

C OPEN

OPEN d ACCESS

Crystal structure of (3*S**,4*S**,4*aS**,5*R**,-6*R**,6*aS**,7*R**,11*aS**,11*bR**)-5,6-bis-(benzoyloxy)-3,4a-dihydroxy-4,7,11btrimethyl-1,2,3,4,4a,5,6,6a,7,11,11a,-11b-dodecahydrophenanthro[3,2-*b*]furan-4-carboxylic acid methanol monosolvate

Sadaf Siddiqui,^a Osayemwenre Erharuyi,^b Abiodun Falodun,^b M. Iqbal Choudhary^{a,c} and Sammer Yousuf^{a*}

^aH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, ^bDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Benin, Benin City, Nigeria, and ^cDepartment of Biochemistry, Faculty of Science, King Abdul Aziz University, Jeddah-21412, Saudi Arabia. *Correspondence e-mail: iqbal.choudhary@iccs.edu

Received 20 August 2015; accepted 3 September 2015

Edited by H. Ishida, Okayama University, Japan

The title compound, $C_{34}H_{36}O_9 \cdot CH_3OH$, is a diterpenoid isolated from the roots of *Caesalpinia pulcherrima* (L.) Swartz. The three *trans*-fused six-membered rings are in chair, chair and half-chair conformations. The mean plane of this fused-ring system makes dihedral angles of 67.95 (15) and 83.72 (14)° with the two phenyl rings of the benzoyloxy groups. An intramolecular $C-H\cdots O$ hydrogen bond is observed. In the crystal, molecules are linked *via* $O-H\cdots O$ hydrogen bonds, forming an infinite chain along the *b*-axis direction.

Keywords: crystal structure; diterpenoid; *Caesalpinia pulcherrima*; Pulcherrimin A; hydrogen bonding.

CCDC reference: 1422031

1. Related literature

For background to *Caesalpinia pulcherrima* (L.) Swartz and its biological activities, see: Pawar *et al.* (2009); Udenigwe *et al.* (2007); Sudhakar *et al.* (2006); Gupta *et al.* (2000); Patil *et al.* (1997). For the biological applications of Pulcherrimin A, see: Yodsaoue *et al.* (2011); Patil *et al.* (1997). For the crystal structure of a related compound, see: Fun *et al.* (2010).

2. Experimental

2.1. Crystal data $C_{34}H_{36}O_{9}\cdot CH_{4}O$ $M_{r} = 620.67$ Orthorhombic, $P_{21}2_{1}2_{1}$ a = 11.7943 (6) Å b = 13.5934 (7) Å c = 19.2988 (11) Å

2.2. Data collection

Bruker SMART APEX CCD areadetector diffractometer 18238 measured reflections

2.3. Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.052$ $wR(F^2) = 0.139$ S = 1.033916 reflections 411 parameters 3916 independent reflections 2882 reflections with $I > 2\sigma(I)$ $R_{int} = 0.049$

V = 3094.1 (3) Å³

Mo $K\alpha$ radiation

 $0.45 \times 0.30 \times 0.10 \text{ mm}$

 $\mu = 0.10 \text{ mm}^{-3}$

T = 293 K

Z = 4

13 restraints H-atom parameters constrained $\Delta\rho_{max}=0.30$ e Å^{-3} $\Delta\rho_{min}=-0.18$ e Å^{-3}

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O3-H3···O10	0.84	1.79	2.626 (5)	177
$O8-H8\cdots O2^{i}$	0.84	2.03	2.728 (3)	141
$O10-H10\cdots O8^{ii}$	0.84	2.26	2.967 (4)	142
C15−H15A···O3	0.96	2.35	3.231 (5)	152

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT*

(Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

Acknowledgements

This work was supported by a ICCBS–TWAS Postgraduate Fellowship award (FR No. 3240275062) to OE for PhD research at the H.E.J. Research Institute of Chemistry (International Center for Chemical and Biological Sciences), University of Karachi, Pakistan.

Supporting information for this paper is available from the IUCr electronic archives (Reference: IS5414).

References

- Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fun, H.-K., Yodsaoue, O., Karalai, C. & Chantrapromma, S. (2010). Acta Cryst. E66, o2059–o2060.

- Gupta, M., Mazumder, U. K., Rath, N. & Mukhopadhyay, D. K. (2000). J. Ethnopharmacol. 72, 151–156.
- Patil, D. A., Freyer, J. A., Lee Webb, R., Zuber, G., Reichwein, R., Bean, F. M., Faucette, L. & Johnson, K. R. (1997). *Tetrahedron*, 53, 1583–1592.
- Pawar, C. R., Mutha, R. E., Landge, A. D., Jadhav, R. B. & Surana, S. J. (2009). *Indian J. Biochem. Biophys.* 46, 198–200.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Sudhakar, M., Rao, C. V., Rao, P. M., Raju, D. B. & Venkateswarlu, Y. (2006). *Fitoterapia*, **77**, 378–380.
- Udenigwe, C. C., Ata, A. & Samarasekera, R. (2007). Chem. Pharm. Bull. 55, 442-445.
- Yodsaoue, O., Karalai, C., Ponglimanont, C., Tewtrakul, S. & Chantrapromma, S. (2011). *Tetrahedron*, 67, 6838–6846.

