CRYSTALLOGRAPHIC COMMUNICATIONS

Crystal structure of tetrakis(1-oxidopyr-idin-2-yl)methane methanol tetrasolvate

Kannami ${ }^{\text {b }}$ and Masaji Oda ${ }^{\text {b }}$
${ }^{\text {a }}$ Institute of Natural Sciences, Senshu University, Higashimita 2-1-1, Kawasaki, Kanagawa 214-8580, Japan, and ${ }^{\text {b }}$ Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan. *Correspondence
e-mail: matsumoto@isc.senshu-u.ac.jp

Received 31 August 2015; accepted 9 September 2015

Edited by H. Ishida, Okayama University, Japan

The asymmetric unit of the title compound, $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{4}$-$4 \mathrm{CH}_{3} \mathrm{OH}$, consists of a quarter molecule of tetrakis(1-oxidopyridin-2-yl)methane and one methanol solvent molecule. In the crystal, the pyridine N-oxide derivative is located about a fourfold rotoinversion axis and exhibits S_{4} symmetry along the c axis. An intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond is observed between the O atom of the pyridine N-oxide and the OH group of the methanol. An intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ bond is also observed between adjacent pyridine N -oxide rings.

Keywords: crystal structure; pyridine N-oxide; $S 4$ symmetry; hydrogen bonding.

CCDC reference: 1423138

1. Related literature

For aspects of pyridine N-oxides, see: Katritzky \& Lagowski (1971). For reviews of metal complexes of pyridine N-oxides, see: Orchin \& Schmidt (1968); Carlin \& De Jongh (1986). For the synthesis of the title compound, see: Matsumoto et al. (2003). For coordination polymers of pyridine N-oxides, see: Henkelis et al. (2012). For structures of related molecules, see: Betz et al. (2011); Matsumoto et al. (2014). For the effect of the formation of hydrogen bonds on the $\mathrm{N}-\mathrm{O}$ bond length of pyridine N-oxides, see: Eichhorn (1987).

2. Experimental

2.1. Crystal data
$\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{4} \cdot 4 \mathrm{CH}_{4} \mathrm{O}$
$M_{r}=516.54$
$Z=4$
Tetragonal, $I 4_{1} / a$
$a=14.4474$ (4) £
Mo $K \alpha$ radiation
$\mu=0.10 \mathrm{~mm}^{-1}$
$c=12.2965(5) \AA$
$0.2 \times 0.2 \times 0.1 \mathrm{~mm}$
$V=2566.62(18) \AA^{3}$

2.2. Data collection

Rigaku R-AXIS RAPID
diffractometer
12321 measured reflections
1470 independent reflections 1289 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.031$

2.3. Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$	86 parameters
$w R\left(F^{2}\right)=0.138$	H -atom parameters constrained
$S=1.07$	$\Delta \rho_{\max }=0.40 \mathrm{e} \AA^{-3}$
1470 reflections	$\Delta \rho_{\min }=-0.25 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O2-H5 $\cdots \mathrm{O} 1$	0.84	1.90	$2.7285(15)$	169
${\text { C } 4-\mathrm{H} 2 \cdots 1^{\mathrm{i}}}^{\mathrm{H}}$	0.95	2.37	$3.290(2)$	163

Symmetry code: (i) $x-\frac{1}{2}, y,-z+\frac{3}{2}$.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Yadokari-XG 2009 (Wakita, 2001) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Yadokari-XG 2009 and publCIF (Westrip, 2010).

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (No. 24550049) from the Japan Society for the Promotion of Science.

[^0]
References

Betz, R., Gerber, T. \& Schalekamp, H. (2011). Z. Kristallogr. New Cryst. Struct. 226, 603-604.
Carlin, R. L. \& De Jongh, L. J. (1986). Chem. Rev. 86, 659-680.
Eichhorn, K. (1987). Acta Cryst. B43, 111-112.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Henkelis, J. J., Barnett, S. A., Harding, L. P. \& Hardie, M. J. (2012). Inorg. Chem. 51, 10657-10674.
Katritzky, A. R. \& Lagowski, J. M. (1971). In Chemistry of the Heterocyclic N -Oxides. New York: Academic Press.

