

CRYSTALLOGRAPHIC

OPEN access

Crystal structure of 4-[(2,4-dichlorophenyl)(5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)methyl]-5-methyl-2phenyl-2,3-dihydro-1H-pyrazol-3-one

Balbir Kumar,^a Hitesh Mahajan,^b Satya Paul,^b Rajni Kant^a and Vivek K. Gupta^a*

^aPost-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and ^bDepartment of Chemistry, University of Jammu, Jammu Tawi 180 006, India. *Correspondence e-mail: vivek_gupta2k2@hotmail.com

Received 19 September 2015; accepted 24 September 2015

Edited by J. Simpson, University of Otago, New Zealand

In the title compound $C_{27}H_{22}Cl_2N_4O_2$, the pyrazol-5-ol ring makes a dihedral angle of $34.80 (11)^{\circ}$ with the phenyl ring to which it is bound, while the pyrazolone ring is inclined at $34.34 (12)^{\circ}$ to its attached phenyl ring. In the crystal, N- $H \cdots O$ and $C - H \cdots Cl$ hydrogen bonds link the molecules into chains along [010]. Intermolecular $\pi - \pi$ interactions are observed between the pyrazolone ring and the phenyl ring bound to the pyrazol-5-ol ring system [centroid-centroid separation = 3.916(2) Å].

Keywords: crystal structure; pyrazolone; hydrogen bonding; $\pi - \pi$ interactions.

CCDC reference: 1427164

1. Related literature

For the biological activity of bis-pyrazolones, see: Park et al. (2005), and for their applications see: Bailey et al. (1985); Rosiere & Grossman (1951); Mahajan et al. (1991); Chauhan et al. (1993); Hamama et al. (2001). For the synthesis of similar compounds, see: Bhardwaj et al. (2015); Niknam & Mirzaee (2011). For related structures, see: Sharma et al. (2014).

2. Experimental

2.1. Crystal data

C27H22Cl2N4O2 $M_r = 505.39$ Monoclinic $P2_1/c$ a = 19.8321 (19) Åb = 7.8574(5) Å c = 16.3416 (16) Å $\beta = 106.815 \ (10)^{\circ}$

V = 2437.6 (4) Å³ Z = 4Mo Ka radiation $\mu = 0.30 \text{ mm}^{-1}$ T = 293 K $0.30 \times 0.20 \times 0.20$ mm

9479 measured reflections

 $R_{\rm int} = 0.042$

4775 independent reflections

2524 reflections with $I > 2\sigma(I)$

2.2. Data collection

```
Agilent Xcalibur, Sapphire3
  diffractometer
Absorption correction: multi-scan
  (CrysAlis PRO; Agilent, 2013)
  T_{\min} = 0.751, \ T_{\max} = 1.000
```

2.3. Refinement

318 parameters
H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\overline{\begin{array}{c} N2 - H2 \cdots O27^{i} \\ C24 - H24A \cdots Cl1^{ii} \end{array}}$	0.86	2.08	2.756 (3)	135
	0.96	2.93	3.823 (3)	156

Symmetry codes: (i) x, y - 1, z; (ii) -x, -y + 1, -z + 1.

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Acknowledgements

RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003.

Supporting information for this paper is available from the IUCr electronic archives (Reference: SJ5478).

References

- Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Bailey, D. M., Hansen, P. E., Hlavac, A. G., Baizman, E. R., Pearl, J., DeFelice, A. F. & Feigenson, M. E. (1985). *J. Med. Chem.* 28, 256–260.

- Bhardwaj, M., Sahi, S., Mahajan, H., Paul, S. & Clark, J. H. (2015). J. Mol. Catal. A Chem. 408, 48–59.
- Chauhan, P. M. S., Singh, S. & Chatterjee, R. K. (1993). Indian J. Chem. Sect. B, 32, 856-861.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Hamama, W. S. (2001). Synth. Commun. 31, 1335–1345.
- Mahajan, R. N., Havaldar, F. H. & Fernandes, P. S. (1991). J. Indian Chem. Soc. 68, 245-246.
- Niknam, K. & Mirzaee, S. (2011). Synth. Commun. 41, 2403–2413.
- Park, H. J., Lee, K., Park, S. J., Ahn, B., Lee, J. C., Cho, H. Y. & Lee, K. I. (2005). Bioorg. Med. Chem. Lett. 15, 3307–3312.
- Rosiere, C. E. & Grossman, M. I. (1951). Science, 113, 651-651.
- Sharma, N., Jadeja, R. N., Kant, R. & Gupta, K. V. (2014). AIP Conf. Proc. pp. 1206–1208.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2015). E71, o805-o806 [doi:10.1107/S2056989015017880]