supporting information

Acta Cryst. (2015). E71, o739-o740 [doi:10.1107/S2056989015016461]

Crystal structure of (3*S**,4*S**,4*aS**,5*R**,6*R**,6*aS**,7*R**,11*aS**,11*bR**)-5,6-bis-(benzoyloxy)-3,4a-dihydroxy-4,7,11b-trimethyl-1,2,3,4,4a,5,6,6a,7,11,11a,11bdodecahydrophenanthro[3,2-*b*]furan-4-carboxylic acid methanol monosolvate

Sadaf Siddiqui, Osayemwenre Erharuyi, Abiodun Falodun, M. Iqbal Choudhary and Sammer Yousuf

S1. Comment

Caesalpinia pulcherrima (*L*.) Swartz, commonly called peacock flower, belongs to the Caesalpiniaceae family (Patil *et al.*, 1997). Pharmacological study of the plant reveals anti-microbial (Sudhakar *et al.*, 2006), antioxidant (Pawar *et al.*, 2009), antidiabetic, anticancer, antirheumatic (Udenigwe *et al.*, 2007) and anti-tumor (Gupta *et al.*, 2000) properties. The title compound, also called pulcherrimin A, was previously isolated by Patil and co-workers (1997) from the roots of *Caesalpinia pulcherrima*. The compound is known to have anti-inflammatory (Yodsaoue *et al.*, 2011) and discriminating effect on DNA-deficient yeast mutants (Patil *et al.*, 1997). Herein we report the isolation and single-crystal X-ray diffraction studies of pulcherrimin A methanol solvate. The structure of the title compound is similar to that of previously published isovouacapenol C (Fun *et al.*, 2010) with the difference that hydroxyl and methyl groups attached at C-24 and C-11 were substituted by benzoyl (O4/O10/C25–C31) and carboxylic acid (O5/O6/C35) groups, respectively. In addition, an equatorially oriented hydroxyl group was found to be attached at C-12. All bond lengths and angles were found to be similar to that of related structure (Fun *et al.*, 2010). In the crystal packing of the title compound, molecules are linked *via* O8—H8—O2 and O10—H10—O8 hydrogen bonds (Fig. 2 and Table 1) that forms a chain structure running along the *b* axis.

S2. Experimental

Powdered *Caesalpinia pulcherrima* (*L*.) Swartz roots (2.9 kg) were soaked in methanol (7.5 *L*) at room temperature. After 7 days methanolic extract was filtered and concentrated to obtain a crude gummy material (240 g). The concentrated extract was suspended in water and partitioned into petroleum ether, chloroform and ethyl acetate soluble parts by solvent-solvent extraction. The dried chloroform extract was fractionated into six fractions (F1—F6) by column chromatography over silica gel. Fraction F6 was re-chromatographed on silica gel, eluting with dichloromethane increasing polarity with methanol. Recrystallization of the crystalline solid obtained in methanol yielded 177.6 mg of title compound.

S3. Refinement

H atoms on methyl, phenyl, methine, methylene and oxygen were positioned geometrically with C—H = 0.96 Å (CH₃), 0.93 Å (CH phenyl), 0.98 Å (CH), 0.97 Å (CH₂) and 0.84 Å (OH) and constrained to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(CH \text{ and } CH_2)$, 1.5 $U_{eq}(CH_3)$ and 1.2–1.5 $U_{eq}(OH)$. Restraints on a bond length [C—O = 1.50 (1) Å] and displacement parameters (*ISOR*) were applied for atoms C35 and O10. In the absence of significant anomalous scattering

effects, Friedel pairs have been merged.

Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. Only H atoms related to stereochemistry, of OH groups and involved in the hydrogen bonds are shown.

Figure 2

A packing diagram of the title compound viewed perpendicular to the *ab* plane. Only H atoms involved in the O—H…O hydrogen bonds are shown.

(3*S**,4*S**,4*aS**,5*R**,6*R**,6*aS**,7*R**,11*aS**,11*bR**)-5,6-Bis(benzoyloxy)-3,4a-dihydroxy-4,7,11btrimethyl-1,2,3,4,4a,5,6,6a,7,11,11a,11b-dodecahydrophenanthro[3,2-*b*]furan-4-carboxylic acid methanol monosolvate