Matsumoto, K., Kannami, M., Fuyuhiro, A. \& Oda, M. (2014). Acta Cryst. E70, o1277-o1278.
Matsumoto, K., Kannami, M. \& Oda, M. (2003). Tetrahedron Lett. 44, 28612864.

Orchin, M. \& Schmidt, P. J. (1968). Coord. Chem. Rev. 3, 345-373.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Wakita, K. (2001). Yadokari-XG. http://www.hat.hi-ho.ne.jp/k-wakita/yadokari.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2015). E71, o754-o755 [doi:10.1107/S2056989015016862]

Crystal structure of tetrakis(1-oxidopyridin-2-yl)methane methanol tetrasolvate

Kouzou Matsumoto, Kazuaki Kawashita, Masaki Kannami and Masaji Oda

S1. Comment

Pyridine N-oxides are one of the most common heterocyclic N-oxides and their physical and chemical properties are studied in detail (Katritzky \& Lagowski, 1971). Pyridine N-oxides are the important compounds not only as the precursors of the substituted pyridine derivatives but also as the ligand molecules for the metal complexes (Orchin \& Schmidt, 1968; Carlin \& De Jongh, 1986). Recently, the bridging ligands containing more than two pyridine N-oxide groups were explored (Henkelis et al., 2012). In the course of our investigation of tetrakis(pyridin-2-yl)methane (Matsumoto et al., 2003), we are interested in the corresponding N-oxides as the bridging ligand and now we report the crystal structure of the title compound (Fig. 1). The bond lengths and angles of pyridine rings are similar to those of 2methylpyridine N-oxide (Betz et al., 2011). The $\mathrm{C} 1 — \mathrm{C} 2$ bond length $[1.5472(11) \AA$] is similar to that of tetrakis-(pyridin-2-yl)methane [1.545 (2) \AA] (Matsumoto et al., 2014) and the prominent $\mathrm{C} 1-\mathrm{C} 2$ bond elongation by N-oxidation is not observed. The $\mathrm{N} — \mathrm{O}$ bond length $[1.3174(14) \AA$] is also normal value in considering the formation of hydrogen bond with methanol molecule (Eichhorn, 1987). The interatomic distance of hydrogen bond is O1 $\cdots \mathrm{H} 5=1.90 \AA[\mathrm{O} 1 \cdots \mathrm{O} 2$ $=2.7285(15) \AA]$. An intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ bond is also observed between the adjacent pyridine N-oxide rings $[\mathrm{C} 4 \cdots \mathrm{H} 2=2.37 \AA, \mathrm{O} 1 \cdots \mathrm{O} 2=3.290$ (2) \AA; Table 1].

S2. Experimental

To a solution of tetrakis(pyridin-2-yl)methane ($100 \mathrm{mg}, 0.3 \mathrm{mmol}$) in acetic acid (4.5 mL) was added 30% aqueous solution of hydrogen peroxide (66 mmol). The mixture was heated to $90^{\circ} \mathrm{C}$ for 2.5 hours. After cooling to room temperature, acetone (20 mL) was added. When the mixture was stirred a few minutes, white precipitates appeared. Collection of the precipitate by filtration gave the title compound ($120 \mathrm{mg}, 46 \%$) as colourless solid. The single crystals were prepared by slow evaporation of a solution of the title compound in methanol. The obtained single crystals were highly efflorescent and the exposure of the crystal to the air should be avoided.

S3. Refinement

H atoms were positioned geometrically and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic H atoms, with $\mathrm{C}-\mathrm{H}=0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms, and with $\mathrm{O}-\mathrm{H}=0.84$ \AA and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$ for hydroxyl H atoms.

Figure 1
ORTEP drawing of the title compound (viewed along the b axis). Displacement ellipsoids are drawn at the 50% probability level. The hydrogen bonds are shown in the dashed lines. [Symmetry codes: (i) $-x, 1 / 2-y, z$; (ii) $-1 / 4+y, 1 / 4-$ $x, 5 / 4-z$; (iii) $1 / 4-y, 1 / 4+x, 5 / 4-z$.]