Crystal structure of 4-[(2,4-dichlorophenyl)(5-hydroxy-3-methyl-1-phenyl-1*H*-pyrazol-4-yl)methyl]-5-methyl-2-phenyl-2,3-dihydro-1*H*-pyrazol-3-one

Balbir Kumar, Hitesh Mahajan, Satya Paul, Rajni Kant and Vivek K. Gupta

S1. Comment

Bis-pyrazolones are an important class of heterocyclic compounds which have risen to prominence in recent years due to their vital role in various biological activities such as selective COX-2 inhibition, antitumor and cytokine inhibition (Park *et al.*, 2005). Bis-pyrazolones are also used as antidepressants (Bailey *et al.*, 1985), gastric secretion stimulators (Rosiere & Grossman, 1951), or as antibacterial (Mahajan *et al.*, 1991) and antifilarial agents (Chauhan *et al.*, 1993). Moreover, 4,4'-(arylmethylene) bis(1*H*-pyrazol-5-ols) are used as pesticides, fungicides and dye stuffs (Hamama *et al.*, 2001). In recent years, different reagents have been reported for the synthesis of 4,4'-(arylmethylene)bis(3-methyl-1-phenyl-pyrazol-5-ol) derivatives including the condensation reaction between arylaldehyde and 5-methyl-2-phenyl-2,4-di-hydro-3*H*-pyrazol-3-one (Niknam & Mirzaee, 2011; Bhardwaj *et al.*, 2015).

In the title compound $C_{27}H_{22}C_{12}N_4O_2$, the pyrazole rings N1/N2/C3/C4/C5 and N6/N7/C8/C9/C10 make dihedral angle of 34.80 (11)° and 34.34 (12)° with the phenyl rings C18/C19/C20/C21/C22/C23 and C28/C29/C30/C31/C32/C33 respectively. The C5=O26 double bond [1.277 (3) Å] is significantly longer than that normally observed for carbonyl bonds [1.19 Å], probably because the hydroxyl group and carbonyl oxygen atom are involved in an intermolecular O—H···O hydrogen bond and is comparable with that found in a related structure (Sharma *et al.*, (2014). The bond lengths of C15--C11 [1.729 (4) Å] and C13--C12 [1.730 (4) Å], are comparable with the accepted value of 1.739 Å and are in good agreement with another molecule of this type (Sharma *et al.*, 2014). $\pi - \pi$ interactions are observed between the pyrazole ring (N1/N2/C3/C4/C5) and phenyl ring (C28/C29/C30/C31/C32/C33) [centroid-centroidⁱ seperation = 3.916 (2) Å, interplanar spacing = 3.784 Å, centroid shift = 1.01 Å for symmetry operation: *x*, 1 + *y*, *z*]. Classical N–H···O and non-classical C–H···Cl hydrogen bonds, Table 1, also stabilise the crystal packing.

S2. Experimental

Synthesis of 4-[(2,4-dichlorophenyl)(5-hydroxy-3-methyl-1-phenyl- 1*H*-pyrazol-4-yl)methyl]-1,2-dihydro-5-methyl-2-phenyl- 3*H*-pyrazol-3-one: To a mixture of 2,4-dichlorobenzaldehyde (1 mmol) and 5-methyl-2-phenyl-2, 4-dihydro-3*H*-pyrazol-3-one (2 mmol), melt of imidazole-DMU (30:70) was added and the reaction mixture was stirred at 70 ° C for the appropriate time. After completion of the reaction (monitored by TLC), the reaction mixture was cooled to room temperature and diluted with water (20 ml). The product was extracted with EtOAc (20 ml) and dried over anhydrous Na₂SO₄. Removal of the solvent under reduced pressure gave 4-[(2,4-dichlorophenyl)(5-hydroxy-3-methyl-1-phenyl-1*H*-pyrazol-4-yl) methyl]-1,2-dihydro-5-methyl-2-phenyl-3*H*-pyrazol-3-one which was purified by crystallization from ethyl acetate:pet ether. The product, was obtained as shiny white crystals.

S3. Refinement

All the H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances of 0.93–0.98 Å; and with $U_{iso}(H) = 1.2U_{eq}(C)$, except for the methyl group where $U_{iso}(H) = 1.5U_{eq}(C)$.

Figure 1

ORTEP view of the molecule with the atom-labeling scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.