F(000) = 1320

 $\theta = 2.3 - 24.7^{\circ}$

 $\mu = 0.10 \text{ mm}^{-1}$

Prism, colorless

 $0.45 \times 0.30 \times 0.10 \text{ mm}$

T = 293 K

 $D_{\rm x} = 1.332 \text{ Mg m}^{-3}$

Mo K α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2827 reflections

Crystal data

 $C_{34}H_{36}O_9 \cdot CH_4O$ $M_r = 620.67$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 11.7943 (6) Å b = 13.5934 (7) Å c = 19.2988 (11) Å V = 3094.1 (3) Å³ Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer	2882 reflections with $I > 2\sigma(I)$ $R_{int} = 0.049$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 1.8^{\circ}$
Graphite monochromator	$h = -14 \rightarrow 14$
ω scan	$k = -7 \rightarrow 17$
18238 measured reflections	$l = -25 \rightarrow 25$
3916 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.052$	Hydrogen site location: inferred from
$wR(F^2) = 0.139$	neighbouring sites
S = 1.03	H-atom parameters constrained
3916 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0769P)^2 + 0.1739P]$
411 parameters	where $P = (F_o^2 + 2F_c^2)/3$
13 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.30 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.4694 (2)	1.25976 (18)	0.17389 (15)	0.0559 (7)	
02	0.0387 (3)	0.72827 (18)	0.27984 (16)	0.0644 (8)	
03	0.1186 (3)	0.7991 (2)	0.36988 (16)	0.0703 (9)	
H3	0.1319	0.7403	0.3803	0.084*	
04	0.0845 (2)	0.72060 (18)	0.11387 (14)	0.0523 (7)	
05	0.18140 (19)	0.82310 (14)	0.18442 (11)	0.0379 (5)	
06	-0.0009(2)	0.9189 (2)	0.01641 (15)	0.0697 (9)	
07	0.1773 (2)	0.90679 (17)	0.05536 (11)	0.0417 (5)	
08	-0.0053 (2)	1.03030 (16)	0.20910 (12)	0.0425 (6)	
H8	0.0011	1.0840	0.2303	0.064*	
09	-0.0646 (3)	0.9195 (2)	0.41210 (14)	0.0669 (8)	
H9	-0.0195	0.9114	0.4453	0.100*	

O10	0.1596 (4)	0.6133 (3)	0.3973 (2)	0.1137 (15)
H10	0.1259	0.5658	0.3785	0.171*
C1	0.5090 (4)	1.2791 (3)	0.1087 (2)	0.0647 (12)
H1	0.5657	1.3245	0.0988	0.078*
C2	0.4571 (4)	1.2255 (3)	0.0619 (2)	0.0627 (11)
H2	0.4702	1.2262	0.0144	0.075*
C3	0.3767 (3)	1.1659 (3)	0.09769 (19)	0.0484 (9)
C4	0.3866 (3)	1.1895 (3)	0.1646 (2)	0.0462 (8)
C5	0.3261 (3)	1.1496 (3)	0.22463 (19)	0.0472 (9)
H5A	0.2985	1.2033	0.2531	0.057*
H5B	0.3778	1.1105	0.2524	0.057*
C6	0.2257 (3)	1.0853 (2)	0.20139 (16)	0.0365 (7)
H6	0.1631	1.1302	0.1904	0.044*
C7	0.2520 (3)	1.0271 (2)	0.13434 (16)	0.0388 (7)
H7	0.3137	0.9810	0.1443	0.047*
C8	0.2893 (3)	1.0936 (3)	0.07297 (18)	0.0500 (9)
H8A	0.3258	1.0512	0.0385	0.060*
C9	0 1936 (4)	1 1480 (3)	0.0365(2)	0 0759 (14)
H9A	0 2241	1 1860	-0.0010	0.114*
H9R	0.1566	1 1910	0.0689	0.114*
H9C	0 1 3 9 9	1 1013	0.0188	0.114*
C10	0.1479(3)	0.9680(2)	0 11460 (16)	0.0384(7)
H10A	0.0879	1 0137	0 1006	0.046*
C11	0.1013 (3)	0.9004(2)	0.17067 (16)	0.0359(7)
H11	0.0305	0.8710	0.1540	0.043*
C12	0.0303	0.9609 (2)	0.23601 (17)	0.015 0.0357(7)
C13	0.1838(3)	1.0178(2)	0.26167 (17)	0.0360(7)
C14	-0.1111(3)	0.8765(3)	0.2674(2)	0.0550(1)
H14A	-0.1523	0.8416	0.3025	0.083*
H14R	-0.1047	0.8360	0.2268	0.083*
H14C	-0.1507	0.9360	0.2559	0.083*
C15	0.1307	0.9300	0.28529 (19)	0.003
H15A	0.2532	0.9072	0.3220	0.0442 (0)
H15R	0.3428	0.9875	0.3017	0.000
H15C	0.3042	0.9091	0.2469	0.000
C16	0.5042 0.1502 (3)	1.0825(2)	0.2402 (16)	0.000
H16A	0.1302 (3)	1.1157	0.32402 (10)	0.051*
H16B	0.0971	1.1137	0.3087	0.051*
C17	0.0971	1.0236 (3)	0.38239 (19)	0.0518 (9)
H174	0.1506	0.9759	0.30235 (15)	0.0518 (5)
H17R	0.1500	1.0674	0.3778	0.062*
C18	-0.0080(3)	1.00/4	0.4201 0.35714 (18)	0.002
U18	-0.0606	1 0225	0.33714 (18)	0.0470 (9)
C19	0.0000	0.0010 (2)	0.3419	0.037
C_{19}	0.0002(3)	0.9019(2) 0.8022(3)	0.29772(17) 0.3134(2)	0.0400(0)
C20	0.0377(3) 0.1623(3)	0.0022(3) 0.7356(2)	0.5154(2) 0.15241(18)	0.0403 (9)
C21	0.1023(3) 0.2401(2)	0.7550(2)	0.13241(10) 0.17071(10)	0.0390 (0)
C22	0.2471(3)	0.0004(2)	0.17071(19) 0.1240(2)	0.0410(0)
023	0.2073 (3)	0.3849 (3)	0.1240 (2)	0.0312 (9)