Tetrakis(1-oxidopyridin-2-yl)methane methanol tetrasolvate

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{4} \cdot 4 \mathrm{CH}_{4} \mathrm{O} \\
& M_{r}=516.54 \\
& \text { Tetragonal, } I 4_{1} / a \\
& a=14.4474(4) \AA \\
& c=12.2965(5) \AA \\
& V=2566.62(18) \AA^{3} \\
& Z=4 \\
& F(000)=1096
\end{aligned}
$$

Data collection

Rigaku R-AXIS RAPID
diffractometer
Detector resolution: 10.00 pixels mm^{-1}
ω scans
12321 measured reflections
1470 independent reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.138$
$S=1.07$
1470 reflections
86 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& 1289 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.031 \\
& \theta_{\max }=27.4^{\circ}, \theta_{\min }=3.6^{\circ} \\
& h=-18 \rightarrow 18 \\
& k=-18 \rightarrow 18 \\
& l=-15 \rightarrow 15
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement was performed using all reflections. The weighted R-factor $(w R)$ and goodness of fit (S) are based on F^{2}. R-factor (gt) are based on F. The threshold expression of $F^{2}>2.0 \sigma\left(F^{2}\right)$ is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	0.0000	0.2500	0.6250	$0.0172(5)$
C2	$-0.06345(8)$	$0.18960(8)$	$0.69738(9)$	$0.0181(3)$
C3	$-0.15822(8)$	$0.17917(8)$	$0.68249(10)$	$0.0218(3)$
H1	-0.1873	0.2091	0.6228	0.026^{*}
C4	$-0.21147(9)$	$0.12608(9)$	$0.75266(11)$	$0.0263(3)$
H2	-0.2762	0.1198	0.7416	0.032^{*}
C5	$-0.16814(10)$	$0.08235(10)$	$0.83934(12)$	$0.0299(4)$
H3	-0.2030	0.0458	0.8887	0.036^{*}
C6	$-0.07458(9)$	$0.09250(10)$	$0.85293(11)$	$0.0276(3)$
H4	-0.0449	0.0623	0.9120	0.033^{*}
C7	$0.14412(17)$	$0.16009(17)$	$1.05514(18)$	$0.0626(6)$
H6	0.0822	0.1835	1.0727	0.094^{*}
H7	0.1792	0.2082	1.0169	0.094^{*}
H8	0.1764	0.1433	1.1224	0.094^{*}
N1	$-0.02328(7)$	$0.14510(7)$	$0.78324(8)$	$0.0211(3)$
O1	$0.06661(6)$	$0.15169(7)$	$0.79946(8)$	$0.0279(3)$
O2	$0.13633(12)$	$0.08248(11)$	$0.98897(12)$	$0.0639(5)$
H5	0.1193	0.0987	0.9265	0.096^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0179(7)$	$0.0179(7)$	$0.0159(10)$	0.000	0.000	0.000
C2	$0.0194(6)$	$0.0181(5)$	$0.0167(6)$	$0.0004(4)$	$0.0014(4)$	$0.0005(4)$
C3	$0.0202(6)$	$0.0224(6)$	$0.0230(6)$	$0.0003(4)$	$-0.0006(4)$	$-0.0001(5)$
C4	$0.0195(6)$	$0.0286(7)$	$0.0308(7)$	$-0.0018(5)$	$0.0037(5)$	$-0.0003(5)$
C5	$0.0275(7)$	$0.0321(7)$	$0.0300(7)$	$-0.0014(5)$	$0.0095(5)$	$0.0067(5)$
C6	$0.0287(7)$	$0.0315(7)$	$0.0225(6)$	$0.0021(5)$	$0.0039(5)$	$0.0091(5)$
C7	$0.0630(13)$	$0.0783(15)$	$0.0464(11)$	$-0.0129(11)$	$-0.0033(9)$	$-0.0051(10)$
N1	$0.0194(5)$	$0.0251(5)$	$0.0186(5)$	$0.0015(4)$	$0.0009(4)$	$0.0029(4)$
O1	$0.0183(5)$	$0.0382(6)$	$0.0271(5)$	$0.0004(4)$	$-0.0033(3)$	$0.0090(4)$
O2	$0.0954(12)$	$0.0553(9)$	$0.0411(8)$	$0.0033(7)$	$-0.0273(7)$	$0.0119(6)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{C} 1-\mathrm{C} 2$	1.5472 (11)	C5-C6	1.3698 (19)
$\mathrm{C} 1-\mathrm{C} 2{ }^{\text {i }}$	1.5472 (11)	C5-H3	0.9500