Figure 2

The packing arrangement of molecules viewed along the *a* axis.

$\label{eq:constraint} 4-[(2,4-Dichlorophenyl)(5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)methyl]-5-methyl-2-phenyl-1H-2,3-methyl-2-phenyl-1H-2,3-methyl-2-phenyl-1H-2,3-methyl-2-phenyl-1H-2,3-methyl-2-phenyl-1H-2,3-methyl-2-phenyl-1H-2,3-methyl-2-phenyl-1H-2,3-methyl-2-phenyl-1H-2,3-methyl-2-phenyl-1H-2,3-methyl-2-phenyl-1H-2,3-methyl-2-phenyl-2-phenyl-1H-2,3-methyl-2-phenyl-2$

dihydro-pyrazol-3-one

Crystal data

 $C_{27}H_{22}Cl_2N_4O_2$ $M_r = 505.39$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 19.8321 (19) Å b = 7.8574 (5) Å c = 16.3416 (16) Å $\beta = 106.815 (10)^\circ$ $V = 2437.6 (4) \text{ Å}^3$ Z = 4 F(000) = 1048 $D_x = 1.377 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2488 reflections $\theta = 3.8-27.6^{\circ}$ $\mu = 0.30 \text{ mm}^{-1}$ T = 293 KBlock, white $0.30 \times 0.20 \times 0.20 \text{ mm}$ Data collection

Agilent Xcalibur, Sapphire3 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 16.1049 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2013) $T_{\min} = 0.751, T_{\max} = 1.000$	9479 measured reflections 4775 independent reflections 2524 reflections with $I > 2\sigma(I)$ $R_{int} = 0.042$ $\theta_{max} = 26.0^{\circ}, \theta_{min} = 3.5^{\circ}$ $h = -24 \rightarrow 11$ $k = -9 \rightarrow 8$ $l = -17 \rightarrow 20$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.060$ $wR(F^2) = 0.174$ S = 1.00 4775 reflections 318 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0647P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.29$ e Å ⁻³ $\Delta\rho_{min} = -0.30$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