H23	0.2303	0.5844	0.0815	0.061*
C24	0.3419 (4)	0.5101 (3)	0.1413 (3)	0.0645 (12)
H24	0.3564	0.4601	0.1096	0.077*
C25	0.3941 (3)	0.5091 (3)	0.2045 (3)	0.0631 (12)
H25	0.4421	0.4574	0.2161	0.076*
C26	0.3761 (3)	0.5835 (3)	0.2506 (2)	0.0614 (11)
H26	0.4118	0.5823	0.2936	0.074*
C27	0.3049 (3)	0.6606 (3)	0.2337 (2)	0.0522 (9)
H27	0.2946	0.7124	0.2645	0.063*
C28	0.0917 (3)	0.8830 (3)	0.01251 (19)	0.0468 (9)
C29	0.1236 (3)	0.8057 (3)	-0.03808 (17)	0.0450 (8)
C30	0.0424 (4)	0.7756 (3)	-0.0852 (2)	0.0634 (11)
H30	-0.0287	0.8053	-0.0856	0.076*
C31	0.0671 (5)	0.7011 (4)	-0.1319 (2)	0.0719 (13)
H31	0.0128	0.6809	-0.1637	0.086*
C32	0.1714 (5)	0.6575 (3)	-0.1309 (2)	0.0728 (13)
H32	0.1872	0.6067	-0.1618	0.087*
C33	0.2524 (4)	0.6874 (3)	-0.0856 (2)	0.0621 (11)
H33	0.3235	0.6579	-0.0860	0.075*
C34	0.2286 (4)	0.7623 (3)	-0.03847 (19)	0.0515 (9)
H34	0.2839	0.7828	-0.0073	0.062*
C35	0.2242 (6)	0.5792 (4)	0.4516 (3)	0.1029 (19)
H35A	0.2113	0.6195	0.4917	0.154*
H35B	0.3030	0.5818	0.4392	0.154*
H35C	0.2034	0.5125	0.4619	0.154*

Atomic displacement parameters (\mathring{A}^2)

	I 711	1722	1733	1712	1713	1723
	0	022	033	0.2	0.5	025
01	0.0554 (16)	0.0453 (14)	0.0669 (17)	-0.0164 (13)	0.0011 (14)	0.0026 (13)
O2	0.084 (2)	0.0307 (12)	0.0785 (19)	-0.0077 (14)	0.0104 (17)	-0.0003 (14)
03	0.090 (2)	0.0456 (15)	0.0753 (19)	0.0088 (17)	-0.0095 (19)	0.0116 (15)
O4	0.0555 (15)	0.0359 (12)	0.0656 (16)	-0.0013 (13)	-0.0091 (14)	-0.0074 (12)
05	0.0385 (12)	0.0261 (10)	0.0492 (12)	0.0024 (10)	-0.0027 (11)	-0.0016 (10)
O6	0.0553 (17)	0.084 (2)	0.0696 (17)	0.0195 (17)	-0.0182 (15)	-0.0230 (17)
O7	0.0440 (13)	0.0402 (12)	0.0410 (12)	0.0004 (11)	-0.0022 (11)	-0.0055 (11)
08	0.0436 (13)	0.0292 (10)	0.0548 (14)	0.0070 (11)	-0.0053 (12)	-0.0012 (11)
09	0.081 (2)	0.0635 (17)	0.0566 (16)	-0.0089 (18)	0.0196 (15)	0.0086 (15)
O10	0.147 (4)	0.074 (2)	0.120 (3)	-0.002 (3)	-0.062 (3)	0.018 (2)
C1	0.068 (3)	0.054 (2)	0.072 (3)	-0.023 (2)	0.014 (2)	0.006 (2)
C2	0.075 (3)	0.056 (2)	0.057 (2)	-0.018 (2)	0.018 (2)	0.004 (2)
C3	0.054 (2)	0.0383 (18)	0.053 (2)	-0.0049 (17)	0.0055 (19)	0.0056 (17)
C4	0.046 (2)	0.0353 (16)	0.058 (2)	-0.0065 (16)	-0.0005 (18)	0.0031 (17)
C5	0.049 (2)	0.0464 (18)	0.0461 (18)	-0.0091 (18)	-0.0019 (18)	-0.0021 (16)
C6	0.0391 (18)	0.0305 (15)	0.0399 (16)	-0.0005 (14)	-0.0025 (14)	0.0011 (14)
C7	0.0417 (18)	0.0329 (16)	0.0417 (16)	0.0000 (16)	-0.0030 (15)	-0.0014 (14)
C8	0.060 (2)	0.048 (2)	0.0418 (18)	-0.0085 (19)	0.0044 (17)	-0.0004 (17)
C9	0.093 (3)	0.070 (3)	0.065 (3)	-0.022 (3)	-0.025 (3)	0.032 (2)