$\mathrm{C} 1-\mathrm{C} 2^{\text {ii }}$	1.5472 (11)	C6-N1	1.3643 (16)
$\mathrm{C} 1-\mathrm{C} 2{ }^{\text {iii }}$	1.5472 (11)	C6-H4	0.9500
C2-N1	1.3656 (16)	C7-O2	1.390 (3)
C2-C3	1.3895 (16)	C7-H6	0.9800
C3-C4	1.3874 (18)	C7-H7	0.9800
C3-H1	0.9500	C7-H8	0.9800
C4-C5	1.3881 (19)	N1-O1	1.3174 (14)
C4-H2	0.9500	O2-H5	0.8400
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 2{ }^{\text {i }}$	109.77 (9)	C6-C5-H3	120.3
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 2{ }^{\text {ii }}$	109.32 (4)	C4-C5-H3	120.3
$\mathrm{C} 2 \mathrm{i}-\mathrm{C} 1-\mathrm{C} 2{ }^{\text {ii }}$	109.32 (4)	N1-C6-C5	121.26 (12)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 2{ }^{\text {iii }}$	109.32 (4)	N1-C6-H4	119.4
$\mathrm{C} 2 \mathrm{i}-\mathrm{C} 1-\mathrm{C} 2{ }^{\text {iii }}$	109.32 (4)	C5-C6-H4	119.4
$\mathrm{C} 2 \mathrm{ii}-\mathrm{C} 1-\mathrm{C} 2{ }^{\text {iii }}$	109.77 (9)	O2-C7-H6	109.5
N1-C2-C3	118.00 (11)	O2-C7-H7	109.5
N1-C2-C1	117.29 (9)	H6-C7-H7	109.5
C3-C2-C1	124.69 (10)	O2-C7-H8	109.5
C4-C3-C2	121.63 (11)	H6-C7-H8	109.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 1$	119.2	H7-C7-H8	109.5
C2-C3-H1	119.2	O1-N1-C6	118.73 (10)
C3-C4-C5	118.62 (12)	O1-N1-C2	120.13 (10)
C3-C4-H2	120.7	C6-N1-C2	121.13 (11)
C5-C4-H2	120.7	C7-O2-H5	109.5
C6-C5-C4	119.34 (12)		
C 2 - $\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	-45.51 (8)	C3-C4-C5-C6	-0.2 (2)
$\mathrm{C} 2{ }^{\text {ii }}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	74.40 (6)	C4-C5-C6-N1	0.3 (2)
$\mathrm{C} 2 \mathrm{iii}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	-165.42 (10)	C5-C6-N1-O1	-179.29 (12)
C 2 - $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	133.05 (13)	C5-C6-N1-C2	0.0 (2)

supporting information

$\mathrm{C} 2{ }^{\mathrm{ii}}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-107.04(14)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 1-\mathrm{O} 1$	$178.83(10)$
$\mathrm{C} 2{ }^{\text {iii- }}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$13.14(11)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1-\mathrm{O} 1$	$-2.51(15)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$0.59(18)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 6$	$-0.48(18)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-177.96(10)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 6$	$178.18(10)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-0.2(2)$		

Symmetry codes: (i) $-x,-y+1 / 2, z$; (ii) $-y+1 / 4, x+1 / 4,-z+5 / 4$; (iii) $y-1 / 4,-x+1 / 4,-z+5 / 4$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 — \mathrm{H} 5 \cdots \mathrm{O} 1$	0.84	1.90	$2.7285(15)$	169
$\mathrm{C} 4 — \mathrm{H} 2 \cdots 1^{\text {iv }}$	0.95	2.37	$3.290(2)$	163

Symmetry code: (iv) $x-1 / 2, y,-z+3 / 2$.

[^0]: Supporting information for this paper is available from the IUCr electronic archives (Reference: IS5417).