<i>x</i>	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	
0.00677 (6)	0.80461 (13)	0.44350 (7)	0.0924 (4)	
0.28998 (11)	0.6772 (2)	0.75223 (13)	0.0473 (6)	
0.2752	0.6135	0.7112	0.071*	
0.26128 (16)	0.6342 (4)	0.81376 (18)	0.0403 (7)	
0.26121 (14)	0.0048 (3)	0.69193 (16)	0.0483 (7)	
0.2620	-0.1016	0.6800	0.058*	
0.32799 (13)	0.4092 (3)	0.70772 (16)	0.0637 (7)	
0.31308 (14)	0.1203 (3)	0.69305 (16)	0.0468 (7)	
0.20859 (16)	0.0860 (4)	0.71276 (19)	0.0433 (7)	
0.17730 (17)	0.3891 (4)	0.74490 (19)	0.0445 (7)	
0.1429	0.3264	0.7659	0.053*	
0.27580 (14)	0.7213 (3)	0.88777 (16)	0.0479 (7)	
0.13422 (17)	0.4914 (4)	0.6682 (2)	0.0455 (8)	
0.29086 (17)	0.2771 (4)	0.70900 (19)	0.0462 (8)	
0.21443 (17)	0.5069 (3)	0.8164 (2)	0.0423 (7)	
0.37530 (18)	0.0725 (4)	0.6727 (2)	0.0461 (8)	
	x 0.00677 (6) 0.28998 (11) 0.2752 0.26128 (16) 0.26121 (14) 0.2620 0.32799 (13) 0.31308 (14) 0.20859 (16) 0.17730 (17) 0.1429 0.27580 (14) 0.13422 (17) 0.29086 (17) 0.21443 (17) 0.37530 (18)	xy $0.00677 (6)$ $0.80461 (13)$ $0.28998 (11)$ $0.6772 (2)$ 0.2752 0.6135 $0.26128 (16)$ $0.6342 (4)$ $0.26121 (14)$ $0.0048 (3)$ 0.2620 -0.1016 $0.32799 (13)$ $0.4092 (3)$ $0.31308 (14)$ $0.1203 (3)$ $0.20859 (16)$ $0.0860 (4)$ $0.17730 (17)$ $0.3891 (4)$ 0.1429 0.3264 $0.27580 (14)$ $0.7213 (3)$ $0.13422 (17)$ $0.4914 (4)$ $0.29086 (17)$ $0.2771 (4)$ $0.21443 (17)$ $0.5069 (3)$ $0.37530 (18)$ $0.0725 (4)$	xyz $0.00677 (6)$ $0.80461 (13)$ $0.44350 (7)$ $0.28998 (11)$ $0.6772 (2)$ $0.75223 (13)$ 0.2752 0.6135 0.7112 $0.26128 (16)$ $0.6342 (4)$ $0.81376 (18)$ $0.26121 (14)$ $0.0048 (3)$ $0.69193 (16)$ 0.2620 -0.1016 0.6800 $0.32799 (13)$ $0.4092 (3)$ $0.70772 (16)$ $0.31308 (14)$ $0.1203 (3)$ $0.69305 (16)$ $0.20859 (16)$ $0.0860 (4)$ $0.71276 (19)$ $0.17730 (17)$ $0.3891 (4)$ $0.74490 (19)$ 0.1429 0.3264 0.7659 $0.27580 (14)$ $0.7213 (3)$ $0.88777 (16)$ $0.13422 (17)$ $0.4914 (4)$ $0.6682 (2)$ $0.29086 (17)$ $0.2771 (4)$ $0.70900 (19)$ $0.21443 (17)$ $0.5069 (3)$ $0.8164 (2)$ $0.37530 (18)$ $0.0725 (4)$ $0.6727 (2)$	xyz $U_{iso}*/U_{eq}$ 0.00677 (6)0.80461 (13)0.44350 (7)0.0924 (4)0.28998 (11)0.6772 (2)0.75223 (13)0.0473 (6)0.27520.61350.71120.071*0.26128 (16)0.6342 (4)0.81376 (18)0.0403 (7)0.26121 (14)0.0048 (3)0.69193 (16)0.0483 (7)0.2620-0.10160.68000.058*0.32799 (13)0.4092 (3)0.70772 (16)0.0637 (7)0.31308 (14)0.1203 (3)0.69305 (16)0.0468 (7)0.20859 (16)0.0860 (4)0.71276 (19)0.0433 (7)0.17730 (17)0.3891 (4)0.74490 (19)0.0445 (7)0.14290.32640.76590.053*0.27580 (14)0.7213 (3)0.88777 (16)0.0479 (7)0.13422 (17)0.4914 (4)0.6682 (2)0.0455 (8)0.29086 (17)0.2771 (4)0.70900 (19)0.0462 (8)0.21443 (17)0.5069 (3)0.8164 (2)0.0423 (7)0.37530 (18)0.0725 (4)0.6727 (2)0.0461 (8)