C10	0.0430 (19)	0.0321 (15)	0.0400 (16)	0.0040 (15)	-0.0039 (15)	-0.0040 (14)
C11	0.0362 (17)	0.0284 (14)	0.0431 (16)	0.0024 (14)	-0.0018 (15)	-0.0003 (14)
C12	0.0396 (18)	0.0239 (13)	0.0434 (17)	0.0046 (13)	-0.0014 (15)	0.0018 (14)
C13	0.0382 (17)	0.0290 (14)	0.0408 (16)	0.0014 (14)	-0.0027 (15)	0.0016 (14)
C14	0.044 (2)	0.055 (2)	0.067 (2)	-0.0051 (19)	0.009 (2)	0.000 (2)
C15	0.045 (2)	0.0386 (17)	0.0490 (18)	0.0030 (16)	-0.0116 (17)	0.0031 (15)
C16	0.053 (2)	0.0359 (16)	0.0389 (16)	-0.0019 (16)	-0.0009 (16)	-0.0022 (15)
C17	0.065 (2)	0.048 (2)	0.0420 (18)	-0.001 (2)	0.0019 (19)	-0.0015 (17)
C18	0.056 (2)	0.0403 (18)	0.0460 (19)	0.0056 (18)	0.0126 (18)	0.0049 (16)
C19	0.0431 (19)	0.0310 (15)	0.0484 (18)	-0.0010 (16)	0.0049 (16)	0.0001 (15)
C20	0.050 (2)	0.0416 (19)	0.053 (2)	-0.0004 (17)	0.0092 (19)	0.0083 (18)
C21	0.044 (2)	0.0291 (15)	0.0461 (18)	-0.0032 (15)	0.0049 (17)	-0.0020 (14)
C22	0.0390 (18)	0.0289 (15)	0.058 (2)	-0.0018 (15)	0.0099 (17)	-0.0001 (15)
C23	0.054 (2)	0.0381 (18)	0.062 (2)	0.0010 (18)	0.011 (2)	-0.0062 (18)
C24	0.058 (3)	0.044 (2)	0.092 (3)	0.010 (2)	0.017 (3)	-0.011 (2)
C25	0.043 (2)	0.0403 (19)	0.106 (4)	0.0108 (18)	0.009 (2)	0.007 (2)
C26	0.049 (2)	0.050 (2)	0.085 (3)	0.0040 (19)	-0.007 (2)	0.007 (2)
C27	0.050(2)	0.0388 (18)	0.067 (2)	0.0048 (18)	0.001 (2)	-0.0040 (18)
C28	0.047 (2)	0.0454 (19)	0.0482 (19)	0.0047 (18)	-0.0029 (18)	-0.0011 (17)
C29	0.054 (2)	0.0417 (18)	0.0396 (17)	-0.0030 (17)	0.0006 (17)	-0.0022 (16)
C30	0.058 (3)	0.068 (3)	0.064 (2)	-0.005 (2)	-0.007 (2)	-0.010 (2)
C31	0.081 (3)	0.078 (3)	0.057 (2)	-0.009 (3)	-0.013 (2)	-0.022 (2)
C32	0.100 (4)	0.056 (2)	0.062 (3)	0.001 (3)	0.012 (3)	-0.021 (2)
C33	0.073 (3)	0.056 (2)	0.057 (2)	0.007 (2)	0.009 (2)	-0.005 (2)
C34	0.057 (2)	0.049 (2)	0.0490 (19)	-0.0029 (19)	-0.0032 (19)	-0.0026 (17)
C35	0.131 (5)	0.071 (3)	0.106 (4)	0.001 (3)	-0.021 (4)	0.009 (3)

Geometric parameters (Å, °)

01—C1	1.367 (5)	C13—C16	1.542 (4)
O1—C4	1.377 (4)	C14—C19	1.540 (5)
O2—C20	1.216 (5)	C14—H14A	0.9600
O3—C20	1.306 (5)	C14—H14B	0.9600
O3—H3	0.8400	C14—H14C	0.9600
O4—C21	1.198 (4)	C15—H15A	0.9600
O5—C21	1.359 (4)	C15—H15B	0.9600
O5—C11	1.438 (4)	C15—H15C	0.9600
O6—C28	1.199 (4)	C16—C17	1.521 (5)
O7—C28	1.345 (4)	C16—H16A	0.9700
O7—C10	1.456 (4)	C16—H16B	0.9700
O8—C12	1.439 (4)	C17—C18	1.505 (6)
O8—H8	0.8400	C17—H17A	0.9700
O9—C18	1.435 (4)	C17—H17B	0.9700
О9—Н9	0.8400	C18—C19	1.544 (5)
O10—C35	1.376 (6)	C18—H18	0.9800
O10—H10	0.8400	C19—C20	1.521 (5)
C1—C2	1.313 (6)	C21—C22	1.489 (5)
C1—H1	0.9300	C22—C27	1.382 (6)

