0.0490(3)$
C3	$0.7850(2)$	$0.86342(15)$	$-0.06291(8)$	$0.0400(3)$
C4	$0.9459(3)$	$0.80852(16)$	$0.01476(9)$	$0.0454(3)$
C5	$0.8422(3)$	$1.05717(17)$	$-0.07687(8)$	$0.0446(3)$
O2	$0.7616(3)$	$0.66207(15)$	$-0.28973(7)$	$0.0675(3)$
N1	$0.8832(2)$	$0.73182(15)$	$0.32203(7)$	$0.0476(3)$
C6	$0.8316(3)$	$0.67172(18)$	$0.40629(9)$	$0.0517(3)$
C7	$0.6844(3)$	$0.77149(18)$	$0.47798(9)$	$0.0487(3)$
C8	$0.5796(2)$	$0.94340(15)$	$0.46266(7)$	$0.0376(2)$
C10	$0.7840(3)$	$0.8964(2)$	$0.30711(10)$	$0.0566(3)$
C9	$0.6326(3)$	$1.00451(19)$	$0.37423(9)$	$0.0532(3)$
H9	$0.927(5)$	$0.382(3)$	$-0.2421(15)$	$0.104(7)^{*}$
H3	$0.908(3)$	$0.676(2)$	$0.0263(11)$	$0.061(4)^{*}$

H4	$0.731(3)$	$1.100(2)$	$-0.1302(11)$	$0.055(4)^{*}$
H6	$0.660(3)$	$0.722(2)$	$0.5378(12)$	$0.067(4)^{*}$
H1	$0.462(4)$	$0.621(2)$	$-0.0977(12)$	$0.065(4)^{*}$
H8	$0.822(4)$	$0.935(2)$	$0.2459(13)$	$0.073(5)^{*}$
H7	$0.560(4)$	$1.122(3)$	$0.3533(13)$	$0.081(5)^{*}$
H2	$0.412(4)$	$0.787(3)$	$-0.1669(12)$	$0.071(5)^{*}$
H5	$0.902(4)$	$0.551(3)$	$0.4159(12)$	$0.071(4)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0764(6)$	$0.0483(5)$	$0.0463(5)$	$0.0272(4)$	$0.0173(4)$	$0.0141(4)$
C1	$0.0449(6)$	$0.0370(5)$	$0.0403(5)$	$0.0071(4)$	$0.0035(4)$	$0.0055(4)$
C2	$0.0434(6)$	$0.0489(6)$	$0.0549(7)$	$0.0115(5)$	$0.0119(5)$	$0.0025(5)$
C3	$0.0431(5)$	$0.0405(5)$	$0.0396(5)$	$0.0148(4)$	$0.0163(4)$	$0.0046(4)$
C4	$0.0580(7)$	$0.0363(5)$	$0.0467(6)$	$0.0141(5)$	$0.0146(5)$	$0.0116(4)$
C5	$0.0545(7)$	$0.0452(6)$	$0.0394(5)$	$0.0184(5)$	$0.0097(5)$	$0.0116(4)$
O2	$0.1023(8)$	$0.0630(6)$	$0.0502(5)$	$0.0351(6)$	$0.0215(5)$	$0.0232(4)$
N1	$0.0507(6)$	$0.0478(5)$	$0.0450(5)$	$0.0158(4)$	$0.0075(4)$	$0.0023(4)$
C6	$0.0643(8)$	$0.0439(6)$	$0.0511(7)$	$0.0221(6)$	$0.0096(6)$	$0.0075(5)$
C7	$0.0631(7)$	$0.0441(6)$	$0.0443(6)$	$0.0189(5)$	$0.0116(5)$	$0.0117(5)$
C8	$0.0370(5)$	$0.0374(5)$	$0.0379(5)$	$0.0073(4)$	$0.0026(4)$	$0.0045(4)$
C10	$0.0714(9)$	$0.0614(8)$	$0.0466(7)$	$0.0285(6)$	$0.0200(6)$	$0.0159(6)$
C9	$0.0691(8)$	$0.0515(7)$	$0.0490(6)$	$0.0284(6)$	$0.0181(6)$	$0.0166(5)$

Geometric parameters ($\AA,{ }^{\circ}$)

O1-C1	1.3051 (13)	C5-H4	0.972 (14)
O1-H9	1.02 (2)	N1-C6	1.3264 (16)
$\mathrm{C} 1-\mathrm{O} 2$	1.2056 (14)	N1-C10	1.3301 (16)
C1-C2	1.5147 (16)	C6-C7	1.3820 (17)
C2-C3	1.5108 (17)	C6-H5	0.964 (17)
C2-H1	0.970 (16)	C7-C8	1.3906 (15)
C2-H2	1.027 (17)	C7-H6	0.955 (16)
C3-C4	1.3877 (16)	C8-C9	1.3850 (16)
C3-C5	1.3908 (15)	C8-C8 ${ }^{\text {ii }}$	1.486 (2)
$\mathrm{C} 4-\mathrm{C} 5{ }^{\text {i }}$	1.3844 (18)	C10-C9	1.3810 (17)
C4-H3	0.961 (15)	C10-H8	0.950 (18)
C5-C4 ${ }^{\text {i }}$	1.3844 (18)	C9-H7	0.998 (19)
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{H} 9$	112.6 (12)	C3-C5-H4	120.1 (8)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	123.26 (10)	C6-N1-C10	117.10 (10)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	123.39 (11)	N1-C6-C7	123.47 (11)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	113.30 (10)	N1-C6-H5	116.3 (10)
C3-C2-C1	109.58 (9)	C7-C6-H5	120.2 (10)
C3-C2-H1	110.0 (9)	C6-C7-C8	119.66 (11)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 1$	108.9 (10)	C6-C7-H6	119.0 (10)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	109.4 (9)	C8-C7-H6	121.4 (10)

$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	$107.7(9)$
$\mathrm{H} 1-\mathrm{C} 2-\mathrm{H} 2$	$111.2(13)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 5$	$118.28(11)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$121.06(10)$
$\mathrm{C} 5-\mathrm{C} 3-\mathrm{C} 2$	$120.61(10)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$120.99(10)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 3$	$119.3(9)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 3$	$119.7(9)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 3$	$120.73(11)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 4$	$119.2(8)$

$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7$	$116.53(10)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 8^{\mathrm{ii}}$	$121.59(12)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 8^{\mathrm{ii}}$	$121.88(12)$
$\mathrm{N} 1-\mathrm{C} 10-\mathrm{C} 9$	$123.35(12)$
$\mathrm{N} 1-\mathrm{C} 10-\mathrm{H} 8$	$115.3(10)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{H} 8$	$121.3(10)$
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 8$	$119.89(11)$
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{H} 7$	$116.0(11)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{H} 7$	$124.1(11)$

Symmetry codes: (i) $-x+2,-y+2,-z$; (ii) $-x+1,-y+2,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} 9 \cdots \mathrm{~N} 1^{\mathrm{iii}}$	$1.02(2)$	$1.62(2)$	$2.6373(13)$	$176(2)$
$\mathrm{C} 7 — \mathrm{H} 6 \cdots 2^{\text {iv }}$	$0.954(16)$	$2.504(16)$	$3.4196(16)$	$160.8(11)$
$\mathrm{C} 9 — \mathrm{H} 7 \cdots \mathrm{O}^{v}$	$1.00(2)$	$2.45(2)$	$3.4205(18)$	$162.2(16)$

Symmetry codes: (iii) $-x+2,-y+1,-z$; (iv) $x, y, z+1$; (v) $-x+1,-y+2,-z$.