N7	0.24029 (15)	0.6527 (4)	0.94179 (16)	0.0548 (7)
C13	0.06910 (18)	0.5592 (4)	0.6645 (2)	0.0523 (8)
C8	0.20479 (18)	0.5215 (4)	0.8983 (2)	0.0487 (8)
C4	0.22364 (17)	0.2559 (4)	0.7224 (2)	0.0448 (8)
C15	0.0563 (2)	0.6877 (4)	0.5296 (2)	0.0610 (10)
C23	0.4379 (2)	0.1532 (4)	0.7111 (2)	0.0629 (10)
H23	0.4394	0.2397	0.7504	0.075*
C28	0.31742 (19)	0.8696 (4)	0.9144 (2)	0.0536 (9)
C17	0.15898 (19)	0.5269 (4)	0.5982 (2)	0.0605 (9)
H17	0.2025	0.4840	0.5974	0.073*
C20	0.4358 (2)	-0.0977 (5)	0.5960 (2)	0.0745 (12)
H20	0.4352	-0.1833	0.5564	0.089*
C19	0.37351 (19)	-0.0548 (4)	0.6142 (2)	0.0592 (10)
H19	0.3316	-0.1110	0.5875	0.071*
C14	0.02955 (19)	0.6543 (4)	0.5963 (2)	0.0614 (10)
H14	-0.0146	0.6951	0.5957	0.074*
C24	0.14727 (19)	-0.0126 (4)	0.7233 (2)	0.0642 (10)
H24A	0.1074	0.0038	0.6740	0.096*
H24B	0.1359	0.0264	0.7734	0.096*
H24C	0.1591	-0.1313	0.7293	0.096*
C21	0.4975 (2)	-0.0175 (5)	0.6344 (3)	0.0718 (11)
H21	0.5386	-0.0478	0.6214	0.086*
C16	0.1201 (2)	0.6255 (5)	0.5291 (2)	0.0678 (10)
H16	0.1379	0.6482	0.4834	0.081*
C22	0.4984 (2)	0.1070 (5)	0.6918 (3)	0.0695 (10)
H22	0.5405	0.1620	0.7186	0.083*
C29	0.3772 (2)	0.8959 (5)	0.8911 (2)	0.0730 (11)
H29	0.3916	0.8168	0.8573	0.088*
C25	0.1636 (2)	0.4104 (5)	0.9406 (2)	0.0697 (11)
H25A	0.1756	0.4378	1.0004	0.105*
H25B	0.1748	0.2932	0.9340	0.105*
H25C	0.1142	0.4288	0.9148	0.105*
C30	0.4165 (2)	1.0431 (6)	0.9185 (3)	0.0920 (15)
H30	0.4573	1.0621	0.9026	0.110*
C33	0.2971 (3)	0.9859 (6)	0.9643 (3)	0.1041 (18)
Н33	0.2566	0.9676	0.9807	0.125*
C31	0.3961 (3)	1.1586 (7)	0.9681 (3)	0.115 (2)
H31	0.4226	1.2561	0.9867	0.138*
C32	0.3362 (4)	1.1294 (7)	0.9901 (4)	0.143 (3)
H32	0.3215	1.2088	1.0235	0.171*
Cl2	0.03200 (6)	0.52304 (19)	0.74666 (7)	0.1010 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0896 (9)	0.0657 (7)	0.0978 (8)	0.0008 (6)	-0.0113 (6)	0.0091 (6)
O27	0.0627 (15)	0.0263 (11)	0.0621 (13)	-0.0044 (10)	0.0328 (11)	-0.0077 (9)
C10	0.0476 (19)	0.0304 (16)	0.0489 (17)	0.0064 (14)	0.0233 (14)	0.0018 (14)