C2—C3	1.425 (5)	C22—C23	1.384 (5)
С2—Н2	0.9300	C23—C24	1.383 (6)
C3—C4	1.335 (5)	C23—H23	0.9300
C3—C8	1.502 (5)	C24—C25	1.368 (7)
C4—C5	1.465 (5)	C24—H24	0.9300
C5—C6	1.539 (5)	C25—C26	1.364 (6)
C5—H5A	0.9700	C25—H25	0.9300
C5—H5B	0.9700	C26—C27	1.383 (5)
C6—C7	1.548 (4)	C26—H26	0.9300
C6-C13	1 562 (4)	C27—H27	0.9300
С6—Н6	0.9800	$C_{28} - C_{29}$	1 483 (5)
C7-C10	1 515 (5)	C^{29} C^{34}	1.372(5)
C7-C8	1.513 (5)	C_{29} C_{30}	1.372(5)
C7—H7	0.9800	C_{30} C_{31}	1 386 (6)
C_{8}	1 521 (6)	C30—H30	0.9300
C8—H8A	0.9800	$C_{31} - C_{32}$	1 366 (7)
	0.9600	C31_H31	0.9300
C9H9B	0.9600	C_{32}	1 357 (6)
C9H9C	0.9600	C32—C33	0.9300
	1 522 (5)	C_{32} C_{34}	1 303 (5)
C10 H10A	0.0800	C33 H33	0.9300
C_{11} C_{12}	1 536 (4)	C34 H34	0.9300
C11 H11	0.0800	$C_{35} H_{35}$	0.9500
C_{12} C_{13}	1 571 (5)	C35 H35R	0.9600
$C_{12} = C_{13}$	1.571 (5)	C35_H35C	0.9000
C_{12} C_{15} C_{15}	1.590(5) 1 541(4)	635—11556	0.9000
015-015	1.341 (4)		
C1—O1—C4	104.8 (3)	C13—C15—H15B	109.5
С20—О3—Н3	109.5	H15A—C15—H15B	109.5
C21—O5—C11	116.5 (2)	C13—C15—H15C	109.5
C28—O7—C10	116.2 (3)	H15A—C15—H15C	109.5
С12—О8—Н8	109.5	H15B—C15—H15C	109.5
С18—О9—Н9	109.5	C17—C16—C13	112.6 (3)
С35—О10—Н10	109.5	C17—C16—H16A	109.1
C2-C1-O1	111.5 (4)	C13—C16—H16A	109.1
C2—C1—H1	124.2	C17—C16—H16B	109.1
O1—C1—H1	124.2	C13—C16—H16B	109.1
C1—C2—C3	107.0 (4)	H16A—C16—H16B	107.8
C1—C2—H2	126.5	C18—C17—C16	110.6 (3)
С3—С2—Н2	126.5	C18—C17—H17A	109.5
C4—C3—C2	105.9 (4)	C16—C17—H17A	109.5
C4—C3—C8	121.6 (3)	C18—C17—H17B	109.5
C2—C3—C8	132.4 (4)	C16—C17—H17B	109.5
C3—C4—O1	110.8 (3)	H17A—C17—H17B	108.1
C3—C4—C5	129.3 (3)	O9—C18—C17	111.9 (3)
O1—C4—C5	119.9 (3)	O9—C18—C19	109.9 (3)
C4—C5—C6	110.8 (3)	C17—C18—C19	116.2 (3)
С4—С5—Н5А	109.5	O9—C18—H18	106.1

С6—С5—Н5А	109.5	C17—C18—H18	106.1
С4—С5—Н5В	109.5	C19—C18—H18	106.1
С6—С5—Н5В	109.5	C20-C19-C14	103.4 (3)
H5A—C5—H5B	108.1	C20-C19-C18	113.7 (3)
C5—C6—C7	112.3 (3)	C14—C19—C18	106.8 (3)
C5—C6—C13	111.1 (3)	C20—C19—C12	115.3 (3)
C7—C6—C13	112.7 (2)	C14—C19—C12	109.2 (3)
C5—C6—H6	106.8	C18 - C19 - C12	108.0(3)
C7—C6—H6	106.8	02-C20-03	121.3(4)
C_{13} C_{6} H_{6}	106.8	02 - C20 - C19	121.5(1) 122.5(4)
C_{10} C_{7} C_{6}	108.6 (3)	$O_2 C_{20} C_{10}$	122.3(4)
$C_{10} = C_{7} = C_{8}$	100.0(3)	03 - 020 - 019	110.1(3) 123 0(3)
$C_{10} = C_{10} = C_{10}$	110.3(3)	04 - 021 - 03	123.9(3)
$C_{0} - C_{0} - C_{0}$	113.3 (3)	04-021-022	123.8(3)
	108.2	03-021-022	112.2(3)
	108.2	$C_2 / - C_{22} - C_{23}$	120.0 (3)
C8—C/—H/	108.2	$C_2/-C_{22}-C_{21}$	122.3 (3)
C3—C8—C9	109.8 (3)	C23—C22—C21	117.5 (3)
C3—C8—C7	109.4 (3)	C24—C23—C22	119.2 (4)
C9—C8—C7	115.2 (3)	С24—С23—Н23	120.4
С3—С8—Н8А	107.4	С22—С23—Н23	120.4
С9—С8—Н8А	107.4	C25—C24—C23	120.6 (4)
С7—С8—Н8А	107.4	C25—C24—H24	119.7
С8—С9—Н9А	109.5	C23—C24—H24	119.7
С8—С9—Н9В	109.5	C26—C25—C24	120.3 (4)
H9A—C9—H9B	109.5	С26—С25—Н25	119.8
С8—С9—Н9С	109.5	C24—C25—H25	119.8
Н9А—С9—Н9С	109.5	C25—C26—C27	120.2 (4)
Н9В—С9—Н9С	109.5	С25—С26—Н26	119.9
07—C10—C7	107.9 (3)	C27—C26—H26	119.9
07-010-011	107.5 (2)	C_{22} C_{27} C_{26}	119.7 (4)
C7-C10-C11	1157(3)	C^{22} C^{27} H^{27}	120.1
07-C10-H10A	108 5	$C_{26} = C_{27} = H_{27}$	120.1
C7-C10-H10A	108.5	$06-C^{28}-07$	123.2(3)
C_{11} C_{10} H_{10A}	108.5	$06 \ C28 \ C29$	123.2(3) 124.1(4)
O_{5} C_{11} C_{10}	100.5	00-028-029	124.1(4)
05 C11 C12	109.5(3)	$C_{20} = C_{20} = C_{20}$	112.0(3)
$C_{10} = C_{11} = C_{12}$	111.7(2) 100 4 (2)	$C_{24} = C_{29} = C_{30}$	119.0(3)
	109.4 (2)	$C_{34} = C_{29} = C_{28}$	122.3(3)
	108.7	$C_{30} = C_{29} = C_{28}$	117.8 (4)
	108.7	$C_{29} = C_{30} = C_{31}$	119.8 (4)
C12—C11—H11	108.7	С29—С30—Н30	120.1
08-012-011	100.7 (2)	С31—С30—Н30	120.1
08—C12—C13	109.3 (2)	C32—C31—C30	119.9 (4)
C11—C12—C13	111.3 (3)	C32—C31—H31	120.1
O8—C12—C19	104.7 (3)	C30—C31—H31	120.1
C11—C12—C19	114.1 (2)	C33—C32—C31	120.8 (4)
C13—C12—C19	115.4 (3)	С33—С32—Н32	119.6
C15—C13—C16	107.8 (3)	C31—C32—H32	119.6
C15—C13—C6	110.1 (3)	C32—C33—C34	119.9 (4)

C16—C13—C6	109.1 (2)	С32—С33—Н33	120.1
C15—C13—C12	113.1 (2)	С34—С33—Н33	120.1
C16—C13—C12	108.5 (3)	C29—C34—C33	120.0 (4)
C6-C13-C12	108.1 (3)	С29—С34—Н34	120.0
C19—C14—H14A	109.5	C33—C34—H34	120.0
C19—C14—H14B	109.5	010-035-H35A	109 5
H_{14A} $-C_{14}$ $-H_{14B}$	109.5	$010 - C_{35} - H_{35B}$	109.5
C19 - C14 - H14C	109.5	$H_{35A} - C_{35} - H_{35B}$	109.5
H_{14A} $-C_{14}$ H_{14C}	109.5	010-035-H350	109.5
	109.5	$H_{25A} = C_{25} = H_{25C}$	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5	$H_{25} = C_{25} = H_{25} C_{25}$	109.5
С13—С13—ПІЗА	109.5	пээв—сээ—пээс	109.5
C4 01 C1 C2	$0 \in (\mathcal{E})$		57.9 (2)
C4 = 01 = C1 = C2	-0.5(5)	C11 - C12 - C13 - C6	57.8(3)
01-01-02-03	0.1 (5)	019-012-013-06	-1/0.1(2)
C1 - C2 - C3 - C4	0.4 (5)	C15—C13—C16—C17	-66.6 (4)
C1—C2—C3—C8	1/6.8 (4)	C6—C13—C16—C17	173.9 (3)
C2—C3—C4—O1	-0.8(4)	C12—C13—C16—C17	56.3 (4)
C8—C3—C4—O1	-177.6 (3)	C13—C16—C17—C18	-58.8 (4)
C2—C3—C4—C5	-178.7 (4)	C16—C17—C18—O9	-176.5 (3)
C8—C3—C4—C5	4.4 (6)	C16—C17—C18—C19	56.3 (4)
C1—O1—C4—C3	0.8 (4)	O9—C18—C19—C20	-48.5 (4)
C1C4C5	179.0 (4)	C17—C18—C19—C20	79.8 (4)
C3—C4—C5—C6	-11.2 (6)	O9—C18—C19—C14	64.9 (4)
O1—C4—C5—C6	171.0 (3)	C17—C18—C19—C14	-166.8 (3)
C4—C5—C6—C7	35.5 (4)	O9-C18-C19-C12	-177.7 (3)
C4—C5—C6—C13	162.8 (3)	C17—C18—C19—C12	-49.5 (4)
C5—C6—C7—C10	-178.8(3)	O8—C12—C19—C20	159.2 (3)
C13—C6—C7—C10	54.8 (3)	C11—C12—C19—C20	50.1 (4)
C5—C6—C7—C8	-55.9 (4)	C13—C12—C19—C20	-80.7(4)
C13—C6—C7—C8	177.8 (3)	08-C12-C19-C14	43.3 (3)
C4-C3-C8-C9	105.7(4)	$C_{11} - C_{12} - C_{19} - C_{14}$	-65.8(3)
$C_{2} - C_{3} - C_{8} - C_{9}$	-70.2(5)	C_{13} C_{12} C_{19} C_{14}	163.4(3)
$C_{4} = C_{3} = C_{8} = C_{7}^{7}$	-21.6(5)	08-C12-C19-C18	-725(3)
$C_1 C_2 C_3 C_8 C_7$	162.5(4)	C_{11} C_{12} C_{19} C_{18}	178.4(3)
$C_2 - C_3 - C_6 - C_7$	162.3(4)	$C_{12} = C_{12} = C_{13} = C_{13}$	178.4(3)
$C_{10} = C_{7} = C_{8} = C_{3}$	108.7(3)	$C_{13} = C_{12} = C_{13} = C_{13}$	36 5 (5)
$C_0 - C_7 - C_8 - C_3$	40.7(4)	C14 - C19 - C20 - O2	30.3(3)
$C_{10} - C_{7} - C_{8} - C_{9}$	44.4 (4)	$C_{10} = C_{10} = C_{20} = O_2$	131.9(4)
$C_{0}^{2} = C_{1}^{2} = C_{1}^{2}$	-77.3(4)	C12 - C19 - C20 - O2	-82.0(4)
$C_{28} = 07 = C_{10} = C_{11}$	-152.1(3)	C14 - C19 - C20 - O3	-140.7(3)
	82.5 (3)	C18 - C19 - C20 - O3	-25.3 (5)
C6-C/-C10-0/	-1/4.8(2)	C12—C19—C20—O3	100.1 (4)
C8—C7—C10—O7	60.5 (3)	C11—O5—C21—O4	0.7 (5)
C6-C7-C10-C11	-54.4 (4)	C11—O5—C21—C22	-179.3 (3)
C8—C7—C10—C11	-179.2 (3)	O4—C21—C22—C27	-150.8 (4)
C21—O5—C11—C10	-97.8 (3)	O5—C21—C22—C27	29.2 (5)
C21—O5—C11—C12	140.8 (3)	O4—C21—C22—C23	24.9 (5)
O7—C10—C11—O5	53.9 (3)	O5—C21—C22—C23	-155.1 (3)
C7—C10—C11—O5	-66.7 (3)	C27—C22—C23—C24	0.1 (6)