N2	0.0479 (17)	0.0221 (13)	0.0779 (18)	-0.0050 (11)	0.0232 (14)	-0.0084 (12)
O26	0.0655 (16)	0.0256 (11)	0.1200 (19)	-0.0075 (11)	0.0583 (14)	-0.0091 (12)
N1	0.0478 (17)	0.0259 (13)	0.0726 (17)	-0.0010 (12)	0.0269 (13)	-0.0013 (13)
C3	0.0413 (19)	0.0286 (16)	0.0617 (19)	0.0007 (14)	0.0177 (15)	-0.0025 (14)
C11	0.050 (2)	0.0267 (15)	0.065 (2)	-0.0010 (14)	0.0296 (15)	-0.0016 (14)
N6	0.0531 (18)	0.0389 (15)	0.0586 (17)	-0.0062 (13)	0.0270 (13)	-0.0058 (13)
C12	0.044 (2)	0.0288 (16)	0.067 (2)	-0.0038 (13)	0.0208 (15)	-0.0079 (15)
C5	0.050(2)	0.0269 (15)	0.068 (2)	0.0014 (14)	0.0269 (16)	-0.0055 (15)
C9	0.0458 (19)	0.0253 (15)	0.0615 (19)	0.0004 (13)	0.0248 (14)	-0.0004 (14)
C18	0.052 (2)	0.0323 (16)	0.0582 (19)	0.0131 (14)	0.0227 (16)	-0.0026 (14)
N7	0.0557 (19)	0.0548 (18)	0.0604 (17)	-0.0054 (15)	0.0271 (14)	-0.0009 (14)
C13	0.042 (2)	0.0426 (18)	0.073 (2)	0.0023 (16)	0.0185 (17)	-0.0113 (17)
C8	0.049 (2)	0.0450 (19)	0.058 (2)	0.0062 (16)	0.0249 (16)	0.0054 (16)
C4	0.0420 (19)	0.0266 (15)	0.069 (2)	0.0015 (13)	0.0208 (15)	-0.0040 (14)
C15	0.055 (2)	0.0376 (19)	0.079 (3)	-0.0053 (17)	0.0003 (19)	-0.0054 (18)
C23	0.055 (2)	0.048 (2)	0.092 (3)	-0.0014 (18)	0.030 (2)	-0.0124 (19)
C28	0.054 (2)	0.048 (2)	0.0577 (19)	-0.0084 (17)	0.0153 (16)	-0.0079 (17)
C17	0.047 (2)	0.058 (2)	0.082 (2)	0.0052 (18)	0.0287 (19)	0.008 (2)
C20	0.079 (3)	0.071 (3)	0.079 (3)	0.027 (2)	0.031 (2)	-0.012 (2)
C19	0.054 (2)	0.056 (2)	0.065 (2)	0.0151 (18)	0.0126 (17)	-0.0104 (18)
C14	0.042 (2)	0.054 (2)	0.084 (3)	0.0018 (17)	0.0121 (19)	-0.017 (2)
C24	0.048 (2)	0.0358 (19)	0.111 (3)	-0.0119 (16)	0.026 (2)	-0.0087 (19)
C21	0.062 (3)	0.072 (3)	0.094 (3)	0.024 (2)	0.042 (2)	0.011 (2)
C16	0.066 (3)	0.063 (2)	0.076 (3)	0.003 (2)	0.025 (2)	0.013 (2)
C22	0.046 (2)	0.063 (2)	0.107 (3)	-0.0013 (19)	0.034 (2)	0.001 (2)
C29	0.064 (3)	0.078 (3)	0.086 (3)	-0.018 (2)	0.035 (2)	-0.009 (2)
C25	0.078 (3)	0.062 (2)	0.080 (2)	-0.006 (2)	0.041 (2)	0.014 (2)
C30	0.083 (3)	0.110 (4)	0.089 (3)	-0.057 (3)	0.033 (3)	-0.018 (3)
C33	0.110 (4)	0.097 (3)	0.131 (4)	-0.054 (3)	0.075 (3)	-0.067 (3)
C31	0.162 (6)	0.094 (4)	0.099 (4)	-0.077 (4)	0.053 (4)	-0.047 (3)
C32	0.179 (6)	0.119 (4)	0.166 (5)	-0.092 (5)	0.107 (5)	-0.093 (4)
Cl2	0.0630 (8)	0.1521 (12)	0.1022 (9)	0.0321 (7)	0.0465 (6)	0.0080 (8)