07 C10 C11 C12	17(((2))	C21 C22 C22 C24	1757(2)
	1/0.0(2)	121 - 122 - 123 - 124	-1/3.7(3)
C/C10C11C12	56.0 (4)	C22—C23—C24—C25	1.9 (6)
O5—C11—C12—O8	-179.3 (2)	C23—C24—C25—C26	-2.0 (7)
C10-C11-C12-O8	59.3 (3)	C24—C25—C26—C27	-0.1 (6)
O5—C11—C12—C13	65.0 (3)	C23—C22—C27—C26	-2.1 (6)
C10-C11-C12-C13	-56.4 (3)	C21—C22—C27—C26	173.4 (3)
O5-C11-C12-C19	-67.7 (3)	C25—C26—C27—C22	2.1 (6)
C10-C11-C12-C19	170.8 (3)	C10—O7—C28—O6	9.3 (5)
C5—C6—C13—C15	-60.4 (3)	C10—O7—C28—C29	-168.8 (3)
C7—C6—C13—C15	66.6 (3)	O6—C28—C29—C34	-176.1 (4)
C5—C6—C13—C16	57.7 (4)	O7—C28—C29—C34	1.9 (5)
C7—C6—C13—C16	-175.3 (3)	O6—C28—C29—C30	2.3 (6)
C5—C6—C13—C12	175.5 (3)	O7—C28—C29—C30	-179.6 (3)
C7—C6—C13—C12	-57.4 (3)	C34—C29—C30—C31	0.7 (6)
O8—C12—C13—C15	-174.7 (3)	C28—C29—C30—C31	-177.7 (4)
C11—C12—C13—C15	-64.4 (4)	C29—C30—C31—C32	0.3 (7)
C19—C12—C13—C15	67.7 (4)	C30—C31—C32—C33	-1.2 (8)
O8—C12—C13—C16	65.8 (3)	C31—C32—C33—C34	1.1 (7)
C11—C12—C13—C16	176.0 (2)	C30—C29—C34—C33	-0.8 (6)
C19—C12—C13—C16	-51.9 (3)	C28—C29—C34—C33	177.6 (3)
O8—C12—C13—C6	-52.5 (3)	C32—C33—C34—C29	-0.1 (6)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	D—H··· A
O3—H3…O10	0.84	1.79	2.626 (5)	177
O8—H8····O2 ⁱ	0.84	2.03	2.728 (3)	141
O10—H10…O8 ⁱⁱ	0.84	2.26	2.967 (4)	142
C15—H15A····O3	0.96	2.35	3.231 (5)	152

Symmetry codes: (i) -x, y+1/2, -z+1/2; (ii) -x, y-1/2, -z+1/2.