Geometric parameters (Å, °)

Cl1—C15	1.729 (4)	C23—C22	1.375 (5)
O27—C10	1.334 (3)	C23—H23	0.9300
O27—H27	0.8200	C28—C33	1.361 (5)
C10—N6	1.346 (4)	C28—C29	1.362 (5)
С10—С9	1.375 (4)	C17—C16	1.401 (5)
N2—C3	1.348 (4)	C17—H17	0.9300
N2—N1	1.368 (3)	C20—C21	1.357 (5)
N2—H2	0.8600	C20—C19	1.395 (5)
O26—C5	1.277 (3)	C20—H20	0.9300
N1—C5	1.358 (4)	C19—H19	0.9300
N1-C18	1.418 (4)	C14—H14	0.9300
C3—C4	1.367 (4)	C24—H24A	0.9600
C3—C24	1.493 (4)	C24—H24B	0.9600

C11_C9	1 506 (4)	C24—H24C	0.9600
$C_{11} - C_{4}$	1 507 (4)	$C_{24} = C_{22}$	1.352(5)
C_{11} C_{12}	1 526 (4)	C21—H21	0.9300
C11_H11	0.9800	C16H16	0.9300
N6N7	1 388 (3)	C^{22} H22	0.9300
N6 C28	1.300(3) 1.421(4)	$\begin{array}{c} C22 \\ C29 \\ C30 \end{array}$	1 394 (5)
C_{12} C_{13}	1.421(4) 1.382(4)	$C_{29} = C_{30}$	0.0300
$C_{12} = C_{13}$	1.302(4)	$C_{25} = H_{25}$	0.9500
C_{12} C_{17}	1.397(4) 1.422(4)	C25 H25R	0.9000
C_{2}	1.422(4)	C25_H25C	0.9000
$C_{2} = C_{3}$	1.410(4) 1.274(5)	C_{23}^{23}	1.354(6)
$C_{10} = C_{23}$	1.374(3) 1.377(4)	C_{20} H_{20}	1.334 (0)
N7 C8	1.377(4)	C30—H50	0.9300
$N = C \delta$	1.332(4) 1.292(5)	C_{22} U_{22}	1.304 (0)
C13 - C14	1.385 (5)	C35—H35	0.9300
C13 - C12	1.730 (4)	$C_{31} = C_{32}$	1.356 (7)
C8-C25	1.495 (4)	C31—H31	0.9300
	1.360 (5)	С32—Н32	0.9300
C15—C14	1.368 (5)		
С10—О27—Н27	109.5	C33—C28—N6	119.2 (3)
O27—C10—N6	121.4 (3)	C29—C28—N6	120.9 (3)
O27—C10—C9	130.4 (3)	C12—C17—C16	121.9 (3)
N6-C10-C9	108.2 (3)	С12—С17—Н17	119.1
C3—N2—N1	108.5 (2)	С16—С17—Н17	119.1
C3—N2—H2	125.8	C_{21} C_{20} C_{19}	121.6 (4)
N1—N2—H2	125.8	C21—C20—H20	119.2
C5—N1—N2	108.6 (2)	C19—C20—H20	119.2
C5—N1—C18	129.6 (3)	C18 - C19 - C20	118.5 (4)
N2—N1—C18	121.5 (2)	С18—С19—Н19	120.7
N2-C3-C4	109.4 (3)	C20-C19-H19	120.7
N2-C3-C24	120.0 (3)	C_{15} C_{14} C_{13}	119.1 (4)
C4-C3-C24	130.6(3)	C15—C14—H14	120.5
C9-C11-C4	1149(3)	C13—C14—H14	120.5
C9-C11-C12	1102(2)	C3—C24—H24A	109.5
C4-C11-C12	113.7(2)	C_3 — C_24 — H_24B	109.5
C9-C11-H11	105 7	H24A - C24 - H24B	109.5
C4—C11—H11	105.7	$C_3 - C_2 - H_2 + C_2$	109.5
C12—C11—H11	105.7	$H_{24} = C_{24} = H_{24}C$	109.5
C10 - N6 - N7	1110(2)	H24B— $C24$ — $H24C$	109.5
C10 - N6 - C28	130.2(3)	C^{22} C^{21} C^{20}	119.1 (4)
N7—N6—C28	130.2(3) 1187(3)	$C_{22} = C_{21} = C_{20}$	120.4
C_{13} C_{12} C_{17}	115.7 (3)	C20—C21—H21	120.4
C13 - C12 - C11	122.2 (3)	C_{15} C_{16} C_{17}	1193(4)
C17 - C12 - C11	122.2(3) 122.2(3)	C15—C16—H16	120.3
0.26 - C5 - N1	122.2(3) 120.9(3)	C17_C16_H16	120.3
0.26 - 0.5 - 0.4	132.0 (3)	C_{21} C_{22} C_{23}	120.5
N1 - C5 - C4	102.0(3) 107 1 (3)	$C_{21} = C_{22} = C_{23}$	110.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.1(3) 104.4(3)	$C_{21} = C_{22} = H_{22}$	110.6
010-09-00	104.4 (3)	UZJ—UZZ—IIZZ	119.0

C10—C9—C11	127.3 (3)	C28—C29—C30	119.2 (4)
C8—C9—C11	128.0 (3)	С28—С29—Н29	120.4
C23—C18—C19	119.4 (3)	С30—С29—Н29	120.4
C23—C18—N1	120.2 (3)	C8—C25—H25A	109.5
C19—C18—N1	120.4 (3)	C8—C25—H25B	109.5
C8—N7—N6	104.4 (2)	H25A—C25—H25B	109.5
C12—C13—C14	123.2 (3)	C8—C25—H25C	109.5
C12—C13—Cl2	120.3 (3)	H25A—C25—H25C	109.5
C14—C13—Cl2	116.4 (3)	H25B—C25—H25C	109.5
N7—C8—C9	111.9 (3)	C31—C30—C29	120.8 (4)
N7—C8—C25	118.7 (3)	С31—С30—Н30	119.6
C9—C8—C25	129.4 (3)	С29—С30—Н30	119.6
C3—C4—C5	106.2 (3)	C28—C33—C32	120.0 (5)
C3—C4—C11	125.3 (3)	С28—С33—Н33	120.0
C5—C4—C11	128.4 (3)	С32—С33—Н33	120.0
C16—C15—C14	120.8 (3)	C30—C31—C32	118.8 (4)
C16—C15—Cl1	119.8 (3)	С30—С31—Н31	120.6
C14—C15—Cl1	119.4 (3)	С32—С31—Н31	120.6
C18—C23—C22	120.4 (3)	C31—C32—C33	121.3 (5)
С18—С23—Н23	119.8	С31—С32—Н32	119.3
C22—C23—H23	119.8	С33—С32—Н32	119.3
C33—C28—C29	119.9 (4)		
C3—N2—N1—C5	-4.1 (3)	C24—C3—C4—C5	176.8 (3)
C3—N2—N1—C18	-179.3 (3)	N2—C3—C4—C11	179.4 (3)
N1—N2—C3—C4	3.7 (3)	C24—C3—C4—C11	-1.9 (6)
N1—N2—C3—C24	-175.1 (3)	O26—C5—C4—C3	177.3 (3)
O27—C10—N6—N7	-179.6 (3)	N1—C5—C4—C3	-0.6(3)
C9—C10—N6—N7	1.1 (3)	O26—C5—C4—C11	-4.1 (6)
O27—C10—N6—C28	3.5 (5)	N1—C5—C4—C11	178.0 (3)
C9-C10-N6-C28	-175.7 (3)	C9—C11—C4—C3	131.2 (3)
C9—C11—C12—C13	-79.3 (4)	C12—C11—C4—C3	-100.5 (4)
C4—C11—C12—C13	150.0 (3)	C9—C11—C4—C5	-47.1 (4)
C9—C11—C12—C17	98.7 (3)	C12—C11—C4—C5	81.1 (4)
C4—C11—C12—C17	-32.0 (4)	C19—C18—C23—C22	-0.4(5)
N2—N1—C5—O26	-175.3 (3)	N1—C18—C23—C22	179.8 (3)
C18—N1—C5—O26	-0.6 (5)	C10—N6—C28—C33	144.3 (4)
N2—N1—C5—C4	2.9 (3)	N7—N6—C28—C33	-32.4(5)
C18—N1—C5—C4	177.6 (3)	C10—N6—C28—C29	-36.1(5)
O27—C10—C9—C8	178.6 (3)	N7—N6—C28—C29	147.3 (3)
N6-C10-C9-C8	-2.2(3)	C13—C12—C17—C16	0.2 (5)
O27—C10—C9—C11	-6.1 (5)	C11—C12—C17—C16	-177.9 (3)
N6—C10—C9—C11	173.0 (3)	C23—C18—C19—C20	0.1 (5)
C4—C11—C9—C10	72.0 (4)	N1-C18-C19-C20	179.9 (3)
C12-C11-C9-C10	-57.9 (4)	C21—C20—C19—C18	0.1 (6)
C4—C11—C9—C8	-113.8 (4)	C16—C15—C14—C13	1.4 (5)
C12—C11—C9—C8	116.2 (3)	Cl1—C15—C14—C13	179.3 (2)
C5—N1—C18—C23	37.7 (5)	C12—C13—C14—C15	-1.7 (5)

N2—N1—C18—C23	-148.2 (3)	Cl2—C13—C14—C15	179.7 (3) $0.0 (6)$ $-0.4 (6)$ $-178.2 (3)$ $-0.5 (6)$ $-0.3 (6)$ $0.5 (6)$ $-0.3 (6)$ $180.0 (3)$ $0.3 (7)$ $0.6 (7)$ $-179.7 (5)$
C5—N1—C18—C19	-142.1 (3)	C19—C20—C21—C22	
N2—N1—C18—C19	32.0 (4)	C14—C15—C16—C17	
C10—N6—N7—C8	0.6 (3)	Cl1—C15—C16—C17	
C28—N6—N7—C8	177.8 (3)	C12—C17—C16—C15	
C17—C12—C13—C14	0.9 (5)	C20—C21—C22—C23	
C11—C12—C13—C14	179.0 (3)	C18—C23—C22—C21	
C17—C12—C13—C12	179.4 (2)	C33—C28—C29—C30	
C11—C12—C13—C12	-2.5 (4)	N6—C28—C29—C30	
N6—N7—C8—C9	-2.1 (4)	C28—C29—C30—C31	
N6—N7—C8—C25	176.2 (3)	C29—C28—C33—C32	
C10—C9—C8—N7	2.7 (4)	N6—C28—C33—C32	
N6—N7—C8—C9 N6—N7—C8—C25 C10—C9—C8—N7 C11—C9—C8—N7 C10—C9—C8—C25 C11—C9—C8—C25 N2—C3—C4—C5	-2.1 (4) 176.2 (3) 2.7 (4) -172.5 (3) -175.2 (3) 9.5 (6) -1.9 (4)	C28-C29-C30-C31 C29-C28-C33-C32 N6-C28-C33-C32 C29-C30-C31-C32 C30-C31-C32-C33 C28-C33-C32-C31	0.3 (7) 0.6 (7) -179.7 (5) -0.5 (9) 0.8 (10) -0.9 (10)

Hydrogen-bond geometry (Å, °)

	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N2—H2…O27 ⁱ	0.86	2.08	2.756 (3)	135
C24—H24A···Cl1 ⁱⁱ	0.96	2.93	3.823 (3)	156

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) -*x*, -*y*+1, -*z*+1.